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1 Introduction

Stackelberg competition has been widely studied in the literature. Several extensions 
have been added to the original duopoly model (Stackelberg 1934), including a 
larger number of stages (Boyer and Moreaux 1986; Daughety 1990), and/or a larger 
num-ber of players (Sherali 1984; Heywood and McGinty 2008; Watt 2002). The 
overall sequential structure of a Stackelberg model is usually called a hierarchy 
(Boyer and Moreaux 1986; Watt 2002). In this context, a puzzling result has often 
been noticed: despite the hierarchical structure, firms behave as Cournotian 
oligopolists on the resid-ual demand. In the specific case of a single firm per stage, 
the standard Stackelberg duopoly leader produces exactly the same quantity as a 
monopolist. More generally, for a larger number of firms per stage and a 
homogeneous product, the strategies of leaders at any stage depend neither on the 
number of followers who play after, nor on the number of remaining stages. While 
this property is a striking feature of the Stack-elberg literature, neither its 
foundations, nor its implications have been fully formally studied.1

In this paper, we go a step further by investigating the conditions under which 
such a property holds. To do this, we determine the conditions under which a 
Stackelberg leader firm behaves as a Cournotian oligopolist. We then consider the 
maximiza-tion program of a Cournot oligopolist and we analyze the assumptions 
under which the program of a Stackelberg leader is equivalent. While the literature 
only focused on the equivalence between the equilibrium strategies, our approach 
allows us to study the impact on profit functions of alternative assumptions on 
market demand, costs and the hierarchical structure.2 The equivalence between the 
best response functions and the equilibrium strategies follows.

We show that the property holds whatever the number of cohorts and firms in the 
economy, as long as we conjointly assume the three following assumptions: a linear 
demand, constant and identical marginal costs. These three assumptions, unlike the 
structure and size of the economy, are critical features. Assuming the linearity for 
market demand and costs is not sufficient since individual marginal costs have also 
to be equal for all firms. We fill a gap in the existing literature by showing that these 
assumptions are not only sufficient but also necessary conditions for a T -stage 
hierarchical oligopoly model to reduce to a succession of Cournot games. Any 
departure from one of these assumptions rules out the equivalence between the 
Cournot and the Stackelberg strategies. We display several examples to illustrate our 
results.

The paper is organized as follows. In Sect. 2, we present the hierarchical model, 
state the assumptions and provide a graphical interpretation of the property. The next 
two sections deal with the formal proof that the hierarchical model reduces to a 
succession of Cournot games. Section 3 considers sufficient conditions, while Sect. 4 
deals with necessary conditions. In Sect. 5, we provide an illustration with three 
cohorts. Section 6 concludes.

1 Pal and Sarkar (2001) and  Lafay (2010), however, analyze the robustness of the property by investigating 
the impact of cost differences on the equilibrium strategies.
2 Our analysis then does not restrict to equilibrium strategies.
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2 The hierarchical model under linearity assumptions

2.1 General framework

Consider one homogeneous good produced by n firms which oligopolistically compete
in a hierarchical framework. There are T stages of decisions indexed by t , t ∈ �1, T �.
Each stage embodies one cohort and is associated with a level of decision. The whole
set of cohorts represents a hierarchy. Cohort t is populated by nt firms, with

∑
t nt = n.

The distribution of the firms within each cohort is assumed to be observable and
exogenous.3 This latter assumption notably implies that position of firms and timing
of moves are given.4

A firm i which belongs to cohort t has to decide strategically (simultaneously with
firms of the same cohort, and sequentially among the hierarchy) its level of output
denoted by xi

t . The aggregate output of cohort t is denoted Xt = ∑nt
i=1 xi

t , where xi
t

stands for firm i’s output within cohort t . In addition, X−i
t = ∑

−i x−i
t denotes the

production of all firms belonging to cohort t but i .
The nt firms which belong to cohort t , behave as followers with respect to all firms

of cohort τ , τ ∈ �1, t − 1�, whose strategies are taken as given. However, they behave
as Stackelberg leaders toward all firms of cohort τ , τ ∈ �t + 1, T �. They consider the
best-response functions of all firms belonging to these cohorts as functions of their
strategies.

The inverse market demand function for the homogeneous good specifies the market
price p as a function of aggregate output X , and is denoted by p(X). We assume that
p(.) is continuous and twice differentiable, with dp(X)

d X < 0. For the equilibrium
aggregate output X∗, the equilibrium price is unique and equal to p(X∗).

The cost function of any firm i which belongs to cohort t is denoted by φt (.). It is

a continuous and twice differentiable function with dφt (xi
t )

dxi
t

> 0 and d2φt (xi
t )

d(xi
t )

2 ≥ 0.

2.2 The linearity assumptions

In this section, we assume

• an inverse market demand function which is linear

p(X) = a − bX, (H1)

where a, b > 0 and X = ∑T
t=1 Xt ,

• constant marginal costs

φt (xi
t ) = ct x

i
t , i = 1, . . . , nt and t = 1, . . . , T (H2)

3 The standard Stackelberg duopoly prevails when T = 2 and n1 = n2 = 1.
4 We therefore do not question the way a specific firm could or should become a leader (see Anderson and 
Engers 1992; Amir and Grilo 1999; Matsumura 1999).



