Communication Dans Un Congrès Année : 2024

Bridging explainability and interpretability in AI-driven SCM projects to enhance decision-making

Résumé

New AI-based systems implementation in companies is steadily expanding, paving the way for novel organizational sequences. The increasing involvement of end-users has also garnered interest in AI explainability. However, AI explainability continues to be a serious concern, particularly in conventional fields of activity where end-users play an essential role in the large-scale deployment of AI-based solutions. To address this challenge, managing the close relationship between explainability and interpretability deserves particular attention to enable end-users to act and decide with confidence.
Fichier principal
Vignette du fichier
MAIH2024_paper_conference_AI Explainability.pdf (179.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04892366 , version 1 (16-01-2025)

Identifiants

Citer

Taoufik El Oualidi, Saïd Assar. Bridging explainability and interpretability in AI-driven SCM projects to enhance decision-making. MAIH 2024 : International Conference on Mobility, Artificial Intelligence and Health, Cadi Ayyad University, FSTG & FSSM, Morocco; Polytechnic University of Hauts-de-France, France; Académie de Logistique de France, France; GIS-GRAISyHM, France; EMSI Marrakesh, Morocco; Ibn Zohr University, ENSA, Morocco, Nov 2024, Marrakech, Morocco. pp.01002, ⟨10.1051/itmconf/20246901002⟩. ⟨hal-04892366⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More