Influence of school environment on adolescents' creative potential, motivation and well-being Maud Besançon, Fabien Fenouillet, Rebecca Shankland #### ▶ To cite this version: Maud Besançon, Fabien Fenouillet, Rebecca Shankland. Influence of school environment on adolescents' creative potential, motivation and well-being. Learning and Individual Differences, 2015, 43, pp.178 - 184. 10.1016/j.lindif.2015.08.029. hal-01392503 ## HAL Id: hal-01392503 https://hal.parisnanterre.fr/hal-01392503 Submitted on 9 Nov 2016 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. #### Influence of school environment on adolescents' creative potential, motivation and well-being Maud Besançon, Fabien Fenouillet, Rebecca Shankland **Abstract** It is increasingly acknowledged that creativity has become essential in daily life. Each individual has the potential to be creative and the level of creativity actualization results from different factors that can be cognitive, conative and environmental. In particular, educational methods may impact creativity directly or indirectly through motivation and well-being. We hypothesized that the type of pedagogy influences levels of creativity, motivation and well-being. Furthermore, we hypothesized that creativity was linked to motivation and well-being. This study was conducted on 131 French adolescents attending a Waldorf school (alternative educational method) or a traditional school. Our results highlight differences in well-being and type of motivation when comparing both educational methods. Moreover, our results showed significant correlations between the different types of motivation and creativity scores. **Key words:** educational methods; creativity; motivation; well-being; adolescents. # Influence of school environment on adolescents' creative potential, motivation and well- #### being #### 1. Introduction | 30 | 1. Introduction | |----|--| | 31 | The rapid evolution of society obliges individuals to adapt constantly. Flexibility and | | 32 | creativity give the possibility to cope with the numerous changes people may have to face | | 33 | during their lives. Creativity is considered to be a necessary component of the problem- | | 34 | solving process (e.g., Mumford, Mobley, Uhlman, Reiter-Palmon & Doares, 1991), and | | 35 | creative ideation develops greater flexibility (e.g., Runco, 1986), hence fostering well-being | | 36 | (e.g., Carson, Bittner, Cameron, Brown & Meyer, 1994). Creativity has not only been | | 37 | described as a reaction to changes and as means of coping with it (Shaw & Runco, 1994), but | | 38 | it has also been conceptualized as contributing to social and societal advances (Paulus & | | 39 | Nijstad, 2003). | | 40 | The ability to cope with new situations can thus be acquired through the development of | | 41 | autonomy, self-confidence, motivation and creativity (Carson, et al., 1994; Deci & Ryan, | | 42 | 2000; Russ, Robins, & Christiano, 1999; Shankland, Genolini, Riou França, Guelfi, & | | 43 | Ionescu, 2010). All the above factors may be enhanced or hindered by the individual's | | 44 | immediate environment, in particular by the family (Dusek & Danko, 1994; Kliewer & Lewis, | | 45 | 1995; McIntyre & Dusek, 1995; Ruchkin, Eisemann, & Hagglof, 1999) and educational | | 46 | settings (Lillard & Else-Quest, 2006; Mellou, 1996; Ogletree, 2000; Shankland, Riou França, | | 47 | Genolini, Guelfi, & Ionescu, 2009). Mellou (1996) suggests that creativity may be nurtured | | 48 | through specific educational settings in three respects: the creative environment (material, | | 49 | classrooms), creative programs and creative teachers or ways of teaching. These | | 50 | characteristics appear to be particularly present in alternative educational systems such as | | 51 | Montessori and Waldorf schools (e.g., Rose, Jolley, & Charman, 2012; Murdock, 2003; | | 52 | Shankland, 2008). | | 53 | The term creativity is used in this article as the ability to produce novel, original work that fits | | 54 | within particular task or domain constraints (Amabile, 1996; Gardner, 1996; Lubart, | | 55 | Mouchiroud, Tordjman, & Zenasni, 2003; Ochse, 1990; Runco, & Jaeger, 2012; Sternberg, & | | 56 | Lubart, 1995). According to Sternberg and Lubart (1995), creativity is a cognitive aptitude | which requires a confluence of three distinct and interrelated resources: cognitive factors (such as intelligence, knowledge), conative factors (such as personality, motivation, emotion) and environmental context. According to Snow (1994), levels of ability development and patterns of ability differentiation may result from different types of educational systems. However, each individual's learning history is also unique because individuals perceive situations differently according to their own background and interests. Thus, children's creative performances can be influenced by their