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1 Introduction 

In recent years, the volume of available financial and economic data has led econometricians to 

develop or adapt methods to efficiently summarize the information contained in these large data 

bases. In applied macroeconomics, it is frequently the practitioner who has the tricky task of 

identifying, from among the large number N of variables available to him, the few variables of 

interest that will enable him to best solve his problem. 

 For example, economic growth and inflation forecasts are made in national and international 

institutions that have access to large volumes of data from surveys of households and businesses 

and various series on prices and real activity, such as the industrial production index (IPI), 

household consumption, the unemployment rate, etc. Similarly, central banks conduct monetary 

policy in a data-rich environment, looking at macroeconomic activity and the different financial 

markets on a regular basis and tracking numerous monetary aggregates. 

 A number of econometric methods have been proposed in the literature for working in such 

data-rich environments. For example, to explain the changes in a particular variable using a vast 
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set of exogenous variables N in a linear regression model, the so-called “general-to-specific” 

method (Krolzig and Hendry, 2001) proposes an algorithm that makes it possible to select just a 

few variables from among those variables N. Similarly, vector autoregressive (VAR) models are 

recognized as allowing for simultaneous modeling of variables in a multivariate context. 

Traditionally, VAR models use a small number of variables to avoid inflating the number of 

parameters to be estimated. To remedy this problem, Bayesian approaches have been proposed to 

estimate VAR models with a high number of variables N by imposing restrictions (see, for 

example, De Mol, Giannone and Reichlin, 2008). Finally, if we consider the problem of 

predicting a particular variable when we have a large number of variables N that are potentially 

very relevant, we can imagine estimating N linear regressions, which then provide N forecasts 

that we will seek to combine (see, for example, Newbold and Harvey, 2002, for forecast 

combination methods). Eklund and Kapetanios (2008) also provide a review of the literature on 

the various forecasting techniques using large data sets. 

 Among the different methodologies proposed in the literature, dynamic factor models have 

grown significantly in popularity since the early 2000s and have been shown to be very useful in 

macroeconomic analysis and forecasting in a data-rich environment. These models can be used 

to summarize the information contained in a large number of economic variables into a small 

number of factors common to the set of variables. In this type of model, the N variables (xit), for 

݅ ൌ 1,… ,ܰ and ݐ ൌ 1,… , ܶ, where t refers to the time index, are each assumed to be the sum of 

two unobservable orthogonal components:  one component resulting from the factors that are 

common to the set of variables, (௧), and an idiosyncratic component (௧).The component (௧) 

is obtained by extracting a small number ݎ   1 of common factors (ܨ௧), ݆  ൌ  1, … ,  from all of ݎ

the variables present in the data set. Often, by extension, this component (௧) is identified by the 

term “common component,” which we will also use in this article. The idiosyncratic component 

ሺ௧ሻ covers the shocks specific to each of the variables. Thus, in a factor model of dimension 

ሺܰ ൈ 1ሻ, each element of the vector ܺ௧ ൌ ሺݔଵ௧, … ,  ே௧ሻԢ, assumed to be zero mean, can beݔ

written as follows:  

௧ݔ  ൌ ௧  ௧,  

or: 
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௧ݔ  ൌ ଵܨଵ௧  ڮ ܨ௧  ௧, 

 

For i = 1,…, N and t = 1,…, T. The loadings ሺ) for i = 1,…, N  and j = 1,…, r, represent the 

contributions of the variable i to the common factor (ܨ௧) of dimension ሺݎ ൈ 1ሻ such as ܨ௧  ൌ

 ሺܨଵ௧, … , ௧ሻԢ. The vector ൫௧൯ܨ  ൌ ሺଵ௧, … , ே௧)' of dimension ሺܰ ൈ 1ሻ is a vector consisting of N 

idiosyncratic components. The vectorial form of the model is presented as follows, for all  

 ݐ ൌ  1, … , ܶ: 

 ܺ௧ ൌ Λܨ௧  ௧, (1) 

Where  is the weighting matrix of dimension ሺܰ x ݎሻ. The matrix version is given as: 

 ܺ ൌ Λᇱܨ  , (2) 

Where X is of dimension ሺܶ  ൈ ܰሻ, F is of dimensionሺܶ ൈ ሻ,  is of dimensionሺܰݎ ൈ  ሻ, and  isݎ

of dimension ሺܶ ൈ ܰሻ. 

 Given the rapid development of dynamic factor models in applied macroeconomics, we felt 

that the time was right to propose a review of the literature on these models so as to recap the 

current situation for practitioners. In this article, we begin by presenting the so-called traditional 

or classical factor models, which were developed initially for a small number of variables with 

common movements. We distinguish between static and dynamic approaches for these models. 

Then, we describe approximate factor models, which can take a large number of variables into 

account, again in a static or dynamic context. Next, we present some estimation models proposed 

in the literature. A crucial aspect of these models is the selection of the number of common 

factors r to use in the analysis and, so, we provide a review of the various information criteria 

developed to select the optimal number of factors. There are many applications of factor models 

in the empirical economic literature, including, for example, asset pricing models (Ross, 1976), 

consumer theory (Gorman, 1981; Lewbel, 1991), performance assessment and risk measurement 

in finance (Campbell et al., 1997). In the final section, we focus on some recent applications that 

underscore the interest of this approach for macroeconomists, particularly (i) for the construction 

of short-term economic indicators, (ii) for macroeconomic forecasting, and (iii) for international 

macroeconomics and monetary policy analysis. 
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2 Factor models for a small number of variables (small N) 

In this section, we present factor models used to model a small number of variables N, where, in 

practice, N is generally lower than 6 or 7 variables. We begin with the simplest non-dynamic 

models (static factors) and, then, look at dynamic models, ending with a few recent extensions of 

this type of model. 

 

2.1 Static factor models (SFM) 

In this type of model, a small number of unobservable variables r provides a linear explanation 

of a small number of observed variables N so that ݎ  ܰ. In the applications presented in the final 

section of our article, the number of variables is such that ܰ  7 and a single factor can generally 

explain most of the variance, i.e. ݎ  ൌ  1. The series are assumed to be stationary, to have finite 

variance, and to be standardized. We put forward the following hypotheses, which could 

subsequently be abandoned: 

 

(SH1) The factors ሺܨ௧ሻ are centered, ܧሺܨ௧ሻ  ൌ  0, and are mutually orthogonal for all t, i.e.: 

ݐ, ᇱ௧ሻܨ௧ܨሺܧ   ൌ  0 for ݆  ്  ݆Ԣ. Consequently, the variance-covariance matrix of ሺܨ௧ሻ, 

ி ൌ  .௧, is a diagonal matrixܨ ௧ᇱ is the transpose ofܨ ௧ᇱሻ, whereܨ௧ܨሺܧ

 

(SH2) The idiosyncratic processes ሺ௧ሻ and ሺᇱ௧ሻ are mutually orthogonal for all ݅  ്  ݅Ԣ, with 

ሺ௧ሻܧ ൌ 0. Consequently the variance-covariance matrix (t) is a diagonal matrix:  

 ൌ ሺ௧௧ܧ
ᇱ ሻ ൌ ݀݅ܽ݃ሺଵଶ, … ,ேଶ ሻ. 

 

(SH3) The factors ሺܨ௧ሻ and idiosyncratic noise (it)i=1,…,N are not correlated, i.e.:  i, j, t, t', we 

have:  ܧሺܨ௧௧ᇱሻ ൌ 0. 
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(SH4) The variables are assumed to be independent and identically distributed over time (the so-

called IID hypothesis), so that, in particular, for ݐ ് ௧ᇱሻܨ௧ܨሺܧ ,Ԣݐ ൌ 0 and ܧሺ௧௧ᇱሻ ൌ

0. 

 

The model given by equation (1) represents the static factor model (SFM) in which the factors 

ሺܨ௧ሻ do not possess their own dynamic and the relationship between the factors and variables is 

linear with constant weights over time. This model can be estimated either by assuming that the 

variables are IID (hypothesis SH4), or by assuming that there is a time dynamic within the 

variables (SH4 is abandoned). 

 

 Assuming that ሺܨ௧ሻ and ሺ௧ሻ are not correlated and are zero mean, then the variance-

covariance matrix for the static factor model, denoted  ൌ  :ሺܺ௧ܺ௧ᇱሻ, is given byܧ

  ൌ ΛிΛᇱ   (3) 

By normalizing the variance-covariance matrices of ሺܨ௧ሻ, ி  ൌ    , and by assuming that theܫ

diagonal elements of the variance-covariance matrix   of ሺ௧ሻ are bounded, we obtain: 

  ൌ ΛΛᇱ   (4) 

For additional details, we refer to Lawley and Maxwell (1971) and Anderson (1984). The static 

factor model can, thus, be identified and estimated. The factorial analysis method is used for the 

static estimation of the factors. The weighting matrix  can be estimated by minimizing the sum 

of the squared residuals as follows: 

  (5) 

subject to the constraint ' = Ir. 

 

In this context, Doz and Lenglart (1999) establish the asymptotic properties of the estimator. 

Specifically, they show that this method produces convergent estimators even when the data used 

are autocorrelated, as is the case with time series. Moreover, they show empirically that this 
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method provides a very good approximation of the dynamic method, while being easier to 

establish, which is an essential quality for forecasters who regularly estimate the model. 

 

2.2 Exact or strict dynamic factor models (DFM) 

Static factor models (SFM) are different from exact or strict dynamic factor models (DFM) in the 

sense that the latter incorporate a time dynamic. Thus, in the DFM, the common component can 

be seen as a sum of common shocks, whether contemporaneous or lagged. The model is, then, 

defined as follows: 

௧ݔ  ൌ ߯௧  ௧, (6) 

where: 

 ߯௧ ൌ ܾଵ
 ଵ௧ݑ  ڮ ܾଵ

௦ ଵ,௧ି௦ݑ  ܾଶ
 ଶ௧ݑ  ڮ ܾଶ

௦  ଶ,௧ି௦ݑ

 ڮ ܾ
 ௧ݑ  ڮ ܾݑ,௧ି௦, (7) 

where ሺݑ௧ሻ, of dimension ሺݍ ൈ 1ሻ, is the vector of common shocks such as 

௧ݑ ൌ   ሺݑଵ௧, ,ଶ௧ݑ … ,  . ܰ, and where s is the number of lags included in the model ݍ ௧ሻԢ, withݑ

The parameters (ܾ
ఛ ሻ, for  ൌ 0,… , ݅ ,ݏ ൌ 1, … , ܰ and ݈ ൌ 1,… ,  represent the weights of the ,ݍ

finite dynamic factors s. We speak of a “restricted” DFM when s is finite and a “generalized” 

DFM when s is infinite.1 

Equation (7) can be rewritten as follows: 





q

l
ltilit uLb

1
,)(                              (8) 

Where ܾሺݖሻ ൌ ܾ
  ܾ

ଵ . .  ݖ . .  ܾ
௦ .  ௦ are polynomials of degree s and where L is the lagݖ

operator so that, for all s,  ܮ௦ݑ௧ ൌ  :௧ି௦. In a matrix form, equation (7) can be rewritten asݑ

 ߯௧ ൌ  ௧, (9)ݑሻܮሺܤ

Where ܤሺܮሻ ൌ ሺܾଵሺܮሻ, … , ܾሺܮሻሻ is a q-vector of polynomials with degree s. 