• and identical marginal costs

ct = c, t = 1, . . . , T . (H3)

These three assumptions are standard in the literature on oligopoly analysis (see
Daughety 1990; Carlton and Perloff 1994; Vives 1999, among others).

The puzzling result of the hierarchical model stressed in the introduction has been
regularly stated in the literature (e.g. Boyer and Moreaux 1986; Watt 2002 ). It can be
captured by the property below:

Property 1 In the Stackelberg linear economy with an homogeneous product, firms
in cohort t , t ∈ �1, T �, behave as Cournotian oligopolists on the residual demand left
by firms of cohorts τ(1 ≤ τ < t).

While this property has been quoted in the standard literature, it has been understood
in a very restrictive way: the equilibrium strategies of firms in the hierarchical model
coincide with those of a multistage Cournot model. In this paper, we enrich the meaning
and implications of Property 1, presented as the equivalence of the profit functions
in the two models up to a linear transformation. This implies the equivalence of the
reaction functions in both models and thereafter of the equilibrium strategies (which
is then a consequence rather than a definition of the Cournotian behavior).

Property 1 is usually observed under assumptions (H1)–(H3). We intend to inves-
tigate the sufficiency and necessity of these assumptions in the occurrence of this
property as it has been defined above. Sufficiency has been considered in the litera-
ture for the restrictive definition of Property 1 but can be formally established in our
enlarged framework. Necessity of these assumptions has never been studied.

2.3 Implications: a graphical interpretation

In this subsection, we illustrate Property 1 by a graphical approach, which is based
on demand and costs rather than on best response functions. This property will be
formally studied in the next section.

Consider two successive stages, say t − 1 and t , with t �= T . At stage t − 1, the
aggregate output resulting from the individual productions of firms of cohorts 1 to t −1
is given by

∑t−1
τ=1 Xτ . No particular value is given to Xτ , except that it must generate

a non-negative profit and is decided once for all. Under Property 1, the aggregate
production of cohort t is computed as if it were the last cohort. In this case, the aggregate
output of cohort t (for

∑t−1
τ=1 Xτ ) would establish to Xt = ∑t

τ=1 Xτ −∑t−1
τ=1 Xτ . The

subsequent price p
(∑t

τ=1 Xτ

)
is the market price that would be effective if there

were only t cohorts in the hierarchy. However, since cohort t is not the last cohort,
the (unique) equilibrium price of the economy is lower and equal to p(

∑T
τ=1 Xτ ).

Nevertheless, the aggregate output of cohort t remains unchanged when the price falls

down to p
(∑T

τ=1 Xτ

)
.

We assume that any leading cohort τ < t expects firms of cohort t (or more) to
act symmetrically while firms of cohort t maximize their profit for any given quantity
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Fig. 1 Graphical representation of (H1)–(H3)

∑t−1
τ=1 Xτ produced by their predecessors. The overall situation for cohort t is depicted

in Fig. 1.
In this figure, we illustrate the behavior of cohort-t firms when acting as Cournotian

oligopolists on the residual demand left by firms of cohort τ < t , as if they did not take
into consideration firms playing after. In other words, Property 1 implies that leaders
choose their optimal quantities so as to equalize the Cournotian marginal revenue of
the cohort (dashed line) to the marginal cost (full line). As an immediate consequence,
strategies of the leaders at any stage depend neither on the number of followers who
play after nor on the remaining number of stages. This consequence corresponds to
the standard result about the linear model usually expressed in the literature: given
that the strategies of leaders do not depend on the number of followers, leaders behave
as if they played a Cournot game on residual demand.

3 Sufficiency

3.1 The linearity assumptions as sufficiency conditions

Demonstrating Property 1 requires to exhibit the link between leaders and followers’
profits.

Lemma 1 Let γt ≡ ∏T
τ=t+1

1
1+nτ

be the leader’s markup discount factor. Under
(H1)–(H3), the markup earned by a cohort t firm, t < T , in a T -cohort economy is
a constant share γt < 1 of the markup it earns in a t-cohort economy for any given
vector of outputs (X1, . . . , Xt−1) produced by the previous cohorts:

p

(
T∑

τ=1

Xτ

)

− c = γt

[

p

(
t∑

τ=1

Xτ

)

− c

]

for t < T . (1)

Proof See Appendix A.



Notice that under conditions H2 and H3, the markup is always equal across cohorts.
The discount factor γt differs from one cohort to another and measures the impact on
market power of the number of followers. More specifically, it represents the reduction
of a leader’s markup due to the presence of the additional cohorts t + 1 to T . It affects
less intensively the market power of the last cohorts in the sequence since they face a
reduced number of followers. Market power shrinks as t tends to infinity.

The existence of cohort τ equally impacts by a coefficient 1/(1 + nτ ) the markup
expected by a leader t (t < τ ) in a t-stage economy, whatever the quantities produced
by the first t cohorts (this results directly from H1–H3).