conative aptitude, by their learning environment, and by the interaction between these two variables. The learning environment may have an impact on creative performances through explicit creativity development, for example by enhancing pretend play and role play in children according to their age (e.g., Russ et al., 1999) and by scheduling arts classes – as it can be observed in Waldorf schools (Rose, et al., 2012). Schools may also impact creativity indirectly through intrinsic motivation (Rathunde & Csikszentmihalyi, 2005) and well-being enhancement (Fredrickson, 2001). #### 1.1. Educational methods and creativity The French traditional educational system is based on norms and rules that allow the class to remain as calm and structured as possible. Therefore, autonomy and risk taking are not emphasized, and pupils often remain passive. Memorization and theory applications are more practiced than integration or active thinking. Generally, teachers give exercises, which support the development of convergent thinking. There is usually one single right answer to the problem presented, leaving little room for divergent thinking. Moreover, creative thinking is rarely solicited except in arts classes. In addition, students are often in competition with one another. Therefore they cannot develop perseverance and intrinsic motivation, which are two important components of creative performances. Alternative educational practices based on Freinet, Montessori or Waldorf pedagogical methods appear to be characterized by: (1) autonomy development, (2) active participation in knowledge and skills acquisition and integration (not only memorization), (3) development of intrinsic motivation through activity choices (students may choose specific projects they wish to work on), and reduced competition (absence of marks, cooperation...; Lillard & Else-Quest, 2006). According to Deci and Ryan's model (1985), autonomy-supportive and competence-focused educational methods meet students' fundamental psychological needs – feelings of autonomy, competence and relatedness – thereby increasing intrinsic motivation and well-being (Ryan & Deci, 2001). Through these pedagogical methods, both convergent and divergent thinking may be used, and learning is aimed at developing autonomy through 91 the acquisition of skills and the development of psychosocial competencies rather than being 92 mainly aimed at acquisition of knowledge (Kendal, 1992; Shankland, et al., 2009; Shankland, 93 et al., 2010). Creative thinking is also particularly solicited through artistic activities – mainly 94 in Waldorf (Steiner) schools – such as painting, modeling, sculpting and theatre. 95 During the latter of the 20th century, several studies compaired children's performances in 96 traditional and in alternative educational systems. Horwitz (1979) conducted a literature 97 review from the 1930s to the late 1970s. Globally, children who were exposed to alternative 98 educational methods showed less cognitive rigidity, more nuanced and imaginative thinking; 99 they took more initiatives, were more open, and less conventional. Nevertheless, children 100 exposed to alternative education outperformed those in traditional classes. 101 Thomas and Berk (1981) conducted a literature review concerning the effects of different 102 school environments on children's creativity, which also yielded inconclusive results. Their 103 hypothesis was that the environment that best supports the development of creative performance is an intermediate one, neither too structured, nor too open or flexible. Their 104 105 results highlighted a complex relation for the development of creativity, which is influenced 106 by gender, type of educational system, and creativity type (verbal or figural). In particular, 107 they found that (1) an intermediate environment best promoted creativity, and (2) that in 108 general, boys were more creative than girls. 109 Ogletree (2000), using Torrance's creativity tests (1976), also compared Waldorf and classical 110 schools students' productions. Waldorf schools students showed greater creativity than 111 traditional schools students (cited by Rose, et al., 2012). These results may also be explained 112 by the diversity of artistic classes proposed in Waldorf schools and autonomous creative 113 exercises carried out by the students themselves at home (Shankland, 2008). For example, 114 based on the classes given by the teachers, students have to create their own
