Pré-Publication, Document De Travail Année : 2022

Reinforcement learning with function approximation for 3-spheres swimmer

Résumé

We study the swimming strategies that maximize the speed of the three-sphere swimmer using reinforcement learning methods. First of all, we ensure that for a simple model with few actions, the Q-learning method converges. However, this latter method does not fit a more complex framework (for instance the presence of boundary) where states or actions have to be continuous to obtain all directions in the swimmer's reachable set. To overcome this issue, we investigate another method from reinforcement learning which uses function approximation, and benchmark its results in absence of walls.
Fichier principal
Vignette du fichier
Article_IFAC_CAO_2021-4.pdf (409.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03538754 , version 1 (21-01-2022)

Identifiants

  • HAL Id : hal-03538754 , version 1

Citer

Luca Berti, Zakarya El Khiyati, Youssef Essousy, Christophe Prud'Homme, Laetitia Giraldi. Reinforcement learning with function approximation for 3-spheres swimmer. 2022. ⟨hal-03538754⟩
335 Consultations
154 Téléchargements

Partager

More