 

                                                 
1 For a discussion of the relationship between restricted DFMs and generalized DFMs, see Giannone et al. (2006) or 
Forni et al. (2009). 
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Moreover, we assume (Bai and Ng, 2007) that the vector ܤሺܮሻ can be decomposed as follows: 

ሻܮሺܤ  ൌ 
 ሻ (10)ܮሺܥሻܮሺכ

Where 
 ሻ is a r-vector of polynomials with degree s and where C(L) is a matrix of dimensionܮሺכ

ሺݎ ൈ  ሻ. Using equations (9) and (10), we can then write the common component in theݍ

following manner: 

 ߯௧ ൌ  
 (11) ,כ௧ܨሻܮሺכ

Where ܨ௧כ ൌ  ௧ is a vector of dimension r that refers to the static factors, and the commonݑሻܮሺܥ

shocks ut of dimension ሺݍ ൈ 1ሻ to the dynamic factors. A model with q dynamic factors can, 

thus, be considered as a model with ݎ ൌ ݏሺݍ  1ሻ static factors. 

 

In the context of small-dimension dynamic factor models, the estimation is generally done in the 

time domain by likelihood maximization, as proposed by Dempster et al.(1977), Shumway and 

Stoffer (1982), Watson and Engle (1983), and Stock and Watson (1989).2 

 

To estimate the DFM when N is small, the following hypotheses are generally put forward: 

 

(DH1) The factors ሺܨ௧ሻ and ሺܨᇱ௧ሻ are mutually orthogonal, but the factors ሺܨ௧ሻ can be 

autocorrelated and are variance-covariance stationary, i.e.:  ݆ ് ݆Ԣ ,   ് ,௧ሻܨሺܧ ,0 ൌ 0, 

,,௧ܨሺݒܿ ᇱ,௧ିሻܨ ൌ 0, and ܿݒሺܨ,௧,  .,௧ିሻ depends only on ܨ

 

(DH2) The idiosyncratic processes ሺ௧ሻ and ሺᇱ௧ሻ are mutually orthogonal, but the processes 

ሺ௧ሻ can be autocorrelated and covariance-stationary, i.e.:  ݅  ്  ݅Ԣ,    ് ሺ,௧ሻܧ ,0   ൌ

,ሺ,௧ݒܿ ,0  ᇱ,௧ିሻ  ൌ  0, and ܿݒሺ,௧, ,௧ିሻ depends only on . 

 

(DH3) The factors ሺܨ௧ሻ and the idiosyncratic processes ሺ௧ሻ are orthogonal for all i, j. 

                                                 
2 Another method of estimating this type of model has been proposed by Sargent and Sims (1977) and Geweke 
(1977) in the frequency domain, based on a spectral analysis. We come back to this type of frequency domain 
estimation in the [fourth] section, entitled "Estimation of factor models for large N." 
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Based on these hypotheses, we can, then, attempt to estimate a dynamic factor model by 

likelihood maximization in the time domain, with the additional hypothesis of Normality for the 

model residuals. The maximum likelihood estimator is calculated by, first, placing the model in a 

space-state form and, then, using a Kalman-type recursive filter. 

 

The DFM can be written in a space-state form, assuming that the common factors follow a VAR 

process of order p such as: 

  (12) 

and, for a given index i, the idiosyncratic process ሺ௧ሻ follows an AR process of order p' in the 

following form: 

  (13) 

Where ሺ௧ሻ and ሺ௧ሻ are innovations of ሺܨ௧ሻ and ሺ௧ሻ, respectively, so that ሺ௧ሻ and ሺ௧ሻ are 

independent. ሺ. ሻ and ሺ. ሻ are polynomials of order p and p', respectively, so that: 

p
pLLIL  ...)( 1   and  '

'1 ...)( p
ipii LLIL   . 

The hypothesis of Normality is put forward for ሺ௧ሻ and ሺ௧ሻ. In practice, the orders p and p' of 

the lag polynomials must be selected prior to the estimation stage. This selection is generally 

done by minimizing an AIC-type information criterion (Akaike information criterion) or a BIC-

type information criterion (Bayesian information criterion) or by using the Doz and Lenglart 

(1999) test. In empirical studies,  ൌ 2 and Ԣ ൌ 1 are often shown to be sufficient to whiten the 

residuals. 

 

This type of model shown by equations (1), (12) and (13) allows a space-state representation as 

follows: 

 ܺ௧ ൌ   ܿ௧ߚ௧  ݉௧ܼ௧  ݓ௧ (14) 
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Where ሺܼ௧ሻ is a vector of n explanatory variables, for example, the lagged values of the observed 

variables ሺܺ௧ሻ, and where: 

௧ߚ  ൌ  ܽ௧ߚ௧ିଵ  ݒ௧ (15) 

Equation (14) is the measure equation, which describes the relations between the unobservable 

states, of dimension r, and the observable variables, of dimension n, where t represents the state 

vector: 

   

Equation (15) represents the state or transition equation, which describes the development of 

unobservable states. We see that at, ct and mt are matrices that can depend on time, of the 

dimensions ሺሺ ൈ  ݎ  ݍ  ൈ ܰሻ ൈ ሺ ൈ  ݎ  ݍ  ൈ ܰሻሻ, ሺܰ ൈ ሺ ൈ  ݎ  ݍ  ൈ ܰሻሻ and ሺܰ ൈ ݊ሻ, 

respectively, and where vt is a Gaussian white noise vector of dimension ሺ ൈ ݎ ൈ ݍ ൈ ܰሻ, ݓ௧ is 

a Gaussian white noise vector of dimension N, of the variance-covariance matrices Qt and Rt, 

respectively. In practice, the system is generally assumed to be invariant over time, i.e., at, ct and 

mt are constant. It is also assumed that for all t, ݐԢ ് Ԣ௧ሻݓ௧ݒሺ ܧ ,ݐ  ൌ 0. 

 

The model in its space-state form can then be estimated by maximum likelihood using a filtering 

method such as the Kalman filter. We refer, for example, to Hamilton (1994) for a description of 

the filtering algorithm. The maximum likelihood estimation algorithm can take a great deal of 

time as it requires inversion of a large dimensional matrix, even when N is small. In general, in 

the case of numerical optimization, the expectation-maximization (EM) algorithm is used, as 

proposed by Dempster et al. (1977) or Shumway and Stoffer (1982).3 

 

                                                 
3 Alternatively, the Fisher scoring algorithm is used by Watson and Engle (1983). 
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2.3 Recent extensions of factor models with small N 

Several extensions of factor models with a small number of variables have recently been 

proposed to take certain data characteristics into account. We present two of these extensions 

below:  Markov regime-switching models and mixed frequency models. 

 

2.3.1 Markov regime-switching models 

These models are directly linked to the Markov regime-switching processes introduced by 

Hamilton (1989) and assume that the common unobservable factors have their own dynamics 

governed by a two-regime Markov chain, denoted (St), with for all t, ܵ௧ ሼ1, 2ሽ. The idea of these 

models is to assume that the factors are related to the state of the economy, which itself evolves 

cyclically but non-periodically based on two economic phases that follow one another. We, then, 

assume that, for example, the first regime ሺܵ௧ ൌ 1ሻ corresponds to the low phase of the business 

cycle and the second regime ሺܵ௧ ൌ 2ሻ to the high phase of the business cycle. The model can 

easily be extended to a larger number of regimes, but the estimation problems then become 

tricky in that the model contains two latency levels, i.e., the common factors and the Markov 

chain. 

 

An initial model of this type was proposed by Diebold and Rudebusch (1996), but the theoretical 

and empirical aspects were more broadly considered by Kim and Yoo (1995) and Kim and 

Nelson (1998). At the same time, Chauvet (1998) independently proposed a similar model. For 

example, in the case of a single factor (i.e., ݎ ൌ 1) for N centered stationary variables, the 

Markov regime-switching model can be defined as follows for ݅ ൌ 1,… ,ܰ and ݐ ൌ 1,… , ܶ: 

௧ݔ  ൌ  
ᇱܨ௧  ௧ (16) 

With: 

 ሺܮሻܨ௧ ൌ  ሺܵ௧ሻ  ߳௧, (17) 

where the i  iri  ,...,1  are the loadings, where, for each i, ሺ௧ሻ follows a Gaussian 

autoregressive process of order one (AR(1)) of finite variance ߪ
ଶ, where ሺ߳௧ሻ is a Gaussian white 

noise of unit variance and where ሺܮሻ ൌ ܫ െ ଵܮ െ െڮ ܮ
. If we assume that ሺܵ௧ሻ is a first-

Electronic copy available at: https://ssrn.com/abstract=2291459



11 
 

 

order two-regime Markov chain, this means that the probability of St belonging to a regime at 

date t depends only on the probability of being in a certain regime at date ݐ െ 1, or: 

 ܲሺܵ௧ܵ௧ିଵ, ܵ௧ିଶ, ܵ௧ିଷ, … ሻ  ൌ  ܲሺܵ௧ܵ௧ିଵ) (18) 

The transition probabilities ଵଶ ൌ ܲሺܵ௧ ൌ 2ܵ௧ିଵ ൌ 1ሻ and ଶଵ ൌ ܲሺܵ௧ ൌ 1ܵ௧ିଵ ൌ 2ሻ measure 

the probability of switching from one regime to the other. Similarly, the probabilities ଵଵ ൌ

1– ଶଶ ଵଶ and ൌ 1–  ଶଵ measure the probability of remaining in the same regime, thus reflecting

the degree of persistence of each regime. The estimation stage allows for the estimation for each 

date t of the expected, filtered and smoothed probabilities of being in a particular regime, 

respectively given by ܲሺܵ௧ߠ, ୲ܺିଵ, … , ଵܺሻ, ܲሺܵ௧ߠ, ୲ܺ, … , ଵܺሻ and ܲሺܵ௧ߠ, ்ܺ, … , ଵܺሻ, where ߠ 

represents the set of estimated parameters of the model, which includes the N autoregressive 

parameters of the AR(1)models, the N idiosyncratic variances and the p parameters of the 

polynomial ሺ. ሻ. 

 

The parameters of this model can be estimated simultaneously by maximum likelihood, as 

proposed by Kim and Nelson (1998), or in two steps, by first estimating the common factor ሺܨ௧ሻ 

in the time or spectral domain (see above), and then adjusting an autoregressive regime-

switching process on the estimated factor (see, on this point, Diebold and Rudebusch, 1996). 

From a theoretical standpoint, simultaneous estimation is preferable but, empirically, the 

maximization algorithm is often difficult to converge, in particular if the variables are very 

volatile. The two-stage estimation is more practical (see Darné and Ferrara, 2011, for an 

application), but the second equation (17) then includes an error in the measure of the estimated 

factors that is not explicitly integrated in the model, which can thus create statistical inference 

problems. 

 

2.3.2 Mixed frequency models 

Numerous macroeconomic series are available to forecasters but do not necessarily have the 

same sampling frequency (or periodicity). The national accounts in particular, which most 

economists seek to predict, are available only on a quarterly basis while many economic 

indicators, such as the industrial production index (IPI), consumer expenditure by households, or 
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opinion surveys are monthly. To be able to simultaneously handle these two periodicities in a 

single model, Mariano and Murasawa (2003) proposed a dynamic factor model in a space-state 

form that considers quarterly series as monthly series with missing values. 