folder composed 115 of the class contents, adding information they have looked up, and decorated by drawings 116 aiming at illustrating the lesson or simply aiming at making their folder more agreeable to 117 read. The higher levels of creativity may also be explained by the fact that in these schools, 118 parents are strongly recommended to restrict television use at home. As the number of hours 119 watching television is correlated to reduced creativity (Christakis & Zimmerman, 2006), this 120 constitutes a potential creativity factor in Waldorf students. 121 Another study comparing Montessori, Waldorf and classical school students (Cox & 122 Rowlands, 2000) underlined that Waldorf students productions were more accurate (proportions, perspective), detailed and also imaginative than those of other pupils. Where 123 124 differences were found between classical school and Montessori pupils, the Montessori children tended to do better than the others. More recently, Besançon and Lubart (2008) also studied the influence of educational methods on the development of children's creativity. Their results indicated that, in general, children attending alternative education systems (Montessori and Freinet in that study) obtained higher performances than children attending traditional schools. In what concerns the positive influence of alternative educational methods on creative development from year 1 to year 2, the results show that Montessori curriculum was associated with an overall increase in creativity, for all children whatever their initial creative ability levels. However, this was not observed for children in Freinet classes. This difference could be explained by the fact that the teaching staff varied in the schools in which some teachers used Freinet pedagogical practices, whereas other teachers only used classical methods. Thus, some children in year 2 had a teacher who used traditional methods. These variations across the two years of the study support the hypothesis concerning the influence of educational methods on creativity development. #### 1.2. Motivation Little use is made in alternative schools of marks which would operate as rewards or punishments for students (Shankland et al., 2010). Hence this type of education should lead to higher levels of intrinsic motivation (Deci, Koestner & Ryan, 1999, 2001). Furthermore, Amabile (1982) showed that the use of rewards has a negative impact on child creativity. Meta-analyses also underlined that any type of reward and external incitation such as school assessments lead to reduced intrinsic motivation even for an activity considered by the students as interesting in the first place (Cameron & Pierce; 1994; Deci et al., 1999, 2001). As opposed to these types of educational methods, alternative schools support student autonomy and social relationships which enhance student engagement in school activities as they act upon factors which have a positive impact on intrinsic motivation (Deci & Ryan, 2000; Furrer & Skinner, 2003; Ryan, Siller, & Lynch, 1994). Enhancing intrinsic motivation is all the more important as extrinsic motivation reduces creativity (Amabile, 1988; Cooper & Jayatilaka, 2006), while intrinsic motivation enhances creative performances (Jesus, Rus, Lens, & Imaginário, 2013). By focalizing individuals on activity results rather than on the activity itself – as does intrinsic motivation – extrinsic motivation may lead to reduced cognitive flexibility which encourages individuals to use specific algorithms which have proved to be efficacious in past experiences rather than to test more innovative solutions (Cooper & Jayatilaka, 2006). 159 1.3. Well-being 160 Alternative educational settings highlight the importance of student well-being at school. 161 Since the definition of Subjective Well-Being (SWB) given by Diener in 1984, many research 162 studies have been carried out on this subject. SWB is referred to as the experience of high 163 levels of positive emotions, low levels of negative emotions, and a high level of satisfaction 164 with life. In line with research studies on the impact of childrearing on well-being (Dusek & 165 Danko, 1994; McIntyre & Dusek, 1995), researchers have suggested that alternative schools 166 such as Steiner and Montessori show a similar pattern of education involving relatively high 167 levels of responsiveness, as well as a high demand for age-appropriate behavior (Lillard & 168 Else-Quest, 2006; Shankland et al., 2009). The hypothesis is thus made that these schools 169 generate greater levels of SWB, which in turn should lead to higher creativity performances as 170 suggested by a growing body of research on the links between positive affect and creativity 171 (e.g., Amabile, Barsade, Mueller, & Staw, 2005; Hirt, Melton, McDonald, & Harackiewicz, 172 1996; Isen, Daubman, & Nowicki, 1987). Fredrickson's "Broaden and Build model" (2001) 173 suggests that positive emotions broaden the momentary action and thoughts repertory (e.g., 174 Fredrickson & Branigan, 2005), leading to higher levels of creativity and problem solving (as 175 initially highlighted by Isen's studies, e.g., Isen, 1999; Isen, Daubman & Nowicki, 1987). 