Corollary 1 For any strategy xi
t , the profit obtained by a cohort—t firm in the sequen-

tial T -stage structure is a constant share of the profit of a t-stage economy (where
cohort t would be the last cohort):

π i
t (xi

t ) =
[

p

(
T∑

τ=1

Xτ

)

− c

]

xi
t = γt

[

p

(
t∑

τ=1

Xτ

)

− c

]

xi
t . (2)

Proof This corollary directly results from Lemma 1.

In other words, each cohort can behave as if there were no following cohorts 
since it earns a constant share of the profit realized in an oligopoly structure market
where it represents the last cohort, whatever the aggregate output 

∑t
τ
−
=

1
1 Xτ produced 

by the leaders. Provided that cohort-t firms maximize their profit for any vector of 
strategies (X1, . . . ,  X t−1), cohort-τ leaders (τ < t) act as Cournot players who choose 
simultaneously and assume their direct rivals’ output as given, ignoring the following 
cohorts, that only discount the value of their profits without changing the nature of the 
maximization program.

In the next sections, the right-hand side of Eq. (2) divided by γt will be called 
the myopic profit (see Appendix A). By contrast with the sequential structure of our 
economy (left-hand side of Eq. (2)), the associated myopic program would result from 
the behavior of a firm that would observe the strategies of the leaders and would ignore 
the supplies of its followers.

Lemma 2 Let ηt−h,t ≡ 
∏t

τ t h 1 1 
1
nτ 

be the follower’s output discount factor. 
Under (H1)–(H3), the output 

=
of

−
a fi

+
rm

+
i in cohort t ≤ T can be expressed as a share 

of the output produced by a firm playing previously and belonging to cohort t − h for  
h ∈ �1, t − 1�, that is:

xt = ηt−h,t xt−h .

Proof See Appendix B.

The follower’s output discount represents the decrease in optimal quantities for a 
follower resulting from a contraction of the residual demand when playing latter in 
the hierarchy. It is a share of cohort t − h’s output, whether optimal or not, which is



optimal for cohort t to produce. For any follower, this share decreases when going
further in the sequence. Its value depends negatively on the number of leading cohorts
and on the number of corresponding players (because residual demand decreases with
respect to this parameter).

From the previous lemmas, the following proposition can be stated:

Proposition 1 Assumptions (H1)–(H3) are sufficient conditions for Property 1 to
hold: the T -stage Stackelberg linear economy reduces to a collection of Cournot
games in which firms compete oligopolistically on residual demand.

Proof The proposition directly ensues from Lemmas 1 and 2.

3.2 Characterization of the linear hierarchical equilibrium

Maximizing the sequential profit (left-hand side of Eq. (2)) is tantamount to maximize
the myopic profit (right-hand side of Eq. (2)) since γt is a constant term. In the linear
economy, strategies of firms do not depend on the number of firms playing after, which
equally impact the profit associated to each strategy. As a consequence the optimal
strategies and the equilibrium strategies remain unchanged whatever the number of
stages and the number of followers.5

The literature only covers the similarity of the equilibrium strategies in both the
T -stage Stackelberg linear model and the collection of staggered static problems but
does not provide any explanation for this coincidence (see Boyer and Moreaux 1986;
Anderson and Engers 1992; Watt 2002).

Corollary 2 The equilibrium strategy of cohort-1 firms may be obtained either from
the sequential profit maximization or from the myopic profit maximization:

x1 = 1

1 + n1

a − c

b
≡ η1 X∗,

where X∗ = (a − c)/b is equal to the perfect competition aggregate output. We then
deduce the equilibrium strategy of any firm i in cohort t , t ∈ �1, T �:

xt = η1,t

1 + n1

a − c

b
≡ ηt X∗ with ηt ≡

t∏

τ=1

1

1 + nτ

.

Notice that in the equilibrium, each firm of cohort t produces a share ηt of the
perfect competition equilibrium output.

5 Property 1 still holds in the presence of static conjectural variations (see Julien and Musy 2011).



Corollary 3 The equilibrium price and profits are given by:

p = c + (a − c)
T∏

τ=1

1

1 + nτ

,

π i
t = (a − c)2

b

t∏

τ=1

1

(1 + nτ )2

T∏

τ=t+1

1

1 + nτ

, t = 1, . . . , T − 1

π i
T = (a − c)2

b

T∏

τ=1

1

(1 + nτ )2 .

De Quinto and Watt (2003) use a term similar to ηt to analyze welfare through 
market power and mergers.

Remark 1 Leaders of any cohort t , t ∈ �1, T − 1�, do not ignore the true number of 
followers in cohort τ > t or do not form incorrect estimates about it.

Remark 2 The leader’s markup discount factor is equivalent to a taxation of profits. 
The tax rate τt = 1 − γt differs from one firm to another.

4 Beyond the sufficiency of the linearity assumptions

This section establishes the following proposition and provides some examples.

Proposition 2 Assumptions (H1)–(H3) are necessary conditions for Property 1 to 
hold when costs are strictly positive: the T -stage Stackelberg linear economy reduces 
to a collection of Cournot games in which firms compete oligopolistically on the 
residual demands.