 

The aim of this type of model is to estimate a common factor with N variables, some of which 

are quarterly and some of which are monthly. Thus, we write ሺ ଵܻ,௧ሻ a vector of N1 quarterly 

variables that are observable only in the third month t of the quarter and ሺ ଶܻ,௧ሻ a vector of N2 

monthly variables, so that ଵܰ  ଶܰ ൌ ܰ. We assume here that these series (in logarithms) are 

integrated of order one. We also assume that there is a vector ሺ ଵܻ,௧
כ ሻt of N1 unobservable monthly 

variables so that for all t, ଵܻ,௧ is the geometric mean of ଵܻ,௧
כ  over the three months in a given 

quarter, i.e.: 

 log൫ ଵܻ,௧൯ ൌ  
ଵ

ଷ
ൣlogሺ ଵܻ,௧

כ ሻ  log൫ ଵܻ,௧ିଵ
כ ൯   logሺ ଵܻ,௧ିଶ

כ ሻ൧ (19) 

We note that this identity (19) differs from the arithmetical mean generally used in the quarterly 

accounts but makes it possible to implement a linear space-state form, in contrast to the 

arithmetical identity, that requires a non-linear form. 

Mariano and Murasawa (2003), then, show that: 

ଵ,௧ݕ  ൌ  
ଵ

ଷ
ଵ,௧ݕ
כ    ଶ

ଷ
ଵ,௧ିଵݕ
כ   ݕଵ,௧ିଶ

כ  ଶ
ଷ
ଵ,௧ିଷݕ
כ   ଵ

ଷ
ଵ,௧ିସݕ
כ   (20) 

Where ݕଵ,௧ ൌ ଵܻ,௧ െ ଵܻ,௧ିଷ and ݕଵ,௧
כ ൌ ଵܻ,௧

כ െ ଵܻ,௧ିଵ
כ , ሺݕଵ,௧ሻ being observable in all three periods 

and ሺݕଵ,௧
כ ሻ being unobservable. 

 Under all of the standard hypotheses of dynamics on factors and idiosyncratic errors, and the 

Normality of residuals (see Mariano and Murasawa, 2003, p. 430), one can show that the model 

with a factor ሺܨ௧ሻ is written in the following form for all t: 

  (21) 
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Where ܽ ൌ ሺܽଵ
ᇱ , ܽଶ

ᇱ ሻԢ is the weight vector of dimension N, (Ft) is the scalar common factor, 

௧ݑ ൌ ሺݑଵ,௧
ᇱ , ଶ,௧ݑ

ᇱ ሻԢ is the idiosyncratic component of dimension N, and where ݕଶ,௧ ൌ ଶܻ,௧ െ ଶܻ,௧ିଵ. 

The model is, then, put in a space-state form (see Mariano and Murasawa, 2003, p. 431) and 

estimated by maximum likelihood with the help of a Kalman filter. 

  

Other approaches have been proposed to manage data with different periodicities simultaneously 

in factor models. For example, Aruoba, Diebold and Scotti (2009) also propose a factor model 

containing four variables of different periodicities (daily, weekly, monthly and quarterly) to 

estimate U.S. GDP with a high periodicity. This indicator is actually updated weekly by the 

Philadelphia Federal Reserve on its internet site. Similarly, Camacho and Perez-Quiros (2010, 

2011) propose a factor model that simultaneously treats variables with different periodicities and 

regime-switching in factors to estimate GDP growth in the eurozone and Spain. For French data, 

Cornec and Desperraz (2006) construct a composite activity indicator for services based on 

monthly and quarterly survey data. Cornec (2006) also develops an indicator based on a mixed 

frequency factor model (see the last section on applications). More generally, we should point 

out that this type of approach makes it possible to treat the problem of missing data in series in 

an econometric model. 

 

3 Approximate factor models (large N) 

Although the concept of factor models is attractive, the traditional approach presented in the 

previous section has a number of limitations that are both theoretical and practical in nature. 

 

1. The number of variables (N) is often larger than the number of observations (T) in 

economic data series. Consequently, potentially important information is lost when a 

small number of variables must be selected to respect the constraint that N be small; 

2. Asymptotic convergence of estimators is assured when T tends to infinity and N is fixed, 

but not when N also tends to infinity; 
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3. IID hypotheses and hypotheses on the diagonality of the variance-covariance matrix of 

the idiosyncratic component , which prohibit the cross correlation, are often too strong 

for economic data. This can result in a risk of misspecification; 

4. The maximum likelihood estimation (MLE) is generally considered unachievable for 

factor models of large dimensions because the number of parameters to be estimated is 

too large (Bai, 2003; Bai and Ng, 2002); 

5. The traditional approach makes it possible to consistently estimate the coefficients of the 

weighting factors ሺሻ by MLE when T is large, but not the common factors ሺܨ௧ሻ, for 

which only the estimated value can be obtained (Steiger, 1979). Meanwhile, in most 

economic problems, it is these common factors that are of greatest interest since they 

represent the common shocks, the diffusion indices, etc., for example. 

 To respond to a number of these limitations, the idea of factor models was generalized to 

allow for the manipulation of less strict hypotheses on the variance-covariance matrix of the 

idiosyncratic components by proposing an approximate factor structure. Non-parametric 

estimators of common factors based on the principal components have been suggested (Forni et 

al., 2000; Stock and Watson, 2002), their asymptotic properties being known when N is large. 

New methodologies have, consequently, been proposed. 

 

3.1  Approximate static factor models (SFM) 

Chamberlain and Rothschild (1983) are the first to introduce the so-called “approximate” factor 

structure concept by abandoning the hypothesis that idiosyncratic disturbances are not mutually 

correlated within the so-called “strict” factor structure, i.e., allowing for idiosyncratic errors to be 

weakly correlated. This concept makes it possible to obtain a non-diagonal variance-covariance 

matrix  ൌ ሺ௧௧ܧ
ᇱ ሻ. Moreover, Chamberlain and Rothschild (1983) show that a principal 

components analysis (PCA) is equivalent to a factor analysis (or to a maximum likelihood 

analysis under the hypothesis of Normality of the idiosyncratic component ሺ௧ሻ) when N 

increases to infinity. However, they assume that the variance-covariance matrix of the 

population, , of dimensionሺܰ ൈ ܰሻ, is known. Connor and Korajczyk (1986, 1988, 1993) 
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study the case of an unknown variance-covariance matrix X and suggest that, when N is larger 

than T, the factor model can be estimated by applying a PCA to the variance-covariance matrix 

, of dimension ሺܶ ൈ ܶሻ. 

Connor and Korajczyk (1986) establish the coherence of factors estimated by PCA when T is 

fixed and N tends to infinity in the context of approximate factor models but they provide no 

formal argument when N and T simultaneously tend to infinity.4 Stock and Watson (1999) study 

the uniform coherence of estimated factors and derive convergence rates for large T and N. The 

convergence rate is also studied by Bai and Ng (2002). Finally, Bai (2003) shows that the PCA 

estimator of the common component is asymptotically Gaussian, converging to a rate equal to 

minሺܰଵ/ଶ, ܶଵ/ଶሻ, even when the idiosyncratic component is serially correlated and/or 

heteroskedastic when N and T are large.5 

 

3.2 Approximate dynamic factor models (DFM) 

Forni and Lippi (1997), Forni and Reichlin (1998) and Forni et al. (2000, 2004) extend 

approximate factor models by considering dynamic factor models of large dimensions and 

introduce different methods for the estimation of this type of model. These models are referred to 

as “generalized” because they combine both dynamic and approximate structures, i.e., they 

generalize exact dynamic factor models by assuming that the number of variables N tends to 

infinity and by allowing idiosyncratic processes to be mutually correlated. 

Forni et al. (2000, 2004) expand the dynamic principal components analysis introduced by 

Brillinger (1981) when N is large. The estimation proposed by Brillinger (1981) generalizes the 

static PCA by placing the analysis in the frequency domain. First, the spectral density of the 

vector ܺ௧ is estimated using a consistent spectral density estimator, denoted መܵሺ߱ሻ, for a 

frequency ߱ሿ0,2ߨሿ. Then, the eigenvectors corresponding to the largest q eigenvalues of this 

                                                 
4 Ding and Hwang (1999) obtain results on the coherence for PCA estimation of traditional exact factor models 
when N and T tend to infinity. 
5 Jones (2001) and Boivin and Ng (2005) propose weighted PCA estimators by considering the problem of non-
linear generalized least squares as follows: minிభ,…,ி,ஃ ∑ ሺܺ௧்

௧ୀଵ െ Λܨ௧ሻԢ ∑ ሺିଵ
 ܺ௧ െ Λܨ௧ሻ, with ሺ௧ሻ being IID and of 

the normal distribution ܰሺ0,ሻ. Stock and Watson (2005a) extend the weighted PCA approach by assuming an 
autoregressive structure of weak order for ሺ௧ሻ. 
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spectral matrix are calculated. Finally, one returns to the time domain by applying the inverse 

Fourier transform to these eigenvectors, to recover the estimators of the time series in dynamic 

principal components (see next section).  

Brillinger (1981) obtains distributional results when N is fixed and T tends to infinity. Forni et al. 

(2000) show that the dynamic PCA provides a consistent estimate of the common component 

when both N and T increase. Forni et al.(2004) discuss the coherence conditions and convergence 

rates. It has been shown that the principal components are convergent estimators of factors, both 

in the static context (Bai and Ng, 2002; Stock and Watson, 2002; Bai, 2003) and in the dynamic 

context (Forni et al., 2000, 2004). 

 

Approximate factor models have several advantages over strict models. They are flexible and 

appropriate under general hypotheses on measurement errors and, usually, on the cross-

correlation of idiosyncratic components. The misspecification error resulting from the 

approximate structure of the idiosyncratic component disappears when N and T are large, as long 

as the cross-correlation of the idiosyncratic processes is relatively small and that of the common 

components increases across the transverse dimension when N increases. These conditions are 

introduced in Chamberlain and Rothschild (1983) and used, reinterpreted and expanded in 

Connor and Korajczyk (1986, 1988, 1993), Forni and Lippi (1997), Forni et al. (2000) and Stock 

and Watson (2002), respectively. In short, approximate factor models have two important 

advantages over traditional factor models: 

1. The idiosyncratic components can both be weakly mutually correlated and show little 

heteroskedasticity. This can reflect the condition in which all the eigenvalues of the 

idiosyncratic variance-covariance matrix   ൌ ሺ௧௧ܧ 
ᇱ ሻ are bounded. Thus, the absolute 

mean of the covariances is bounded, i.e., limே՜ஶܰିଵ ∑ ∑ ே
ୀଵ

ே
ୀଵ ሺ௧௧ሻܧ ൏ ∞ 

(Stock and Watson, 2002);6 

                                                 
6 The precise technical condition allowing for a weak correlation of idiosyncratic terms varies from one study to 
another but, in general, this condition limits the contribution of the idiosyncratic covariances to the variance-
covariance matrix of Xt when N is large. 
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2. In this type of model, it is possible to have a weak correlation between the factors ሺܨ௧ሻ 

and the idiosyncratic components ሺ௧ሻ. 

 

3.3 Recent extensions of approximate factor models 

Among the recent extensions of dynamic factor models when N is large, we would like to 

mention FAVAR models, models whose parameters vary over time and mixed frequency 

models. The applications of these different types of models are presented in the last section on 

applications. We will see that these models assume that the variables are stationary. For the 

development of dynamic factor models on data that are non-stationary, we refer, for example, to 

Peña and Poncela (2006a, 2006b). Moreover, Banerjee and Marcellino (2009) have extended the 

FAVAR models to the factor-augmented error correction model, which makes it possible to 

integrate variables that are non-stationary. 