176 These competencies constitute new strengths, thereby building sustainable resources to cope 177 with adversity (e.g., Fredrickson, Mancuso, Branigan, & Tugade, 2000). 178 Since the initial work carried out by Isen and colleagues, there has been a growing interest in 179 the link between positive emotions and creativity (for a meta-analysis see Davis, 2009). Isen, 180 and colleagues (1987) showed that positive emotion induction improved creative 181 performances. They originally explained this phenomenon through greater attention towards 182 the task presented which would enhance the perception of details that could generally be 183 ignored. They also argued that positive emotions would facilitate access to positive memories 184 which are assumed to be more numerous than negative ones. A decade later, a neurocognitive 185 model of positive emotions suggested that creative problem solving is improved, in part 186 because of increased dopamine release in the anterior cingulate which enhances cognitive 187 flexibility and facilitates the process of selection among various cognitive perspectives 188 (Ashby, Isen, & Turken, 1999). Research in this field continues to explore the links between 189 positive affect and creativity. A recent study carried out by Masmoudi and Charaf (2013) 190 appears to confirm this assumption. They presented a creative task with positive or negative valance words or with neutral ones and measured creative performances comparing these three groups. The results indicate that positive words generated greater verbal fluency, flexibility and originality. With time, the models conceptualized to understand the relationship between emotions and creativity have become more complex and differentially explain the role of emotions on various creativity facets according to valance, arousal and intensity (De Dreu, Baas, & Nijstad, 2008; Kaufman & Vosbung, 2002; Lin, Tsai, Lin, & Chen, 2014; To, Fisher, Ashkanasy, & Rowe, 2012; Tsai, Lin, & Lin, 2013). Indeed, emotions appear to influence the different creative performances through distinct mechanisms. For example, Lin and colleagues (2014) showed that positive emotions enhanced creative performances either through cognitive flexibility (which totally mediated the relationship between positive emotional states and insight problem solving), while divergent thinking was rather associated with arousal levels. However, positive emotions remain central to these models, and ways of enhancing positive emotions in students have been tested since the early developments of positive psychology at school (see in particular publications on the Penn Resiliency Program; for a meta-analysis of its effects, see Brunwasser, Gillham, & Kim, 2009). Although these research studies focused on positive moods or states – most frequently induced (Kaufman & Beghetto, 2009) – rather than on general well-being, some studies have shown that happier students are more creative (e.g., Cacha, 1976). In the same way, happy workers appear to be more creative (Yuan, 2015). Even though the benefits of creativity on intrinsic motivation and cognitive tasks have been documented (see Amabile, 1996), formal creativity or arts classes are often considered as less relevant to education or as mainly extra-curricular activities (Aljughaiman & Mowrer-Reynolds, 2005). Contrary to this belief, a survey underlined that in Steiner schools, teachers considered arts and creativity as a central component of all classes (Woods, Ashley, & Woods, 2005). Most of these teachers (95%) also highlighted that artistic and creative skills were an essential feature of Waldorf school teachers. As other studies carried out on alternative schools such as Montessori have also underlined greater levels of intrinsic motivation (Rathunde & Csikszentmihalyi, 2005), and studies on former alternative school students highlighted higher levels of SWB (Shankland et al., 2010) – lower levels of anxiety and depression symptoms and higher levels of satisfaction with life – it was assumed here that these students would perform better on creative tasks compared to traditional school students. #### 1.4. Present Study - 226 In the current study, we examined the relationship between learning environment and - students' creative performances, as well as its correlations with motivation and well-being. - Based on the literature, we first tested the hypothesis according to which the type of pedagogy - influenced the level of creativity, motivation and well-being. Secondly, we tested whether (1) - creativity related to motivation, and (2) how creativity related to well-being. 231232 225 #### 2. Method #### 233 **2.1. Participants** - The data analyzed in this study was obtained from a sample of 131 French adolescents
