PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration - Métabolisme et xénobiotiques
Article Dans Une Revue PLoS Computational Biology Année : 2024

PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration

Cecilia Wieder
Juliette Cooke
Nathalie Poupin
Russell Bowler
Timothy Ebbels
  • Fonction : Auteur correspondant
  • PersonId : 1100109

Connectez-vous pour contacter l'auteur

Résumé

As terabytes of multi-omics data are being generated, there is an ever-increasing need for methods facilitating the integration and interpretation of such data. Current multi-omics integration methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even with expert domain knowledge, discerning the biological processes involved is a time-consuming activity. Here we propose PathIntegrate, a method for integrating multi-omics datasets based on pathways, designed to exploit knowledge of biological systems and thus provide interpretable models for such studies. PathIntegrate employs single-sample pathway analysis to transform multi-omics datasets from the molecular to the pathway-level, and applies a predictive single-view or multi-view model to integrate the data. Model outputs include multi-omics pathways ranked by their contribution to the outcome prediction, the contribution of each omics layer, and the importance of each molecule in a pathway. Using semi-synthetic data we demonstrate the benefit of grouping molecules into pathways to detect signals in low signal-to-noise scenarios, as well as the ability of PathIntegrate to precisely identify important pathways at low effect sizes. Finally, using COPD and COVID-19 data we showcase how PathIntegrate enables convenient integration and interpretation of complex high-dimensional multi-omics datasets. PathIntegrate is available as an open-source Python package.
Fichier principal
Vignette du fichier
2024_Wieder_Plos Computational Biology.pdf (3.28 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04597222 , version 1 (03-09-2024)

Licence

Identifiants

Citer

Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Russell Bowler, et al.. PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration. PLoS Computational Biology, 2024, 20 (3), pp.e1011814. ⟨10.1371/journal.pcbi.1011814⟩. ⟨hal-04597222⟩
103 Consultations
6 Téléchargements

Altmetric

Partager

More