In the literature, neither the necessity of these conditions nor the fact that the leaders 
effectively behave as Cournotian oligopolists have ever been demonstrated. The only 
results feature that the equilibrium strategies in a T -stage model coincides with the 
equilibrium strategies that would be obtained with staggered static problems where 
firms either compete monopolistically (for nt = 1) or oligopolistically on the residual 
demand.

4.1 Necessity of assumption (H1)

We have to show that the linearity of the inverse demand function is a necessary 
condition for firms to behave as Cournotian oligopolists in each cohort, provided that 
the constant marginal cost is different from zero.

4.1.1 Proof

Under assumptions (H2) and (H3), firms of cohort T −1 act as Cournotian competitors 
on residual demand if and only if:
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[

p
(

T −1∑

τ=1

Xτ + XT

)

− c

]

xt = γt

[

p
(

T −1∑

τ=1

Xτ

)

− c

]

xt , (3)

for a coefficient γt ≡ 
∏

τ
T
=t+1

1

1+nτ 
> 0, or equivalently:

p
(

T −1∑

τ=1

Xτ + XT

)

− c = γt

[

p
(

T −1∑

τ=1

Xτ

)

− c

]

. (4)

The conditions on the inverse demand function under which the equality in (4) is 
satisfied must be established. For a strictly positive marginal cost, the only inverse 
demand function satisfying (4) is linear. The proof is derived in two steps. We first 
need to demonstrate that Eq. (4) requires the reaction function of the last cohort to be 
linear. Second, we check that this property occurs only if the inverse demand 
function is linear.

Denote by g the function defined by g(.) = p(.) − c and by f the reaction function
of the last cohort: XT = f (

∑ T 1

τ=
−

1 Xτ ). Let  Og and O f be the orders of the terms
g(

∑T 1

τ=
−

1 Xτ ) and f (
∑

τ
T
=
−

1
1 Xτ ).

Since γt is a constant, it is an order-0 term and γt g(
∑ T 1

τ=
−

1 Xτ ) has the same order
as g(

∑T 1
τ=

−
1 Xτ ), that is Og . The left-hand side of Eq. (4) is a composed function. The

term g[∑ 
X T −1τ 1 + f (

∑T 1

τ=
−

1 Xτ )] is a term of order OgO f for O f �= 0 and of order
Og for O f =

=
0. In the former case (with Og �= 0), the equality in (4) requires that O f = 1, which means that f be a linear function.6

∑Consequently, the aggregate reaction function of cohort T must be linear in
T 1

τ=
−

1 Xτ . Formally:7

XT = α1 + α2

T −1∑

τ=1

Xτ , (5)

where α1 > 0 is the aggregate output of cohort T when the other cohorts do not 
produce, and −1 < α2 ≤ 0 is the slope of the reaction function of cohort T . The 
values of those parameters are determined on the ground of economic plausibility. 
Strategies are said to be substitute for α2 < 0 and independent for α2 = 0.

Adding α2 XT to each side of the equation above and rearranging yields:

XT = α1

1 + α2
+α2

1 + α2

T∑

τ=1

Xτ . (6)

6 The case Og = 0 means that price is constant, that is independent of aggregate output. 7 

The case O f = 0 is a subcase of Eq. (5) for which α2 = 0.



Given Eq. (2), the first-order condition for profit maximization of firm i belonging to 
cohort T is:

p
( 

T∑

τ=1

Xτ

)

+ dp 
d X

( 
T∑

τ=1

Xτ

)

x i
T − c = 0, i = 1, . . . , nT . (7)

The nT equations in (7) implicitly define the reaction functions of cohort-T firms. 
Summing those equations for all i , i = 1, . . . , nT , leads to the reaction function of 
cohort T . This function must be consistent with the form determined in (6).

Summing Eqs. (7) for all firms i , i = 1, . . . , nT , that belong to cohort T and using 
Eq. (6) to substitute for XT yields:

− p(X) − c
dp/d X = μ1 + μ2 X, (8)

with: μ1 = α1

nT (1 + α2) 
>

0, 2μ = α2

nT (1 + α2)
≤ 0 and X =

T∑

τ=1

Xτ .

Finding the condition(s) on the inverse demand function p under which Eq. (4) is 
satisfied requires to solve Eq. (8). By inverting and integrating both sides of Eq. (8), 
we get:

∫ 
dp/d X

p(X) − c
d X  = − 1

μ2

∫
μ2

μ1 + μ2 X
d X, (9)

whose solution is:

ln[μ3(μ1 + μ2 X)] for μ2 �= 0{ ln[ p(X) − c] = − 
1 

μ2 ln[ p(X) − c] =−  1 
μ1

X + ln μ4 for μ2 = 0,
(10)

where μ3 > 0 and μ4 > 0 stand for the constants of integration.
The inverse demand function is finally obtained by identification. There is no eco-

nomic rationale to consider that the inverse demand function is defined with respect 
to c. Thus, for c �= 0, all terms in c must disappear from Eq. (10). Two cases must be 
considered.