(48.9%) - boys, 51.1% girls; mean age = 12.74, SD = 0.97): 41 from a Waldorf school, alternative - education; 90 from a traditional school. Each sample was recruited from schools in the - vicinities of Paris. - 238 Authorizations were first sought from the headmaster and teachers and then the students' - parents. Only children whose parents had agreed to participate were included in the results of - this research. 241 242 #### 2.2. Material - 243 2.2.1. Creativity measure Evaluation of Potential of Creativity (EPoC, Lubart, Besançon & - 244 Barbot, 2011) - 245 The authors considered creativity as a multifaceted, domain-specific construct, so instruments - 246 to measure creativity may vary as a function of the domain-component aimed at being - 247 measured. Moreover, it is possible to categorize the numerous micro-processes involve in - creative potential into two main sets, called divergent-exploratory processes, and convergent- - 249 integrative processes. According to this point of view, these tests battery measures two key - 250 creative thinking-process clusters (divergent-exploratory and convergent-integrative) in - verbal-literary and graphic domains (with forthcoming extensions in other domains such as - social, scientific and musical domains, see Table 1). In the Divergent-Exploratory thinking - 253 tasks for graphic domain (DG index), test-takers must generate as many drawings as possible - using a simple abstract shape (DG1 Abstract Stimulus) or a familiar object (DG2 Concrete - Stimulus) as starting point, in a limited time (10 minutes). Similarly, divergent-exploratory - 256 thinking tasks in the verbal domain (DV index) consist of generating either multiple simple - 257 story-endings in response to a unique story-beginning (DV1 Story Endings), or multiple story-beginnings in response to a unique story-ending (DV2 – Story Beginnings), in 10 minutes. In contrast, the convergent-integrative tasks in the graphic domain (IG index) engage test-takers to produce a complete, original drawing, using at least four out of eight abstract shapes (IG1 – Abstract Stimuli) or familiar objects (IG2 – Concrete Stimuli) provided as a basis for their composition (within the 15 minutes allowed for these tasks). Similarly, in the convergent-integrative tasks applied to the literary-verbal domain, test takers have to produce a complete story either based on a provided story title (IV1 – Story Title), or on the integration of imposed fictional characters (IV2 – Story Characters). #### Insert Table 1 about here Concerning Divergent-Exploratory thinking tasks, several studies show that fluidity is strongly linked to the originality of ideas. Lubart et al. (2003) have shown that the more original ideas tend to be produced later during divergent thinking. Hence Divergent-Exploratory thinking tasks are norm-referenced (comparison of an individual's number of relevant responses generated in response to the task, in comparison to her or his reference group), while Convergent-integrative tasks are assessed using the Consensual Assessment Technique (CAT, Amabile, 1982), rated by at least three independent and qualified judges (that is, the creative productions are assessed with regard to a set of defined rubrics¹, ranging from "1-low creativity" to "7-high creativity"). Three raters ($M_{age} = 38.9$; SD = 4.7) assessed story creativity and drawing creativity. Judges were university professionals or PhD students who work regularly in the field of creativity. The inter-rater reliability is good ($\alpha > .80$) for the four integrative tasks ($\alpha IG1 = .83$; $\alpha IG2 = .85$; $\alpha IV1 = .91$ and $\alpha IV2 = .90$). ¹ For example, score 1 in the integrative task graphic corresponds to the rubric "very poor, total lack of idea" whereas score 7 corresponds to "a very original idea that encompassed all elements". For the verbal integrative task, score 2 means "a story which includes banal or traditional ideas" and score 7 corresponds to an "original story, well built with many details". #### 2.2.2. Motivation measures We used an adapted version of the 20 items Academic Motivation Scale (Vallerand, Blais, Brière, & Pelletier, 1989). The adaptation consisted of adapting items to be more comprehensive to early teenage students and we measured only one form of intrinsic motivation out of three. Participants had to fill out the questionnaire by answering on a 5 point Likert scale ranging from: "Totally disagree" to "Totally agree". This scale enables one to measure: intrinsic motivation for knowledge (α =.84, eg. Because I experience pleasure and satisfaction while learning new things), external regulation extrinsic motivation (α =.75, eg. Because I want to have good life later on), introjected regulation extrinsic motivation (α =.82, eg. Because of the fact that when I succeed in school I feel important), identified regulation extrinsic motivation (α =.74, eg. Because this will help me make a better choice regarding my career orientation), and amotivation (α =.77, eg. Honestly, I don't know; I really feel that I am wasting my time in school). We only used intrinsic motivation because in the present study the other types of intrinsic motivation did not yield more information on the self-determination continuum contrary to the types of extrinsic motivation. 