 

3.3.1 FAVAR models 

To remedy the problem of missing variables, generally encountered in traditional VAR and 

SVAR (structural VAR) modeling, Bernanke, Boivin and Eliasz (2005) propose using factor-

augmented VAR (FAVAR) models, particularly in the context of monetary policy analysis. 

The FAVAR model can be described by the following equation: 

  ܺ௧ ൌ Λܨ௧  ௧ିଵܺܤ  ௧  ሺ22ሻ   

where ሺܺ௧ሻ represents the endogenous variables of a traditional VAR model, such as in Bernanke 

et al. (2005) and Boivin et al. (2009), ሺܨ௧ሻ the common factor, Λ the weighting matrix, and ሺ௧ሻ 

the idiosyncratic component. In Stock and Wilson (2005a), B is a diagonal matrix D(L) with a 

lag polynomial ߜሺܮሻ on the ith diagonal. It is also conceivable to specify a short-term dynamics, 

of the first-order autoregressive type, for example, on the common factor (Ft) and on the 

idiosyncratic component ሺ௧ሻ. 

Stock and Watson (2005a) propose using an iterative procedure to estimate the FAVAR model 

given by equation (22). This procedure begins with an initial estimation of the static factor ܨ௧ 

using a PCA. Then, the weighting matrix Λ and the coefficients ܤ  are estimated by ordinary least 
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squares. Finally, the ܨ௧ factors are re-estimated by the principal components of ܺ௧ െ  ܺ௧ିଵ andܤ

this procedure is iterated until convergence. Boivin et al. (2009) also use this iterative procedure 

with ܤ ൌ 0 as the initial estimation. Bernanke et al. (2005) propose estimating the unobservable 

factors in two steps:  (1) the principal components of the informational variables are, first, 

calculated by ignoring the presence of the observable variables; (2) equation (22) is, then, 

estimated by integrating the factors estimated in the previous step. Other works on monetary 

policy analysis involve the estimation of factors using a dynamic factor model, these estimated 

factors then being introduced into a VAR model as additional regressors (see, for example, 

Giannone et al., 2004, and Favero et al., 2005). 

 

3.3.2 Time-varying parameter models 

Some authors are also interested in factor models for which, for example, the weights grouped in 

the matrix Λ of equation (1) vary over time (see, for example, Motta, Hafner and von Sachs, 

2011). This type of approach is promising since it makes it possible to integrate structural 

changes in respect of the source and amplitude of the shocks into the modeling, as well as their 

channels of transmission to the economy. As well, this type of modeling incorporates non-

linearity into relations. In particular, this makes it possible to assess whether behaviors change 

over the course of a business cycle. 

 In the area of FAVAR models, some recent papers incorporate a dynamic structure by 

allowing a change over time (i) of the weights, (ii) of the autoregressive dynamics of the factors, 

or (iii) of the variance of innovations. Thus, a possible specification of a time-varying FAVAR 

(TV-FAVAR) model is as follows: 

  ܺ௧ ൌ Λ௧ܨ௧  ௧ܺ௧ିଵܤ  ௧  ሺ23ሻ 

With ܧ൫௧൯ ൌ 0 and ܧ൫௧௧
ᇱ ൯ ൌ . 

 Generally, the FAVAR model given by equation (23) is estimated in a Bayesian context, as is 

done, for example, in the articles of Del Negro and Otrok (2008), Mumtaz and Surico (2009) or 

Baumeister, Liu and Mumtaz (2010). Similarly, Kose, Otrok and Whiteman (2003) propose an 
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estimation of dynamic factor models based on an MCMC (Monte Carlo Markov-Chain)7 

approach in a Bayesian context. 

 Eickmeier, Lemke and Marcellino (2011) propose an alternative approach by developing a 

two-step standard estimation model by maximum likelihood. The first step consists in estimating 

the factors in a static context (see next section). Then, in a second step, the model with non-

constant parameters is estimated equation by equation. Thus, each univariate regression equation 

is put in a space-state form, then estimated in the traditional fashion using a Kalman filter. This 

approach requires assuming that FAVAR model equations are conditionally independent. 

 

3.3.3  Mixed frequency models 

Finally, in the case of a large number N of available variables in the data set, variables with 

different periodicities can be managed using a MIDAS (MIxed DAta Sampling) regression 

proposed by Ghysels and his co-authors (see, for example, Ghysels, Sinko and Valkanov, 2007, 

for a presentation). The MIDAS approach can be used to explain a sampled variable with a 

certain periodicity (such as annual or quarterly) by variables with a higher periodicity (such as 

monthly or daily) without having to, first, aggregate the higher periodicity data. This approach is 

based on a standard linear regression equation but involves the estimation of a weight function 

depending on a hyper-parameter with a smaller dimension compared with the initial dimension 

of the problem. 

 Let us assume, for example, that we are seeking to estimate the quarterly GDP growth rate of 

an economy, denoted (yt), assumed to be stationary, for a number of quarters T, the index t here 

designating the quarter. Let us also assume that, with the help of one of the methods shown in the 

next section, we have estimated a single monthly stationary factor ሺܨ௧
ሺሻሻ, (i.e., ݎ ൌ 1) based on 

a large monthly data set. We, thus, observe m = 3 times ሺܨ௧
ሺሻሻ over the period [t – 1, t]. The 

standard MIDAS equation makes it possible to link the quarterly variable to be explained to the 

monthly estimated factor as follows:   

                                                 
7 MCMC methods are numerical methods that create long Markov chains, making it thus possible to obtain samples 
distributed asymptotically according to a certain distribution. 
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௧ݕ  ൌ   ܿ  ܿଵ ܩሺߠሻܨ௧
ሺሻ  ߳௧,  ሺ24ሻ 

Where ܿ and ܿଵ are parameters to be estimated and where ሺ߳௧ሻϵ is assumed to be a Gaussian 

white noise of finite variance that will also need to be estimated. The term ܩሺሻ controls the 

polynomial weights, which allows the mixing of frequencies. In fact, the MIDAS specification 

consists in smoothing the past values of the ቀܨ௧
ሺሻቁ using the polynomial G() of the following 

form: 

    ሺ25ሻ 

Where K is the number of points on which the smoothing operates, L is the lag operator, so that, 

for any monthly variable ݔ௧
ሺሻ, ܮఛ/ݔ௧

ሺሻ ൌ ௧ିఛ/ݔ 
ሺሻ  and ݃ሺ. ሻ is the weight function, which can 

take various forms. As in Ghysels et al. (2007), we generally use a two-parameter Almon 

polynomial ߠ ൌ ሺߠଵ,  :ଶሻ so thatߠ

    ሺ26ሻ 

The  parameter is  part of the estimation problem. It is influenced by the information contained 

in the last K values of ቀܨ௧
ሺሻቁ, the size of the window K being an exogenous parameter. Other 

specifications can be considered in the literature for equation (24), particularly by adding 

monthly explanatory variables or autoregressive terms for the target variable ሺݕ௧ሻ. Similarly, 

other weight functions can be considered. 

  In terms of application, Marcellino and Schumacher (2010) propose an approach in which 

they, first, estimate the monthly factors based on a data set of 111 representative variables of the 

German economy. They, then, use these factors to forecast the quarterly German GDP using a 

MIDAS regression (so-called factor-MIDAS approach). The authors show the usefulness of such 

an approach in making better use of the most recent data for short-term macroeconomic 

forecasting purposes. As for the MIDAS approach itself, some examples of applications, in 

forecasting, for example, are found in the articles by Clements and Galvao (2008) and Ferrara 

and Marsilli (2013). 
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4 Estimation of factor models for large N 

In this section, we present the main estimation methods of factor models, whether static or 

dynamic, when the number of variables is high (large N). In this case, the usual methods based 

on maximizing likelihood run into the problem of the dimension of the parameter to be 

estimated. 

 

4.1 Static factor models:  the Stock and Watson (2002) approach 

One of the first approximate factor models is the one proposed by Stock and Watson (SW) 

(2002), which is based on a static PCA. The PCA is used since it allows for the estimation of 

both the parameters and the factors of the model given by equation (1) by maximizing the 

variance explained by the initial variables, for a small number r of static factors ሺܨ௧ሻ. The main 

aim of the SW approach is to approximate the factors by a linear combination of the data 

,௧ܨ ൌ   ܹ
ᇱܺ௧, for ݆ ൌ 1,… , that maximizes the variance of the estimated factors ܹ ,ݎ

ᇱ௫ ܹ, 

where ௫ ൌ ሺ1/ܶሻ∑ ܺ௧ܺ௧ᇱT
୲ୀଵ   is the empirical variance-covariance matrix of the vector of the 

initial standardized data ܺ௧. 

 Under the following normalization assumption: ܹ
ᇱ ܹ

ᇲ ൌ 1 for ݆ ൌ ݆Ԣ and ܹ 
ᇱ ܹᇱ ൌ 0 for 

݆ ് ݆Ԣ, the maximization problem can, then, be transformed into the solution of a eigenvalues’ 

problem: 

  ௫ ܹ ൌ   ߤ̂ ܹ  ሺ27ሻ 

Where ̂ߤ is the jth eigenvalue and ܹ is the associated eigenvector of dimension ሺܰ ൈ 1ሻ. Once 

they have been calculated, the highest N eigenvalues  are classified in decreasing order. Then, the 

eigenvectors are, in turn, classified in decreasing order with respect to the highest r eigenvalues. 

The factors proposed by SW are, then, written as follows: 

  ௧ܨ
ௌௐ ൌ   ܹ ᇱܺ௧,  ሺ28ሻ 

Where ܹ  is the matrix of dimension ሺܰ ൈ ሻ of the stacked eigenvectors ܹݎ ൌ ሺ ܹଵ, … , ܹሻ.8 

                                                 
8 Stock and Watson (1998) develop theoretical results for this methodology. 
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 However, the Stock and Watson approach does not allow for use of the different dynamics 

that may exist between the variables used. To take account of this dynamic structure in factor 

models, several alternatives to the static factor model have been proposed in the literature. 

Specifically, there are two main types of dynamic factor models or approaches. Developed by 

Doz, Giannone and Reichlin (2011, 2012), the first one is based on a space-state representation 

of models in the time domain. Proposed by Forni, Hallin, Lippi and Reichlin (2004, 2005), the 

second one is based on the spectral domain. We, now, present the estimation strategies of these 

different dynamic factor models. 

 

4.2 Dynamic factor models 

4.2.1 Time domain approach 

Doz, Giannone and Reichlin (DGR) (2011, 2012)  propose a dynamic factor model that can be 

represented in a space-state form. Specifically, DGR (2011, 2012) estimate their dynamic factor 

model using two different approaches. The first one is the so-called two-step approach (DGR, 

2011). The second one is based on the quasi maximum likelihood (DGR, 2012). 

 According to DGR (2011), for a number r of factors and q of dynamic shocks, the estimation 

is carried out in two steps. In the first step: 

 ;௧ is estimated using a PCA, as an initial estimateܨ .1

2. Then, equations (6) and (11) are estimated using the estimated factor from the previous 

step, ܨ௧, to obtain both 
כ
ሺܮሻ and the variance-covariance matrix of the residuals כ , 

denoted כ. To obtain an estimate of C(L), appearing in equation (10), DGR (2011) 

apply a decomposition of eigenvalues to the matrix כ by taking into account the number 

of dynamic shocks q. Let us introduce the matrix M of dimension ሺݎ ൈ  ሻ correspondingݍ

to the largest q eigenvalues and the matrix P of dimension ሺݍ ൈ  ሻ containing the largestݍ

q eigenvalues in its diagonal and zeros elsewhere. The estimate of ܥሺܮሻ is, then, obtained 

by ܥመሺLሻ ൌ  ܯ ൈ ܲିଵ/ଶ. 
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 In a second step, the coefficients and parameters of the system described by equations (6) and 

(11) are considered to be known and provided by the first step. The model is, then, written in a 

space-state form and the Kalman filter is applied to obtain new estimates of the factors. 