Case 1: c = 0
In that case, terms in c disappear from Eq. (10) and the values of the parameters 

μ1 to μ4 may be freely chosen to determine the inverse demand function.
For μ2 �= 0, Eq. (10) becomes:

p(X) = [μ3(μ1 + μ2 X)]−1/μ2 ≡ [α − β X ]ρ for any α, β, ρ > 0.



A specific case is the linear demand function with ρ = 1. It is worth noting however
that for ρ �= 1, another class of non-linear functions is compatible with the property
that firms behave a la Cournot on residual demand when c = 0.8

For μ2 = 0, Eq. (10) collapses to:

p(X) = μ4e−X/μ1 ≡ αe−ρX for any α, ρ > 0

which defines a last class of non-linear demand functions.
Case 2: c �= 0
For μ2 = 0, Eq. (10) collapses to:

p(X) = μ4e−X/μ1 + c.

Such a solution implies that the inverse demand function directly depends on the
marginal cost c, which has no economic meaning. So this case can be ruled out.

For μ2 �= 0, Eq. (10) becomes:

p(X) − c = [μ3(μ1 + μ2 X)]−1/μ2 ,

We isolate the class of demand functions independent of c. Therefore, for sake
of tractability, we use a first-order Taylor expansion around X̃ to approximate the
different inverse demand functions.

p(X) − c � p(X̃) − c − μ3[μ3(μ1 + μ2 X)]−1/μ2−1(X − X̃)

p(X) � p(X̃) − μ3[μ3(μ1 + μ2 X̃)]−1/μ2−1(X − X̃).
(11)

In the above equation, only parameters μ1 and μ2 may depend on c (μ3 being a
constant of integration). We now show that μ1 necessarily depends on c for α1 �=
κ(1 + α2), with κ ∈ R++, a case that will be dealt with later. Notice first that α1 must
depend on c since Eq. (7) must be satisfied, notably for

∑T −1
τ=1 Xτ = 0. Since p is

independent of c, xT (and then XT ) must depend on c. For
∑T −1

τ=1 Xτ = 0, recall that
XT = α1. According to (8), parameter μ1 also depends on c provided α1 �= κ(1+α2),
with κ ∈ R++, which implies that μ1 must disappear from the previous equation.

When μ2 does not embody terms in c, the only possible value for μ1 to vanish is
μ2 = −1. In that case: p(X) � p(X̃) − μ3(X − X̃), where the value for μ3 can be
freely chosen. Set, for instance, μ3 = β > 0. Then, the inverse demand function is:

p(X) = α − β X for any α, β > 0, (12)

where α and β are parameters independent of c, and μ1 = (α − c)/β > 0 according
to Eq. (8). Equation (12) corresponds to assumption (H1). It satisfies Property 1 for
any (α, β) ∈ R

2++.
When μ2 includes terms in c, the right-hand side of the Taylor expansion is indepen-

dent of c if μ1 +μ2 X̃ = 0 or μ3(μ1 +μ2 X̃) = 1. From (8), the first case corresponds

8 This result was pointed out by Anderson and Engers (1992) in footnote 5 on page 129.



to perfect competition: p = c. The second means that price is constant for any value
of the aggregate output: p = c + 1. In both cases, the inverse demand function is
dependent of c. These cases can be ruled out.

Thus, the linear demand function is the only class of functions consistent with the
property that firms act as Cournotian oligopolist on residual demand when c �= 0.

4.1.2 Example for assumption (H1)

Consider T = 2 and n1 = n2 = 1. The inverse market demand function is given by
P(X) = e−X2

. One can derive the best response function of the follower x2(x1) =(√
x2

1 + 2 − x1

)

/2. The equilibrium strategy of the leader is then x̃1 =
√√

2 − 1.

These strategies differ from the equilibrium outputs that would be obtained if there
were only one monopolistic firm, i.e. xm = √

2/2.

4.2 Necessity of assumption (H3)

4.2.1 Proof

Under assumptions (H1) and (H2), the reaction function of a cohort-T firm (assuming
symmetry of strategies across cohort-T ) can now be explicitly defined:

xT = a − cT − b
∑T −1

τ=1 Xτ

b(1 + nT )
, (13)

and the profit function of cohort-(T − 1) firms is:

πT −1(xT −1) = 1

1 + nT

[
āT −1 − bXT −1 − cT −1 − nT (cT −1 − cT )

]
xT −1, (14)

where āt ≡ a − b
t∑

τ=1
Xτ is the residual demand left by the first t cohorts.

For cohort-(T − 1) firms to behave as Cournotian oligopolists, the profit function
must be such that:

πT −1(xT −1) = 1

1 + nT
π̃T −1(xT −1). (15)

This is the case if and only if:

cT −1 = cT .

Using backward induction, it can be proved that for cohort-t firms, t < T − 1, to
behave as Cournotian oligopolists, the following property must hold:

c1 = c2 = · · · = cT −1 = cT . (16)



Thus, when the inverse demand function is linear and cost functions are constant,
a necessary condition for firms of any cohort to behave as Cournotian competitors on
residual demand requires assumption (H3).