299 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 - 300 2.2.3. Well-being measures - We used the 5 items Satisfaction With Life Scale (Diener, Emmons, Larsen, & Griffin, 1985) - which is one of the most cited subjective well-being scale in research studies. The aim of - 303 integrating this scale was to have a global measure of individual subjective well-being - 304 through the assessment of general life satisfaction. The French validation was carried out by - 305 Blais, Vallerand, Pelletier, and Brière (1989). Participants answered each item (eg. In most - 306 ways my life is close to my ideal) on a seven-point Likert scale ranging from: "Totally - disagree" to "Totally agree". Internal consistency of the scale was satisfactory (α =.86). - 308 A second well-being measure was used: the 7 items Students' Life Satisfaction Scale - 309 (Huebner, 1991). This scale aims at assessing student general satisfaction (eg. My life is better - than most kids). Participants rated their satisfaction on a six-point Likert scale ranging from: - 311 "Totally disagree" to "Totally agree". Internal consistency of the scale was satisfactory - 312 (α =.83). 313 314 #### 2.3. Procedure - 315 Students were seen in three successive collective sessions, per class, and each session (around - 316 45 minutes each) was separated by one week. The battery EPoC was administered in two sessions, each of which included four tasks (DG1, DV1, IG1, IV1 in the first session, and 317 318 DG2, DV2, IG2, IV2 in the second session). During the last session, students completed 319 motivation and well-being questionnaires. 320 321 2.4. Data Analyses 322 For the following statistical analyses, missing data (less than 5%) were imputed in order to 323 complete the scale by using the SPSS (version 22) expectation-maximization procedure. This 324 procedure is considered as superior to other methods (Allison, 2002) such as removing 325 participants with missing data (list-wise deletion). 326 327 3. Results 328 3.1. Preliminary analyses 329 The results show that Waldorf students were slightly older (M=12.83, SD=0.66) than 330 traditional school students (M=12.24, SD=.60; t(129)=13.70, p<.001). We will therefore 331 control for age in further analyses. 332 In order to determine the number of factors to be extracted we used the SPSS procedure 333 developed by O'Connor (2000) using parallel analyses. These analyses are based on Monte 334 Carlo simulations which enable the number of factors which may be extracted from the set of 335 data to be determined while minimizing data loss and without enhancing random data. This 336 method consists of generating a hundred matrices of random numbers of similar size in terms 337 of participants and factors as the actual sample. The Eigenvalue of each factor extracted from 338 the matrices were used to calculate the mean and standard deviation of the distribution 339 randomly selected among the matrices identical to the set of data considered. The value corresponding to the 95th percentile was used as a threshold beneath which the factors are 340 341 considered as potentially randomly extracted (Cota, Longman, Holden, Fekken, & Xinaris, 1993; Turner, 1998). As shown in Table 2, the parallel analyses method enables to select only 342 two factors, as the value of the third factor (1.01) is inferior to the 95th percentile (1.18). 343 344 345 346 Insert Table 2 about here 347 349 We selected an oblimin rotation because we hypothesized that the factors were correlated. 350 The results of the principal component factor analysis with oblimin rotation explained 46.30% 351 of the total variance. The first factor explained 29.82% of the total variance. After rotation, 352 the four integrative thinking items of this factor (IT) presented loadings superior to .40 while 353 the divergent thinking items (DT) all presented loadings inferior to .30. Conversely, on the 354 second factor which explained 16.48% of the variance, after rotation the four DT items 355 presented loadings superior to .40 whereas the IT items all presented loadings inferior to .30. 356 357 3.2. Main results 358 3.2.1. Creativity 359 For the variance analyses we carried out a MANOVA because the dependent variables were 360 correlated and age difference between the two groups was significant and thus included as a 361 control variable. There were no significant differences between Waldorf (M=0.14, SD=0.60) 362 and traditional schools (M=-.09, SD=0.73) regarding Divergent Thinking (F[1,128]=0.22, p>.05) and Integrative Thinking (Waldorf: M=3.98, SD=0.71;