 In their alternative approach, DGR (2012) estimate an approximate dynamic factor model 

using the quasi maximum likelihood method.9 The main aim of this approach is to consider the 

strict factor model as a misspecification of the approximate factor model and to analyze the 

properties of the maximum likelihood indicator of the factors under this misspecification. This 

estimator is called the quasi maximum likelihood in the sense of White (1982). By analyzing the 

properties of the maximum likelihood estimator under several sources of misspecifications, such 

as an omitted serial correlation of the observations or a cross-sectional correlation of the 

idiosyncratic components, DGR (2012) show that these misspecifications do not affect the 

robustness of the common factors, particularly for fairly large N and T. More specifically, this 

estimator is a valid parametric alternative for the estimator resulting from a PCA. The model 

defined by means of equations (6) and (11) can be put in a space-state form, with a number of 

states equal to the number of common factors r. It is noteworthy that the estimation of the 

parameters of the model, particularly the common factors, by the quasi maximum likelihood can 

be approximated by their anticipated values, using the Kalman filter.10 

 

These dynamic factor models have also been called restricted dynamic factor models, since the r 

static factors are caused by a number q of dynamic factors, with ݍ   ݎ (Forni et al., 2005; Hallin 

and Liska, 2007). 

 

 Kapetanios and Marcellino (2004) also propose an approach based on a space-state 

representation. Their approach is based on the use of specific subspaces in which the factors are 

estimated. This subspace algorithm can be used to estimate factors without having to specify or 

identify the model entirely in its space-state form. 

                                                 
9 Jungbacker and Koopman (2008) propose new results for the estimation of a dynamic factor model using the 
maximum likelihood method and a Bayesian method based on Markov chains. Jungbacker et al. (2011) adapt this 
approach in the context of missing data. 
10 The likelihood can be maximized by means of the EM algorithm, which requires the use of the Kalman filter for 
each iteration. 

Electronic copy available at: https://ssrn.com/abstract=2291459



24 
 

 

 

4.2.2 Frequency domain approach 

In a series of articles, Forni, Hallin, Lippi and Reichlin (2000, 2003, 2004, 2005) (FHLR) 

propose a dynamic PCA in the frequency domain, also called a generalized dynamic factor 

model, to estimate dynamic factors.11 The purpose of their model is to identify the dynamic 

structure of a factor model. The dynamic factor model is given by equations (6) and (7). The 

method proposed by FHLR makes it possible to estimate dynamic factors in a first step and, then, 

obtain the static factors from the estimated dynamic factors in a second step. The approach 

proposed by FHLR aims to estimate both the dynamic factors and their covariances. This 

estimation is performed to maximize the variance of the common component under certain 

orthogonality restrictions. The optimization program is likened to a problem to determine the 

dynamic eigenvalues of the spectral density matrix of the variables observed. The spectral matrix 

 ௫ሺ߱ሻ of ܺ௧ is estimated using a representation of time series in the frequency domain for eachܫ

frequency ߱ in the interval ሾ0,2ߨሾ. The estimated spectral matrix contains information on both 

the cross-correlation between variables and their dynamic relations. Thus, we write ௫ሺ߬ሻ the 

estimated autocovariance matrix between ܺ௧ and ܺ௧ିఛ for a particular lag τ. The estimated 

spectral density of the vector of observed variables is given by: 

    ሺ29ሻ 

for each Fourier frequency ߱ ൌ ܪሺ2/݄ߨ2  1ሻ and for each ݄ ൌ 0,…  with i representing ,ܪ2,

the imaginary number such as ݅ଶ ൌ  െ1. For each frequency ߱, the dynamic eigenvalues and 

eigenvectors resulting from ܫመ௫ሺ߱ሻ are calculated. The eigenvectors are classified in decreasing 

order. More specifically, the eigenvectors ܲሺ߱ሻ, of dimension ሺܰ ൈ 1ሻ, are collected for 

݈ ൌ 1,… ,  To return to the time domain, the eigenvectors are .(the highest q eigenvalues) ݍ

obtained based on the inverse Fourier transform: 

                                                 
11 FHLR generalize the dynamic factor model of Sargent and Sims (1977) and Geweke (1977) by raising the 
hypothesis of the orthogonality of the idiosyncratic factors (see also Forni, Giannone, Lippi and Reichlin, 2009). 
Hallin and Liska (2011) recently adapted these models to estimate common factors specific to “blocks” of data, i.e., 
large subpanels of variables. 
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(30)   ܲሺܮሻ ൌ ∑ ܲ,ఛܮఛ,ு
ఛୀିு  with  ܲ,ఛ ൌ

ଵ

ଶுାଵ
∑ ܲሺ߱ሻ݁ఛఠ,ଶு
ୀ  

 

for ߬ ൌ െܪ,… ݆ and ܪ, ൌ 1,… ,  ,௧, is, then, given byܨ The jth dynamic principal component .ݍ

the jth component of ∑ ܲ

ᇱ

ୀଵ ሺܮሻ ܲሺܮሻܺ௧. 

 Thus, the dynamic principal components are obtained from a decomposition of the spectral 

density matrix into dynamic eigenvalues and eigenvectors. This breakdown also makes it 

possible to divide the spectral density matrix into a spectral density matrix of common 

components ܫሺ߱ሻ and a spectral density matrix of idiosyncratic components ܫሺ߱ሻ. 

 Moreover, the estimator of the frequency domain is reduced to a symmetric filter. This 

presents problems at the end of samples, particularly when future observations are useful to 

estimate the principal components. To remedy this problem, FHLR (2005) suggest a refinement 

of their procedure that maintains the advantages of the dynamic approach, while basing the 

estimation of the common components on an asymmetric filter.12 With this procedure, the space 

of the factors is approximated by adding the r static factors rather than the q dynamic principal 

components. However, the mean resulting from the r contemporary static factors is based on 

information from the dynamic approach. The estimation of the model, then, consists in 

maximizing the variance of the common components or minimizing the variance of the 

idiosyncratic components. Thus, a convergent estimator of the spectral density matrix of the 

common component is given by: 

  መሺ߱ሻܫ ൌ ܲሺ߱ሻߗሺ߱ሻ ܲᇱሺ߱ሻ,  ሺ31ሻ 

Where Ωሺωሻ is a diagonal matrix of dimension ሺݍ  ൈ  ሻ containing the largest q dynamicݍ 

eigenvalues on the diagonal and ܲሺ߱ሻ ൌ ሺ ܲଵሺ߱ሻ, … , ܲሺ߱ሻ) is a matrix of dimension ሺܰ ൈ  ሻݍ

containing the eigenvectors corresponding to the frequency ߱. We, then, deduce the spectral 

density matrix of the idiosyncratic component: 

  መሺ߱ሻܫ ൌ መ௫ሺ߱ሻܫ െ  መሺ߱ሻܫ ሺ32ሻ 

 This estimation in the frequency domain is carried out in two steps. The first one is based on 

the dynamic approach, by which we obtain the variance-covariance matrices of the common 

                                                 
12 See also Forni and Lippi (2011). 
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components ܫመሺ߱ሻ and idiosyncratic components ܫመሺ߱ሻ, respectively, estimated by an inverse 

Fourier transform. Thus, the variance-covariance matrix of the common components is estimated 

as follows: 

  (33) 

for ߬ ൌ െܪ,…  The variance-covariance matrix of the idiosyncratic components is estimated .ܪ,

in the same way: 

  (34) 

 In a second step, this information is used to construct the factor space using the r aggregated 

means. More specifically, the variables are weighted in terms of the common-to-idiosyncratic 

variance ratio, obtained by means of the variance-covariance matrices estimated in the first step. 

These r aggregated means are defined as the solutions to a generalized principal components 

problem and they have the advantage of minimizing the idiosyncratic quadratic errors of the 

common factors by selecting only those variables with the highest common-to-idiosyncratic 

variance ratio. The number of these aggregated means is equal to ݎ ൌ ሺݏ  1ሻ, which represents 

the rank of the spectral density matrix of the common factors, where s indicates the number of 

lags for 
 ሻ in equation (10). FHLR (2005) show that to determine the number of aggregatedܮሺכ

means r, the problem of maximization can be converted into a problem of generalized 

eigenvalues: 

 ሺ0ሻ መܼ ൌ ሺ0ሻߤ̂ መܼ (36) 

Where ̂ߤ is the jth generalized eigenvalue, መܼ its associated eigenvector of dimension ሺܰ ൈ 1ሻ, 

and ሺ0ሻ and ሺ0ሻ are the contemporaneous variance-covariance matrices ሺ߬ ൌ 0ሻ of the 

common and idiosyncratic components, respectively. Moreover, FHLR (2005) impose the 

following normalization መܼ
ᇱሺ0ሻ መܼᇲ ൌ 1 for ݆ ൌ ݆Ԣ and መܼ

ᇱሺ0ሻ መܼᇲ ൌ 0 for j≠ j'. Then, the 

eigenvalues are classified in decreasing order and the factors obtained correspond to the product 

of the r eigenvectors corresponding to the highest eigenvalues and the vector Xt. The estimator 

proposed by FHLR (2005) is written as follows: 
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௧ிுோܨ  ൌ ܼᇱ ܺ௧ (36) 

Where መܼ ൌ ሺܼଵ,… , ܼሻ is a matrix of dimension ሺܰ ൈ  .ሻ of the stacked eigenvectorsݎ

 

 To conclude this section, we will point out that the estimation methods proposed are 

relatively recent and the literature does not yet have sufficient perspective to systematically 

choose one method over another. Because it is easy to use, the Stock and Watson (2002) 

approach is naturally attractive, and the empirical results, particularly in a forecasting context, 

show that the results yielded by this approach are not significantly poorer than the other 

approaches in terms of forecasting error (on this point, see D'Agostino and Giannone, 2012, or 

Barhoumi, Darné and Ferrara, 2013). 

 

 The recent literature has also looked at the estimation of factor models in a Bayesian context. 

This approach makes it possible to reduce uncertainty regarding the parameters by first applying 

hypotheses on the distributions of these parameters. In this regard, we refer interested readers to 

Kose, Otrok and Whiteman (2003, 2008) or Lopes and West (2004), for example. 

 

 Finally, the asymptotic properties of the estimators presented above are proved under the 

simple hypothesis “N and T tend to infinity,” the interpretation of which is sometimes rather 

vague. Bai (2003) and Forni et al. (2004) emphasize that asymptotic properties, such as 

convergence, hold along specific trajectories ሼሺܰ, ܶሺܰሻሻ;  ܰԳሽ. For example, a property that 

holds for minሺܰ, ܶሻ holds along the entire trajectory ሺܰ, ܶሺܰሻሻ, while a property that holds for 

ܰ ൌ ܱሺܶሻ requires that the number of observations T be at least on the order of ܰଵ/். In fact, 

three concepts of limits exist:  (i) sequential, (ii) pairwise, and (iii) simultaneous. Let ݃ሺܰ, ܶሻ be 

a function that one wishes to study. A sequential limit stretches N and T to infinity, one after the 

other. A pairwise limit stretches ሺܰ, ܶሻ to infinity only along a particular trajectory, which can be 

denoted ݈݅݉ே,்՜ஶ݃൫ܰ, ܶሺܰሻ൯. A simultaneous limit authorizes ሺܰ, ܶሻ to increase along all 

possible trajectories: limே,்՜ஶ݃ሺܰ, ܶሻ. It is noteworthy that the existence of a simultaneous limit 

implies the existence of a pairwise limit and a sequential limit, but the reverse is not true. 