4.2.2 Example for assumption (H3)

Consider T = 2, n1 leaders and n2 followers. The inverse market demand func-
tion is P(X) = a − bX . Assume φt (xi

t ) = ct xi
t , t = 1, 2. One easily gets

x̃1 = (a−c1)+(c2−c1)n2
b(1+n1)

. For c1 �= c2, the equilibrium strategy of leaders depends

on the number of followers. It is no longer the case for c1 = c2 since x̃1 = a−c
b(1+n1)

.

4.3 Necessity of assumption (H2)

4.3.1 Proof

Assume that assumptions (H1) and (H3) are satisfied. The firm j of cohort t then
determines x j

t such that it maximizes its myopic profit function π̃
j

t :

π̃
j

t (x j
t ) =

[

āt−1 − b
nt∑

i=1

xi
t

]

x j
t − φ(x j

t ), (17)

where φ is a non-decreasing function and is identical across firms.
The reaction function of cohort-t firms, when behaving symmetrically, is implicitly

defined by:

āt−1 − b(1 + nt )xt − dφ

dxt
(xt ) = 0 for any t > 1. (18)

When maximizing its profit, a cohort-τ firm (τ < t) substitutes to Xt the aggregate
reaction function of cohort t . Strategy of a cohort-τ firm is then independent of nt

provided Xt does not contain any nt term. If so xt is a function of nt , i.e. xt =
Xt/(1 + nt ).

The aggregate reaction function of cohort t can be rewritten as:

Xt = āt−1 − dφ
dxt

(xt )

b
for any t > 1. (19)

It does not depend on nt provided dφt
dxt

(xt ) does not contain any nt term. Since xt is
a function of nt , the marginal cost is independent of xt , that is constant:

φ(xt ) = cxt for anyt ∈ �1, T �. (20)



4.3.2 Example for assumption (H2)

Consider T = 2, n1 leaders and n2 followers. The inverse market function is P(X) =
a − bX . Assume φt (xi

t ) = c(xi
t )

2/2 for i = 1, . . . , nt and t = 1, 2. One gets
x̃1 = a

b(1+n1)+c
(

1+ b
b+c n2

) , so the equilibrium strategy of any leader depends on the

number of followers. When firms behave a la Cournot in each stage, one has x̂1 =
a

b(1+n1)+c �= x̃1.

5 An illustration with three cohorts

5.1 A three-stage Stackelberg economy

Consider as an illustration an economy with T = 3 under assumptions (H1)–(H3). In
this three-stage game, cohorts 1 to 3 are populated by respectively n1, n2 and n3 firms.
Cohort 1 plays first but we solve the game by backward induction, starting from the
last cohort.

The program of firm k, k = 1, . . . , n3, which belongs to cohort 3 may be written:

Arg max
xk

3

πk
3 =

[
a − b

(
X1 + X2 + xk

3 + X−k
3

)
− c

]
xk

3 ,

that is:

Arg max
xk

3

πk
3 =

⎡

⎣a − b
n1∑

i=1

xi
1 − b

n2∑

j=1

x j
2 − b(xk

3 + X−k
3 ) − c

⎤

⎦ xk
3 , (21)

where xi
1 (resp. x j

2 ) is the strategic supply of firm i (resp. j ) in cohort 1 (resp. 2),
observed by firm k when choosing its own strategy. Each firm k considers as given
the strategies of its n3 − 1 competitors in cohort 3. In the symmetric equilibrium:
xk

3 = x−k
3 and X−k

3 = (n3 − 1)x−k
3 . The first-order condition leads to the reaction

function of any firm k:

xk
3 (X1, X2) = 1

1 + n3

a − c

b
− X1 + X2

1 + n3
. (22)

When choosing its own strategy, each firm j belonging to cohort 2 observes the
strategic supplies of the n1 leaders and considers as given the strategies of its n2 − 1
competitors. It also takes into account the reaction function of cohort-3 firms. Then,
the program of the j th cohort-2 firm may thus be written:

Arg max
x j

2

π
j

2 =
[

a − b

(

X1 + x j
2 + X− j

2 +
n3∑

k=1

xk
3 (X1, X2)

)

− c

]

x j
2 ,
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that is:

Arg max
x j

2

π
j

2 = 1

1 + n3

[

a − b
n1∑

i=1

xi
1 − b(x j

2 + X− j
2 ) − c

]

x j
2 . (23)

In the symmetric equilibrium: x j
2 = x− j

2 and X− j
2 = (n2 − 1)x− j

2 . The first-order
condition leads to the reaction function of any firm j :

x j
2 (X1) = 1

1 + n2

a − c

b
− X1

1 + n2
j = 1, . . . , n2 (24)

Finally, firm i belonging to cohort 1 takes into account the reaction functions of
all its followers and considers as given the strategies of its n1 − 1 competitors. Its
program may be written:

Arg max
xi

1

π i
1 =

⎡

⎣a − b

⎛

⎝xi
1 + X−i

1 +
n2∑

j=1

x j
2 (X1) +

n3∑

k=1

xk
3 (X1, X2)