traditional schools: M=3.43, 363 364 SD=0.82; F[1,128]=2.18, p>.05, η^2 =.11). 365 366 3.2.2. Self-determined motivations 367 The results show a significant difference between the three types of extrinsic regulations 368 (external, introjected and identified) and the type of educational method, as shown in Table 3. 369 Students from the traditional educational system showed more extrinsic motivation than 370 Waldorf school students. However, no significant difference appeared for intrinsic motivation 371 scores (F[1,107]=0.00, ns), external motivation (F[1,107]=0.88, ns) or amotivation scores 372 (F[1,107]=0.20, ns).373 374 375 Insert Table 3 about here 376 377 378 379 Insert Table 4 about here As shown in Table 4, significant correlations appear between the different types of motivations and the creativity scores: negative correlations between extrinsic regulations and integrative thinking scores, but the greater the degree of self-determination of the motivation type the weaker the correlation: for the total sample, a negative correlation is observed for IT and external regulation (r=-.27, p<.01), while the weakest negative correlation is between IT and introjected regulation (r=-.22, p<.05) but no relation is observed with identified regulation (r=-.14, ns). However, this effect of the type of extrinsic motivation is mainly observed for the Waldorf students. For this subsample, the relationship between IT and the different types of regulations ranges from a .50 correlation (p<.01) to a -.39 correlation (p<.05), while in the traditional school subsample there was no significant correlation between these variables. In the traditional school subsample, the significant correlations concern IT and amotivation scores (r=-.29, p<.01), and DT and introjected regulation (r=-.33, p<.01). The correlational patterns between motivation and creativity are thus different according to the educational methods under study. *3.2.3. Well-being* No significant difference between Waldorf (M=4.76, SD=1.14) and traditional school (M=4.85, SD=1.48) students was observed for general satisfaction with life (F[1, 128]=0.12, ns), but there were significant differences between Waldorf (M=4.36, SD=0.90) and traditional school (M=4.18, SD=1.19) student life satisfaction scores F[1, 128]=8.20, p<.01). When analyzing the Waldorf school subsample data, a negative correlation appears between well-being measures and Integrative Thinking: SWLS and IT (r=-.48, p<.001), and SLSS and IT (r=-.41, p<.001). The results suggest that the students who scored high on IT reported lower levels of life satisfaction. No correlation was shown for the traditional school subsample in what concerns the link between well-being and creativity. 408 409 Insert Table 5 about here 410 #### 4. Discussion 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 Two main set of hypotheses were examined. The first one concerned the relationship between pedagogical methods and creativity, motivation and well-being. Contrary to our expectations, our results do not show an effect of the type of pedagogy on creative potential on Divergent or Integrative Thinking. Several explanations can be put forward. First, the pedagogical methods studied were different from the previous study carried out on this question (Waldorf for the present study vs. Montessori and Freinet in the previous study). Second, the experimental design was different: collective versus individual task completion. These differences should be controlled in future research. In what concerns motivation, our results show an effect of the type of school on extrinsic motivation: students from traditional school settings were more extrinsically motivated than students from the Waldorf school. These results are consistent with previous work (Deci et al., 1999, 2001). Regarding well-being, our results did not highlight any difference in general life satisfaction, but in student life satisfaction. This may be explained by the fact that general life satisfaction is influenced by other variables such as personality traits (DeNeve & Cooper, 1998) and family relationships (e.g., Bendayan, Blanca, Fernández-Baena, Escobar, & Victoria Trianes, 2013), whereas student life satisfaction is directly impacted by educational methods and systems (e.g., Shankland et al., 2010), and the way they influence teacherstudent relationships, type of motivation and general relationships between students at school. Our second set of hypotheses concerned the relationship between creativity and motivation on the one hand and creativity and well-being on the other hand. Our results highlighted a negative relationship between creativity and extrinsic motivation: the stronger the extrinsic motivation, the less creative the children were on integrative thinking tasks. A pedagogy focused on the development of individual potentialities generates less extrinsic motivation and hence does not diminish the potential