Another approach using the theory of random matrices postulates that N and T tend to infinity 
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with ܰ/ܶ ՜ ܿ א ሺ0,∞ሻ, where c is a constant. For a more detailed discussion, see, for example, 

Bai and Ng (2008b) and Harding (2009). 

 

5 Selection of the number of factors 

An important step in the statistical analysis of static and dynamic factor models is the 

preliminary identification of the number of factors. A number of papers focus on the problem of 

determining the number of factors. For example, Forni and Reichlin (1998) suggest a graphic 

approach to identify the number of factors when ܰ ՜ ∞ and T is fixed but no theory is proposed. 

Stock and Watson (1998) modify the BIC criterion to select the optimal number of factors in 

forecasting when ܰ, ܶ ՜ ∞ with √ܰ/ܶ ՜ ∞. However, their criterion is restrictive since it 

requires that ܰ ب ܶ and it is appropriate only in a forecasting context. Forni et al. (2000) 

consider a multivariate version of the AIC criterion but no theoretic or empirical property is 

known for their criterion. 

In this section, we present the criteria most used in the empirical literature, i.e., the criteria of Bai 

and Ng (2002) and Alessi et al. (2010) for static factor models and those of Stock and Watson 

(2005a), Amengual and Watson (2007), Bai and Ng (2007), Hallin and Liska (2007) and 

Breitung and Pigorsch (2013)  for dynamic factor models. Note that those criteria have been 

compared in a forecasting framework by Barhoumi, Darné and Ferrara (2013). 

 

5.1 Selection of the number of factors for static factor models 

To specify the number of factors, Bai and Ng (2002) suggest using information criteria to select 

the optimal number of static factors r when N and T tend to infinity. Bai and Ng (2002) propose 

information criteria based on the quality of adjustment of the model to the data measured by the 

variance ܸሺ݆,  :ሻ such thatܨ

    ሺ37ሻ 

Where j is a given number of factors such as ܨ௧ ൌ ሺܨଵ௧, … ,  ௧ሻԢ. Thus, if the number of factors jܨ

increases, the variance of the factors increases mechanically and the sum of the squares of the 
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residuals decreases in turn. Bai and Ng (2002), then, suggest introducing a penalty function in 

the criterion to be optimized and propose the following three criteria, corresponding to different 

penalty functions: 

  ଵሺ݆ሻܥܫ ൌ ln ൫ܸሺ݆, ሻ൯ܨ  ݆ ቀேା்
ே்

ቁ ln ቀ ே்

ேା்
ቁ,  ሺ38ሻ 

  ଶሺ݆ሻܥܫ ൌ ln൫ܸሺ݆, ሻ൯ܨ  ݆ ቀேା்
ே்

ቁ,  ሺ39ሻ 

  ଷሺ݆ሻܥܫ ൌ ln  ሺܸሺ݆, ሻሻܨ  ݆ሺlnܥே்
ଶ ே்ܥ/

ଶ ሻ,  ሺ40ሻ 

where ܥே் ൌ min൛√ܰ,√Tൟ  and ln denotes the natural logarithm. The estimation of the number 

of factors r is obtained by minimization of the information criteria for j = 0, …, rmax, where ݎ௫ 

is the maximum number of static factors. These criteria reflect the trade-off between the quality 

of the adjustment and the risk of overadjustment.13 Bai and Ng (2002) show that their criteria are 

robust to the presence of a heteroskedastic component in the time and cross-section dimensions 

between variables, but also in the presence of weak serial and cross-section dependence. 

 

Subsequently, Alessi et al. (2010) extend this criterion by modifying the strength of the penalty 

function that appears in the preceding three criteria given by equations (38), (39), and (40). 

Alessi et al. (2010) propose an alternative to the criteria proposed by Bai and Ng (2002) by 

multiplying the penalty function by a positive constant c, suggested originally by Hallin and 

Liska (2007), representing the strength of the penalty function. The authors, thus, propose the 

following two criteria: 

  ଵܥܫ
ሺ݆ሻכ ൌ ln൫ܸሺ݆, ሻ൯ܨ  ܿ. ݆. ቀேା்

ே்
ቁ ln ቀ ே்

ேା்
ቁ  ሺ41ሻ 

  ଶܥܫ
ሺ݆ሻכ ൌ ln൫ܸሺ݆, ሻ൯ܨ  ܿ. ݆. ቀேା்

ே்
, ቁ  ሺ42ሻ 

Where V(j,F) is given by equation (37). The estimation of the number of factors r is obtained by 

minimization of the information criteria ܥܫଵ
ଶܥܫ and כ

 for j = 0,…, rmax, where rmax is the כ

maximum number of static factors. The procedure for the selection of the number of static 

                                                 
13 Bai and Ng (2002) also propose another class of information criteria for which the variance V(j,F) replaces 
ln(V(j,F)) in equations (38), (39) and (40). Bai and Ng (2002, Theorem 2) give the results of the convergence of 
these criteria when N and T tend to infinity. 
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factors depends both on the variance of the number of estimated factors Vc(r) (for N and T 

tending to infinity) and on the constant c  [0, cmax]. Alessi et al. (2010) suggest estimating this 

variance Vc(r) by reiterating the procedure for estimating r for a finite number of subsets of the 

initial N variables, also making the number of observations T vary. 

Kapetanios (2010) proposes a concurrent method to the information criterion to estimate the 

number of static factors, based on the random matrix theory. His approach is based on a series of 

tests on the largest eigenvalues of the variance-covariance matrix of the initial data, which we 

have denoted x. Other procedures have been suggested by Yao and Pan (2008) and Onatski 

(2010). 

 

5.2 Selection of the number of factors for dynamic factor models 

5.2.1 The Bai and Ng (2007) criterion 

In the context of dynamic factor models, the number of dynamic shocks q (for the estimation of 

factors in dynamic principal components and their space-state form) can be determined using the 

Bai and Ng (2007) information criterion. This criterion is obtained by considering the r estimated 

static factors as given and, then, estimating a VAR model of order p on these factors, where the 

order p is selected using the BIC criterion. Next, a spectral decomposition of the variance-

covariance matrix of the estimated residuals of the VAR model, denoted ఌ, of dimension 

ሺݎ ൈ ሻ, is calculated. Then, the jth ordered eigenvalue ఫܿෝݎ , where ܿଵෝ  ܿଶෝ  ڮ  ఫܿෝ  ڮ  ܿෝ 

0, is recovered. Finally, for ݈ ൌ 1,… , – ݎ 1, Bai and Ng (2007) propose the following two 

quantities: 
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Where ܦଵ, represents a measure of the marginal contribution of the l + 1th eigenvalue and ܦଶ, 

represents a measure of the cumulative contribution of the eigenvalues, under the hypotheses that 

ఌ is the unit matrix of dimension ሺݎ ൈ  ሻ and that cl = 0 for l q.14ݎ

Thus, according to the selected marginal contribution measure, the number of dynamic factors q 

is obtained by minimizing: 

൝݈ ܦ :ݐ݄ܽݐ ݄ܿݑݏଵ, 
ܿ

minሺܰ
మ
ఱ, ܶ

మ
ఱሻ
ൡ 

or: 

൝݈ ܦ :ݐ݄ܽݐ ݄ܿݑݏଶ, 
ܿ

minሺܰ
మ
ఱ, ܶ

మ
ఱሻ
ൡ 

 

Bai and Ng (2007) suggest using c = 1 based on Monte Carlo simulations. 

 

In practice, these different criteria are used at three stages: 

1. First, one of the Bai and Ng (2002) criteria is used to determine the optimal number of 

factors r  {1,…, rmax} in a static context;15 

2. Then, a VAR(p) is estimated on these r estimated factors and the order p of the VAR is 

selected to minimize the BIC criterion; 

3. Finally, the Bai and Ng (2007) criteria are applied to the variance-covariance matrix or 

correlation matrix of the residuals (εt) of the VAR(p) to obtain the optimal number of 

dynamic factors q. 

 

                                                 
14 Bai and Ng (2007) show that ܦଵ, and ܦଶ, converge toward zero when l >q. 
15 The criterion IC2 is used more often in practice. 
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5.2.2 The Stock and Watson (2005a) and Amengual and Watson (2007) criteria 

Stock and Watson (2005a) and Amengual and Watson (2007) show that the Bai and Ng (2002) 

estimator can be used to estimate the number of dynamic factors. To do this, they propose 

applying this estimator to the errors resulting from the projection of observed data on the lagged 

values of static factors, i.e., on ݒ௧ ൌ ܺ௧ െ ∑ Λ
ఛୀଵ Φሺܮሻܨ௧ିఛ. They propose two ways of 

estimating the errors ሺݒො௧ሻ: 

 

Where ሺଵ, ଶ, … , ሻ are the ordinary least squares estimators of the regression of ܨ௧ on 

ሺܨ௧ିଵ, … , …,௧ିሻ and ሺଵ,ଶܨ ,ሻ are the ordinary least squares estimators of the regression of 

Xt on ሺܨ௧ିଵ, … ,  .௧ିሻܨ

 

5.2.3 The Breitung and Pigorsch (2013) criteria 

Breitung and Pigorsch (2013) also propose two information criteria to select the number of 

dynamic factors. Their criteria are based on an analysis of the canonical correlations of static 

factors (obtained by a principal components analysis) and depend on the estimation of a ܸܴܣሺሻ 

model on these factors, where the order p is selected by the BIC criterion. 

 

The first criterion is based on the following statistic: 

ሻכݍሺߞ ൌ ሚே்ܥ
ଶିఋ ሺ1 െ ሚሻߣ

ିכ

ୀଵ

 

 

where ܥሚே்
ଶିఋ ൌ ሺ2 െ ሻܰିଵߜ  ሺ2 െ ሻܶିଵ, with 0ߜ ൏ ߜ ൏ 2, and  are values resulting from the 

solution to the following problem ห෨ ሚܵ െ ሚܵଵ ሚܵଵଵ
ିଵ ሚܵ

ଵ
ᇱ ห ൌ 0, with ሚܵ ൌ ∑ ்,௧ᇱܨ௧ܨ

௧ୀఛାଵ , ሚܵଵ ൌ

∑ ௧்ܨ
௧ୀఛାଵ ௧ିଵܩ

ᇱ , ሚܵଵଵ ൌ ∑ ௧ିଵ்ܩ
௧ୀఛାଵ ௧ିଵܩ

ᇱ , and ܩ௧ିଵ ൌ ௧ିଵܨൣ
ᇱ , … , ௧ିఛᇱܨ ൧ . The number of dynamic 
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factors can be estimated using a large number of q* resulting from this sequence כݍ ൌ ݎ െ 1, ݎ െ

2,… ,0, where the statistic  ߞሺכݍሻ is larger than the level of the threshold κ, or: 

ݍ ൌ max ሼכݍ such that: ߞሺכݍሻ   ሽߢ

Breitung and Pigorsch (2013) suggest using the following values of the parameters:  ߬ ൌ 1, 

ߜ ൌ 0.5, and ߢ ൌ 1. 