⎞

⎠ − c

⎤

⎦ xi
1,

that is:

Arg max
xi

1

π i
1 = 1

(1 + n2)(1 + n3)
[a − b(xi

1 + X−i
1 ) − c]xi

1. (25)

In the symmetric equilibrium, one gets the equilibrium strategy of leader i :

x̃ i
1 = 1

1 + n1

a − c

b
i = 1, . . . , n1. (26)

We deduce the equilibrium outputs of cohort-1 and cohort-2 firms:

x̃ j
2 = 1

(1 + n1)(1 + n2)

a − c

b
j = 1, . . . , n2 (27)

x̃ k
3 = 1

(1 + n1)(1 + n2)(1 + n3)

a − c

b
k = 1, . . . , n3 (28)

As specified in Property 1, the equilibrium strategy of any leader in the first stage
depends neither on the number of followers who play after, nor on the number of
remaining stages. This property also holds for firms in stage 2.
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The corresponding aggregate outputs in the three stages are:

X̃1 = n1

1 + n1

a − c

b

X̃2 = n2

(1 + n1)(1 + n2)

a − c

b
(29)

X̃3 = n3

(1 + n1)(1 + n2)(1 + n3)

a − c

b

The corresponding equilibrium market price and profits are given by:

p̃ = c + a − c

(1 + n1)(1 + n2)(1 + n3)
, (30)

and

π̃ i
1 = (a − c)2

b

1

(1 + n1)2(1 + n2)(1 + n3)

π̃
j

2 = (a − c)2

b

1

(1 + n1)2(1 + n2)2(1 + n3)
(31)

π̃k
3 = (a − c)2

b

1

(1 + n1)2(1 + n2)2(1 + n3)2

So the equilibrium values coincide with those given in Corollary 3.

5.2 A three-stage Cournot economy

Consider now a three-stage Cournotian economy.
In stage 1, any firm i , i = 1, . . . , n1, solves:

Arg max
xi

1

π i
1 = [a − b(xi

1 + X−i
1 ) − c]xi

1. (32)

Notice that this program is identical to the program of Eq. (25) up to a factor
η1,3 = 1

(1+n2)(1+n3 )
. The equilibrium strategy x̂ i

1 of firm i must then be identical

to the solution of Eq. (25):

x̂ i
1 = 1

1 + n1

a − c

b
= x̃ i

1, i = 1, . . . , n1. (33)

In stage 2, any firm j , j = 1, . . . n2, determines its supply from the residual demand
left by cohort-1 firms:

Arg max
x j

2

π
j

2 =
[

a − b
n1∑

i=1

x̂ i
1 − b(x j

2 + X− j
2 ) − c

]

x j
2 ,



that is:

Arg max
x j

2

π
j

2 = 1

1 + n1

[

a − b
n1∑

i=1

x̂ i
1 − b(x j

2 + X− j
2 ) − c

]

x j
2 . (34)

Provided the aggregate outputs of cohort 1 in both economies (whether optimal or not)
are equal, that is X̂1 = X̃1, this program is identical to the program of Eq. (23) up to
a factor η2,3 = 1

1+n3
. The equilibrium strategy x̂ j

2 of firm j must then be identical to
the solution of Eq. (23):

x̂ j
2 = 1

(1 + n1)(1 + n2)

a − c

b
= x̃ j

2 , j = 1, . . . , n2. (35)

Finally, any firm k, k = 1, . . . , n3, belonging to cohort 3 determines its supply
from the residual demand left by cohort-1 and -2 firms:

Arg max
xk

3

πk
3 =

⎡

⎣a − b
n1∑

i=1

x̂ i
1 − b

n2∑

j=1

x̂ j
2 − b(xk

3 + X−k
3 ) − c

⎤

⎦ xk
3 . (36)

Provided the joint aggregate outputs of cohorts 1 and 2 in both economies (whether
optimal or not) are equal, that is X̂1 + X̂2 = X̃1 + X̃2, this program is identical to the
program of Eq. (21). The equilibrium strategy x̂ k

3 of firm k must then be identical to
the solution of Eq. (21):

x̂ k
3 = 1

(1 + n1)(1 + n2)(1 + n3)

a − c

b
= x̃ k

3 , k = 1, . . . , n3. (37)

The concordance of the Stackelberg and Cournotian maximization programs (up
to a factor) and the resulting equilibrium strategies illustrates Property 1.

6 Conclusion

The paper explored a general hierarchical linear model in which firms compete in
quantities. A key property has been studied: under the assumptions of linear demand,
constant and identical marginal costs, each firm behaves at any stage as a Cournotian
oligopolist on residual demand. We formally established that these assumptions are
not only sufficient but also necessary for strictly positive marginal costs.

