Towards fine tuning wake steering policies in the field: an imitation-based approach - PEPR TASE : Systemes Energétiques et Energies Renouvelables
Article Dans Une Revue Journal of Physics: Conference Series Année : 2024

Towards fine tuning wake steering policies in the field: an imitation-based approach

Résumé

Yaw misalignment strategies can increase the power output of wind farms by mitigating wake effects, but finding optimal yaws requires overcoming both modeling errors and the growing complexity of the problem as the size of the farm grows. Recent works have therefore proposed decentralized multi-agent reinforcement learning (MARL) as a model-free, data-based alternative to learn online. These solutions have led to significant increases in total power production on experiments with both static and dynamic wind farms simulators. Yet experiments in dynamic simulations suggest that convergence time remains too long for online learning on real wind farms. As an improvement, baseline policies obtained by optimizing offline through steady-state models can be fed as inputs to an online reinforcement learning algorithm. This method however does not guarantee a smooth transfer of the policies to the real wind farm. This is aggravated when using function approximation approaches such as multi-layer neural networks to estimate policies and value functions. We propose an imitation approach, where learning a policy is first considered a supervised learning problem by deriving references from steady-state wind farm models, and then as an online reinforcement learning task for adaptation in the field. This approach leads to significant increases in the amount of energy produced over a lookup table (LUT) baseline on experiments done with the mid-fidelity dynamic simulator FAST.Farm under both static and varying wind conditions.
Fichier principal
Vignette du fichier
Toward_fine_tuning.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04653089 , version 1 (18-07-2024)

Licence

Identifiants

Citer

Claire Bizon Monroc, A. Bušić, D. Dubuc, J. Zhu. Towards fine tuning wake steering policies in the field: an imitation-based approach. Journal of Physics: Conference Series, 2024, 2767 (3), pp.032017. ⟨10.1088/1742-6596/2767/3/032017⟩. ⟨hal-04653089⟩
27 Consultations
16 Téléchargements

Altmetric

Partager

More