The second criterion is based on the following statistic: 

 

where the null hypothesis is H0: כݍ ൌ כݍ :as against the alternative H1 ݍ ൏  .ݍ

 

5.2.4 The Hallin and Liska (2007) criterion 

Hallin and Liska (2007) develop an information criterion for generalized dynamic factor (GDF) 

models. This criterion is based on the spectral density matrix of the observations. It is written as 

follows: 

    ሺ43ሻ 

With 0  ݆  ௫, ߱ݍ ൌ
గ

ெା
భ
మ

,  for ݄ ൌ െ்ܯ,… ்ܯ with the truncation parameter ்ܯ,  0., c 

is a positive constant such that ܿ ൌ ሾ0.01,0.02,… ,3.00ሿ.,  ௦ܰ ൏ ܰ is the number of variables 

contained in a given subset and ሺܰ, ܶሻ is a penaly function16 such that: 

,ሺܰ ܶሻ ൌ ൫െ்ܯ
ିଶ  ்ܯ

ଵ/ଶܶିଵ/ଶ  ܰିଵ൯ ൈ ln ሾminሺܰ,்ܯ
ଶ,்ܯ

ିభ
మܶ

భ
మሻሿ ሻ 

 

The eigenvalues ேೞ
்  result from ܫመ௫ሺ߱ሻ, which represents the spectral density matrix estimator of 

Xt with ߱ א ሾെߨ,  :ሿ. The number of estimated factors is, then, given byߨ

ݍ ൌ argmin ܥܫଶ,ே
் ሺ݆ሻ 

                                                 
16 Hallin and Liska (2007) also propose two other penalty functions. Onatski (2009) suggests alternative tests in the 
context of approximate dynamic factor models. Jacobs and Otter (2008) propose a test based on a canonical 
correlation procedure to determine simultaneously the number of dynamic factors q and the order of the lag p in a 
dynamic factor model, but for fixed N and T. 
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0  ݆   ௫ݍ

The procedure for selecting the number of dynamic factors is similar to that used by Alessi et al. 

(2010), i.e., by examining the variance of the number of estimated factors, ܸሺݎሻ for N and T 

tending to infinity and for an interval of values for the constant c. In their numerical illustration, 

Hallin and Liska (2007) propose retaining ்ܯ ൌ ሾ0.75√ܶሿ and ݍ௫ ൌ 13. 

 

6 Recent results in the empirical literature 

Applications of dynamic factor models abound in the empirical economic literature. A few 

examples are asset pricing models (Ross, 1976), consumer theory (Gorman, 1981; Lewbel, 

1991), and the assessment of performance and risk measurement in finance (Campbell et al., 

1997). In this section, we present some recent applications of these models that underscore the 

interest of this approach for (i) the construction of short-term economic indicators, (ii) 

macroeconomic forecasting, and (iii) international macroeconomics and monetary policy 

analysis. 

 

6.1 Tools for short-term economic monitoring 

Dynamic factor models are useful for developing economic activity indicators based on the mass 

of data available to short-term forecasters. These models can be used to synthesize large datasets 

into a composite indicator that reflects the most relevant data available on a given date. 

 One of the most common indicators to which forecasters working on the U.S. economy refer 

is the Chicago Fed National Activity Indicator (CF-NAI) developed using the Stock and Watson 

(1999) approach. This indicator is based on 85 monthly series representative of the U.S. 

economy, covering production, income, employment, personal consumption, housing, sales, 

inventories and orders. The CF-NAI corresponds to the first factor estimated in a principal 

components analysis. A value close to zero means that activity is close to its long-term trend. As 

well, the CF-NAI can be used to detect recessions in the U.S. by using historical estimated 

thresholds. The Philadelphia Federal Reserve, for its part, each week publishes a daily economic 

activity indicator that is based on the mixed frequency model presented in the article by Aruoba, 
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Diebold and Scotti (2009) and includes daily, weekly, monthly and quarterly data. Given its high 

frequency, this indicator is interesting for forecasting since it makes it possible to provide an 

early signal very rapidly. 

 In the euro zone, the Centre for Economic Policy Research (CEPR) has for some years 

now been disseminating the EuroCoin indicator developed at the Bank of Italy by Altissimo et al. 

(2001, 2010). The purpose of this indicator is to estimate a monthly GDP growth in the euro 

zone for the coincident quarter using smoothing to remove very short-term effects (frequency 

less than one year). The model used to synthesize the information is a generalized dynamic factor 

model proposed by Forni, Hallin, Lippi and Reichlin (2000) applied to a very large number of 

variables. From an economic standpoint, this measure corresponds to a kind of medium-term 

quarterly growth, but does not aim to precisely estimate the quarterly accounts figures provided 

by Eurostat. The first version of EuroCoin has a smaller variance than quarterly GDP growth. 

The economic outlook that it provides deviates considerably from the national accounts. CEPR 

has recently tried to construct a more effective new version of EuroCoin (Altissimo et al., 2010). 

The aim of the new indicator is the same but the number of input variables used has been 

reduced from 951 to 145 (IPI, monetary aggregates, interest rates, financial variables, demand 

indicators, surveys, trade variables and labor market variables). The input variables have not 

been smoothed by statistical means, which eliminates some side effects that might have 

introduced a bias into the old EuroCoin. 

 For France, Doz and Lenglart (1999) have developed a summary indicator for the industry 

tendency survey conducted by INSEE by means of six monthly balances of opinion. This 

approach is now commonly used by INSEE to calculate composite indicators based on data from 

short-term tendency surveys in the various sectors. Clavel and Minodier (2009) extend this 

business activity indicator relating to industry by proposing a business climate indicator for the 

economy as a whole, which incorporates balances of opinion derived from the INSEE tendency 

surveys conducted in the various sectors such as services, construction, and wholesale and retail 

sales. 

 Many economic activity indicators have been developed on the basis of regime-switching 

factor models. Kim and Nelson (1998) propose an application for the four main U.S. economic 

series (growth rates of IPI, employment, income, and retail sales), also considered by the 
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National Bureau of Economic Research (NBER) for the dating of U.S. recessions. These same 

series are considered by Diebold and Rudebusch (1996), Chauvet (1998) and Chauvet and Piger 

(2008), who simultaneously estimate a similar model to construct a real-time business cycle 

indicator. In France, Nguiffo-Boyom (2006) estimates the Kim and Nelson (1998) model 

simultaneously on four series derived from the INSEE tendency surveys to reproduce the growth 

cycle, which measures the long-term deviation from trend. For the euro zone, Darné and Ferrara 

(2011) propose a two-step dynamic factor model. They, first, estimate a factor which, in turn, 

follows a regime-switching model, based on a set of six business confidence index series for the 

six main eurozone countries. The authors, thus, develop an indicator to detect the acceleration 

cycle in the monetary zone in real time. 

 

 As for the mixed frequency approach, Mariano and Murasawa (2003) have applied their 

model to estimate an economic activity indicator in the U.S. Mariano and Murasawa (2010) also 

use a version of their model to calculate a monthly U.S. GDP series by estimating a mixed 

frequency VAR that includes the quarterly GDP growth series and the four monthly series 

traditionally used by NBER to assess the U.S. business cycle (growth rates of employment, 

income, industrial production, and retail sales). Cornec (2006) also uses this approach, first to 

provide a monthly dating of the French business cycle using two quarterly series (GDP growth 

rate and employment) and two monthly series (IPI and household consumption expenditure), and 

then to estimate a composite activity indicator similar to that of Doz and Lenglart (1999) but 

which includes the quarterly GDP growth rate series as supplementary information. The 

empirical results of this application emphasize that the contribution of GDP to the first factor is 

negligible in comparison with the composite business indicator relating to industry. Again in 

France, Cornec and Deperraz (2006) use a mixed frequency model to develop an activity 

indicator in the service sector based on three monthly balances and three quarterly balances from 

the INSEE tendency survey relating to services. This indicator can usefully supplement the 

indicator on the business climate in manufacturing for short-term forecasting. Clavel and 

Minodier (2009) also develop a mixed frequency approach to incorporate the various short-term 

tendency surveys conducted by INSEE, which are sampled monthly, bimonthly and quarterly, 

into their business climate indicator. More recently, Camacho and Perez-Quiros (2010, 2011) 
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develop two short-term growth indicators for Spain and the eurozone using a mixed frequency 

factor model that also includes Markov regime-switching to take account of the business 

cycle.Frale et al. (2010) develop a small-dimension mixed frequency factor model to provide a 

measure of monthly GDP in the eurozone. Finally, Frale et al. (2011) propose a mixed frequency 

model to estimate a monthly GDP indicator in the eurozone called EuroMInd, based on a 

disaggregation between supply and demand. This indicator is based on the official database for 

the eurozone developed by Eurostat (Euro-IND). 

 

6.2 Macroeconomic forecasting 

Dynamic factor models are widely used, particularly by central banks, as a tool for forecasting 

various macroeconomic variables, such as the GDP growth rate or inflation (see, for example, a 

survey in Stock and Watson, 2006, or Eickmeier and Ziegler, 2008). When the forecasting 

horizon covers the current period, such forecasting is termed “nowcasting” (on this point see 

Giannone, Reichlin and Small, 2008). The factors are estimated from monthly data used to track 

countries' economic situation, such as household and business survey data (soft data), variables 

for the real economy (hard data), including indices of industrial production, household 

consumption, retail sales or new vehicle registrations and, finally, financial variables (stock 

prices, oil prices, interest rates, etc.). For a given country, such a database can include several 

hundred variables. It is useful, therefore, to be able to synthesize this large data set into a small 

dimension vector to be included in standard models. 

Based on asymptotic theoretical results on the convergence of estimators in this type of model, 

early work used the largest possible number of variables available. More recent work addresses 

the question whether including the largest number of variables is appropriate or not to improve 

the accuracy of forecasts. For example, Barhoumi, Darné and Ferrara (2010) show empirically in 

the case of France that increasing the data set by disaggregation does not result in significant 

improvements in the accuracy of short-term GDP forecasts. Boivin and Ng (2006) identify the 

conditions under which expanding the database could result in less accurate factor estimates and 

provide empirical rules for eliminating redundant variables. These authors show that expanding 

the data set is not preferable if the new series add too much idiosyncratic noise and/or increase 

Electronic copy available at: https://ssrn.com/abstract=2291459



38 
 

 

the cross correlation between idiosyncratic errors too much. Bai and Ng (2008a) use LARS-type 

statistical methods (least angle regressions), which are weighted regressions, to identify optimal 

subsets of predictors (targeted predictors) from a large dataset. Schumacher (2010) underscores 

the effectiveness of this approach in using an international database to predict German growth, 

which is very sensitive to fluctuations in the international environment. Charpin (2009)’s 

application of this approach to French data also seems to provide encouraging results. 

Once the factors have been estimated, the forecasting of the variable of interest ௧ܻ over a horizon 

h is derived from either an ARDL-type univariate regression equation (autoregressive distributed 

lags, see equation (44) below) or a VAR-type multivariate process. When the aim is to forecast 

over a horizon h exceeding one step, two approaches co-exist:  the recursive approach, which 

uses, for a given step, the forecasts made for the previous steps, and the direct approach, which 

seeks to predict the value over the horizon h directly, i.e. without trying to forecast the variable 

of interest in the previous steps. In a general context, direct forecasting of the variable over the 

horizon h makes it possible to reduce the forecast bias resulting from the estimation of the 

parameters that may appear in the case of a multistep recursive forecast (see, for example, 

Chevillon, 2007). In the particular context of factor models, according to simulations done by 

Boivin and Ng (2005), there does not seem to be a significant difference between a direct 

forecast and a recursive forecast if estimated factors are used. However, the direct approach is 

preferred in many applications. 