This property of the linear hierarchical T -stage model means that a firm in cohort
t maximizes its profit when it chooses its output as if it were the last follower of the
economy. The associated maximization program of the firm is equivalent up to a dis-
count factor to the maximization program it would face in a similar t-stage hierarchical
economy. The sooner a firm plays within the T -stage hierarchy, the more discounted
its profit compared with the t-stage economy.
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Appendix A: Proof of Lemma 1

The proof is by backward induction and structured in three steps.
Step 1 property 1 is true for cohort t = T − 1 (with T > 1).
The inverse demand function faced by firms is defined by:

p(X) = a − bX with X =
T∑

τ=1

Xτ , (H1)

where Xτ = ∑nτ

i=1 xi
τ ≥ 0 is the aggregate production of cohort τ . For any quantity

of output XT −1 produced by cohort T − 1, the resulting residual demand faced by
followers of cohort T is:

p

(
T∑

τ=1

Xτ

)

= āT −1 − bXT with āt ≡ a − b
t∑

τ=1

Xτ , (38)

where āT −1 is considered as given by followers. Geometrically (see Fig. 1), followers
must select a couple (X, p) on the segment [D, A].

When acting symmetrically, the associated marginal revenue of cohort-T firms
(dashed line on Fig. 1) is defined by:9

Rm(XT ) = āT −1 − b
1 + nT

nT
XT . (39)

Considering the following derivatives:

∂ Rm

∂ XT
(XT ) = DF

C F
= −b

1 + nT

nT
(40)

∂p

∂ XT
(XT ) = DF

AF
= −b, (41)

it comes that:

C F = nT

1 + nT
AF, or equivalently AC = 1

1 + nT
AF. (42)

9 This function is derived from the total revenue of a follower i : RT (xi
T ) = [āT −1 −b

∑nT
k=1 xk

T ]xi
T . The

symmetric behavior assumed for followers yields: xi
T = xT for all i ∈ [1, nT ] and XT = nT xT .
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Finally, applying Thales’ theorem to triangles ABC and ADF leads to:

BC = 1

1 + nT
DF = E F. (43)

Actually, E F is the markup of a leader after the entrance of the last cohort, while
DF is the markup of a leader before the entrance of cohort T . Equation (43) can be
rewritten as:

p

(
T∑

τ=1

Xτ

)

− c = 1

1 + nT

[

p

(
T −1∑

τ=1

Xτ

)

− c

]

. (44)

Step 2 assume property (1) is true for any cohort t = T − h (1 ≤ h ≤ T − 2) then
it is true for cohort T − h − 1.

If property (1) holds for cohort T − h then:

[

p

(
T∑

τ=1

Xτ

)

− c

]

xi
T −h = γT −h

[

p

(
T −h∑

τ=1

Xτ

)

− c

]

xi
T −h, (45)

with γT −h ≡ ∏T
τ=T −h+1

1
1+nτ

.
Thus, maximizing firm i’s profit is tantamount to maximize the myopic profit

defined as follows:

max
xi

T −h

[

p

(
T −h∑

τ=1

Xτ

)

− c

]

xi
T −h . (46)

When firms of cohort-(T − h) act symmetrically, the myopic marginal revenue
(dashed line) is defined by:10

R̃m(XT −h) = āT −h−1 − b
1 + nT −h

nT −h
XT −h . (47)

In the same way as in step 1, it can be shown that:

p

(
T −h∑

τ=1

Xτ

)

− c = 1

1 + nT −h

[

p

(
T −h−1∑

τ=1

Xτ

)

− c

]

. (48)

By assumption, the following property is satisfied:

p

(
T∑

τ=1

Xτ

)

− c = γT −h

[

p

(
T −h∑

τ=1

Xτ

)

− c

]

. (49)

10 The associated marginal revenue is: Rm (XT −h) = R̃m (XT −h) + (1 − γT −h)c.



We deduce from the two previous equations that:

p

(
T∑

τ=1

Xτ

)

− c = γT −h

1 + nT −h

[

p

(
T −h−1∑

τ=1

Xτ

)

− c

]

(50)

= γT −h−1

[

p

(
T −h−1∑

τ=1

Xτ

)

− c

]

(51)

Step 3 from steps 1 and 2 we conclude by backward induction that Property 1 is
true for any cohort t (with 1 ≤ t ≤ T − 1).

Appendix B: Proof of Lemma 2

Applying Thales’ theorem to triangles ABC and ADF leads to:

C F = nt

1 + nt
AF. (52)

Actually, C F is the optimal output produced by cohort t , that is Xt , while AF is the
maximal quantities cohort t can produce to generate non-negative profit (equal to the
difference between the perfect competition equilibrium supply and the output already
produced by the previous cohorts). The property above can be rewritten as:

Xt = nt

1 + nt
(Xt + AC), or equivalently AC = Xt

nt
= xt . (53)

Notice that AC is also the maximal quantities cohort t + 1 can produce to generate
non-negative profit. Then, equality (52) applied to cohorts t and t + 1 becomes:

Xt+1 = nt+1

1 + nt+1
AC, leading to

Xt+1

nt+1
= xt+1 = 1

1 + nt+1
xt . (54)

By backward induction, it turns out that:

xt = η1,t x1, where η1,t ≡
t∏

τ=2

1

1 + nτ

. (55)
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