Thus, the univariate equation of direct forecasting to a horizon h is written: 

    ሺ44ሻ 
Where ܨ௧ is the vector of dimension r of the estimated factors, m and p are the autoregressive 

orders, and ߚመ is a vector of estimated coefficients of dimension r. The parameters ߙ, ߚ and 

 depend on the horizon h since, in the context of a direct forecast, they vary on the basis of 

the horizon considered. The ݉ݎ    1 parameters of the model are estimated using ordinary 

least squares. In equation (44), the number of factors r can be specified by one of the tests 

presented above. However, ݎ ൌ 3 is often used in practice, since three factors are often sufficient 

to explain a significant portion of the data variance. Three variants of the model given in 
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equation (44) are generally used (see Stock and Watson, 2002, Boivin and Ng, 2005). The first, 

denoted DI (diffusion index) is obtained with ݉ ൌ 1 and the terms depending on Yt-j+1, j=1, …, 

p, being suppressed in (44) and, thus, includes only contemporaneous information ܨ௧. The 

second, DI-AR authorizes a dynamics on the series ௧ܻ and corresponds to ݉ ൌ 1 and 1    6 in 

(44). The optimal autoregressive order p is, then, obtained by minimization of an AIC or BIC-

type information criterion. Finally, the specification DI-AR,Lag of (44) corresponds to 1  ݉  3 

and 1    3, thus allowing lags on the factors and on the variable ௧ܻ. Once again, the optimal 

parameters m and p are obtained by minimization of an information criterion. We should point 

out that the specification DI-AR,Lag is not used for a dynamic factor since such a factor is 

assumed to already include a time dynamics. 

 Boivin and Ng (2005) use a simulation to show that the differences between using static or 

dynamic factors are negligible in forecasting. Barhoumi, Darné and Ferrara (2010) find the same 

result empirically on French data. Barhoumi, Darné and Ferrara (2010) also show that the 

specification of the model used to make the forecasts has only a marginal impact on the quality 

of the forecast, particularly when the number of observations is high. 

 One of the major problems that appears when these models are used for real-time forecasting 

results from the fact that data arrive in a staggered fashion, leading to missing values at the end 

of samples (this is the ragged-edge data problem, which is well-known from forecasters). 

Several solutions have been proposed in the empirical literature, such as the projection of 

missing data, either using an autoregressive-type parametric model or using moving averages, or 

the realignment of the data base on the last points available, if the number of variables is high. In 

the context of factor models, two-step estimation using a Kalman filter (Doz, Giannone and 

Reichlin, 2011) solves this problem elegantly (Giannone, Reichlin and Small, 2008, or Angelini 

et al., 2011). 

 Among the many applications in forecasting the GDP growth rate, we can cite, for example, 

the articles of Stock and Watson (2002) or Banerjee and Marcellino (2006) for the U.S., those of 

Barhoumi, Darné and Ferrara (2010, 2013) and Bessec and Doz (2013) for France, Forni, Hallin, 

Lippi and Reichlin (2000, 2003), Camba-Mendez and Kapetanios (2005), Marcellino, Stock and 

Watson (2003), Banerjee, Marcellino and Masten (2005), Ruenstler et al. (2009) or Angelini et 

al. (2011) for the eurozone, Schumacher (2007, 2010), Schumacher and Breitung (2008) and 
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Eickmeier and Ziegler (2008) or Marcellino and Schumacher (2010) for Germany, Artis, 

Banerjee and Marcellino (2005) for the United Kingdom, and Van Nieuwenhuyze (2006) for 

Belgium. Matheson (2011) also develops GDP forecasts for a large number of advanced and 

emerging countries. 

 It should be noted that applications to inflation forecasting are much rarer; see, for example, 

Forni et al. (2003) or Camba-Mendez and Kapetanios (2005) for the eurozone or de Bandt et al. 

(2007) for France. Boivin and Ng (2005) also consider series of U.S. prices from a forecasting 

point of view. It appears to be difficult to improve the accuracy of inflation forecasts by using a 

large number of variables in comparison with an approach based on a precise selection of 

variables of interest. In contrast, measurements of underlying inflation have been conducted 

using this type of approach; we refer interested readers to the articles of Cristadoro et al. (2005) 

for the eurozone or Kapetanios (2004) for the United Kingdom. 

 Various works have endeavored to identify the contribution of financial variables to 

macroeconomic forecasting using factor models applied to a database on financial markets 

activity. For example, Forni et al. (2003) show that, in the eurozone, financial variables help to 

forecast inflation but cannot be used to accurately forecast industrial output. Bellégo and Ferrara 

(2009, 2012) use a factor model to assess the likelihood of a recession in the eurozone based on a 

large set of monthly variables (factor-probit-type model).17 Specifically, Bellégo and Ferrara 

(2009) show that, by using only financial variables, this approach would have made it possible to 

anticipate the 2008-09 recession in the eurozone in real time as early as late 2007. 

 A review of the literature on the results of factor models in forecasting is found in the article 

by Eickmeier and Ziegler (2008), who conduct a meta-analysis of the performance of models to 

forecast GDP and inflation. They conclude that factor models generally improve smaller-scale 

econometric models, but that methods of combining forecasts18 constitute a competing alternative 

approach. 

 

                                                 
17 A factor-probit model is obtained by, first, estimating the factors from a data set, and then, incorporating them in a 
standard probit-type model. 
18 Forecast combinations generally use a weighted average of forecasts of a single target variable, based on a large 
number of different models. See Timmerman (2006). 
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6.3 Applications in monetary policy and the international economy 

An abundant literature analyzes the impact of monetary policy shocks on the macroeconomy and  

how the transmission mechanism of these shocks has evolved, particularly for the U.S. 

Traditionally, the impact of monetary policy shocks is often measured using small dimension 

VAR models (fewer than 6 variables). Typically, trivariate SVAR models containing the interest 

rate, output and inflation are used. Beyond this small number of variables, it is difficult to 

estimate this type of model using standard methods (in a Bayesian context, see, for example, de 

Mol, Giannone and Reichlin, 2008). Now, as noted in Bernanke and Boivin (2003), monetary 

policy is conducted by central banks in a data-rich environment. In this context, a category of 

papers analyzing monetary policy initiated by the article of Bernanke, Boivin and Eliasz (2005) 

uses FAVAR models. This type of modeling is chosen to remedy the problem of missing 

variables generally encountered in traditional VAR modeling. Bernanke, Boivin and Eliasz 

(2005), Stock and Watson (2005a) and Favero, Marcellino and Neglia (2005) use FAVAR 

models to analyze monetary policy in the U.S. and in some eurozone countries. They all 

conclude that adding estimated factors from factor models to VAR models allows for a finer-

grained analysis of the phenomena in question, particularly in terms of structural shocks. For 

example, Del Negro and Otrok (2007) estimate a factor common to changes in residential 

housing prices in various U.S. states, then introduce it into a FAVAR to assess the extent to 

which monetary easing helped create a housing bubble (the study data stop in 2005). They show 

that the impact of monetary policy shocks is weak in comparison with the scope of the price 

fluctuations observed through to the end of their sample. 

 

Another portion of the literature addresses the question of whether the mechanism for the 

transmission of shocks has changed over time and, if so, how. Time-varying FAVAR (TV-

FAVAR) models provide an extremely flexible modeling that can shed light on this question. 

The literature appears to be in agreement on the fact that this mechanism has changed, although 

there is no consensus on how. For example, based on a set of 803 quarterly variables from 1972 

to 2007, Eickmeier et al. (2011) show that the volatility of monetary shocks in the U.S. declined 

significantly from the early 1980s to the eve of the subprime crisis and that the negative impact 
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of a shock on U.S. activity and prices declined over this period. The authors also emphasize that 

the negative impact of a monetary policy shock on inflation expectations and long-term interest 

rates weakened over time. The reasons given by the authors for these evolutions are the changes 

in monetary policy and the globalization of trade and finance. Finally, these authors indicate that 

the transmission mechanism appear to be the same in periods of expansion and periods of 

contraction. Baumeister, Liu and Mumtaz (2010) also show that, for the U.S. economy, the 

reaction of GDP, consumption and investment to a monetary shock declined over the period 

1960-2008. We should point out, however, that most of these studies do not include the period 

2008-2009, during which the industrialized countries suffered the worst recession since the 

1920s. 

 

FAVAR models have also been used to analyze changes in the synchronization of global 

business cycles, making it possible to discriminate between different types of shocks. For 

example, Stock and Watson (2005b) estimate a FAVAR on the GDP of the G7 countries, 

enabling them to identify common international shocks and domestic effects due to an 

international shock and those due to an idiosyncratic shock. They conclude that the reduction in 

the volatility of cycles in the G7, with the exception of Japan, observed between the mid-1980s 

and the mid-2000s, is primarily due to a reduction in the amplitude of common international 

shocks (the so-called “Great Moderation”). Kose, Otrok and Whiteman (2003) consider a similar 

model to show the existence of a global cycle based on a set of 60 countries. They also show that 

factors specific to the region play only a minor role in the explanation of macroeconomic 

fluctuations. Bordo and Helbling (2010) explore the historical angle by using annual GDP data 

from 1880 to 2008 for 16 industrialized countries and show a trend toward increasing 

synchronization among those countries. The authors show the role of common shocks in this 

change using a restricted FAVAR model estimated on this database. 

 There are also several applications of factor models to the measurement of international 

cycles and their transmission between countries. Mansour (2003) and Helbling and Bayoumi 

(2003) estimate a global business cycle for the world and the G7 countries and analyze the 

contribution of this common cycle to economic changes in each country. Kose, Otrok and 

Whiteman (2008) use a factor model in a Bayesian context to estimate the common and 
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idosyncratic components of the G7 countries for a set of economic aggregates. They show that 

the factor common to these countries explains a larger portion of the variation of these 

aggregates over the period 1986-2003 than in previous periods, thus demonstrating an increased 

synchronization of the business cycles in the G7. Eickmeier (2007) analyzes the transmission of 

U.S. structural shocks to Germany using the approach put forward by Forni et al. (2004). After 

analyzing common economic movements in the eurozone, Marcellino, Stock and Watson (2003) 

and Eickmeier (2005) try to give economic interpretations to the common factors by linking 

them to the various countries in the zone and/or certain variables, based on correlation measures. 

 

7 Conclusion 

In this article, we have reviewed the recent literature on dynamic factor models. There has been 

recently an increasing interest in these models on the part of researchers since they can 

adequately respond to certain problems encountered in practice, particularly inflation of the 

number of available data. We have presented the models and their most interesting extensions, 

main estimation methods, and tests of the number of factors. In the final section, we have 

presented a few recent examples of the application of dynamic factor models to macroeconomic 

forecasting, the construction of short-term economic indicators and the analysis of monetary 

policy and the international economy. The success of dynamic factor models means that this 

review of the literature cannot claim to be exhaustive. Extensions have been developed very 

recently, particularly to add flexibility by means of non-linearities or mixed frequencies, and 

numerous applications continue to be published. Moreover, these models are now increasingly 

weighed against other econometric methods that also make it possible to reduce the scale of the 

problem. It appears to us, therefore, that the research into dynamic factor models will continue to 

thrive. 
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