of integrative thinking. This finding is congruent with previous work (Cooper & Jayatilaka, 2006; Furrer & Skinner, 2003; Ryan et al., 1994). However, contrary to our expectations, our results did not show any relationship between creativity and well-being, except for Waldorf school pupils with the opposite correlation to that hypothesized: the more creative the pupils were, the less satisfied they were with their current life. While only speculations can be proposed in the present case, we could hypothesize that well-being measures may generally be completed with the intent to communicate a good impression (social desirability). Therefore, the more the participant tries to correspond to an awaited standard, the less creative they may be. The social desirability bias could thus help us understand why greater creative performances in Waldorf students were correlated to lower levels of satisfaction with life. This bias is recurrently underlined in various research fields. Almost half the studies reported in van de Mortel (2008) showed an influence of social desirability on self-reported measures, and social desirability has been highlighted as being potentially an even greater bias in positive psychology research (Osin, 2009), as such studies tackle desirable phenomena such as well-being and flourishing (Seligman & Csikszentmihalyi, 2000). Hence, a first limitation of the present study is the absence of use of a social desirability scale. A second important limitation concerns the fact that students were not randomly assigned to a particular school setting. Therefore, it is not possible to determine whether the educational method in itself leads to higher creative performances as other factors have not been controlled for. A third limitation concerns the focus on a single alternative pedagogy (Waldorf). Indeed, each alternative school has it specificities which may differently impact creativity and well-being. Further research studies should therefore include various pedagogical methods, such as Montessori, Freinet and Waldorf. Moreover, it would be interesting to compare the results on the EPOC battery obtained by these adolescent groups with a more consequent reference group and to verify the factorial structure of the test. A further limitation is the lack of information about the time the students have spent in their present school system, information which should be included in future research in order to control for this variable when measuring impact on creative potential. To conclude, the results obtained in the present research study highlight lower levels of extrinsic motivation in Waldorf schools which is linked to higher divergent creativity scores. Future research studies on well-being may want to use other types of measures which can be considered as health promotion factors rather than current life satisfaction. 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | 472 | | |------------|---| | 473 | References | | 474
475 | Aljughaiman, A., & Mowrer-Reynolds, E. (2005). Teachers' conceptions of creativity and | | 476 | creative students. <i>The Journal of Creative Behavior</i> , 39, 17-34. | | 477 | Allison, P. (2002). <i>Missing data</i> . Thousand Oaks, CA: Sage Publications. Amabile, T. M | | 478 | (1982). Children's artistic creativity: Detrimental effects of competition in a field | | 479 | setting. Personality and Social Psychology Bulletin, 8, 573-578. | | 480 | Amabile, T. M. (1988). A model of creativity and innovation in organizations. In B. Staw & | | 481 | L. L. Cummings (Eds.), Research in Organizational Behavior, 10, 123-167. | | 482 | Amabile, T. M. (1996). Creativity in context: Update to "the social psychology of creativity" | | 483 | Boulder, CO, US: Westview Press. | | 484 | Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive | | 485 | affect and its influence on cognition. <i>Psychological Review</i> , 106, 529-550. | | 486 | Bendayan, R., Blanca, M. J., Fernández-Baena, J. F., Escobar, M., & Victoria Trianes, M | | 487 | (2013). New empirical evidence on the validity of the Satisfaction with Life Scale in | | 488 | early adolescents. European Journal of Psychological Assessment, 29, 36-43. | | 489 | Besançon, M. & Lubart, T. (2008). Differences in the development of creative competencies | | 490 | in children schooled in diverse learning environments. Learning and Individual | | 491 | Differences. Vol (18), 381-389. | | 492 | Blais, M.R., Vallerand, R.J., Pelletier, L.G., & Brière, N.M. (1989). L'Échelle de satisfaction | | 493 | de vie : Validation canadienne-française du "Satisfaction with Life Scale". Revue | | 494 | canadienne des sciences du comportement, 21, 210-223. | | 495 | Brunwasser, S. M., Gillham, J. E., & Kim, E. S. (2009). A
meta-analytic review of the Penr | | 496 | resiliency program's effect on depressive symptoms. Journal of Consulting and Clinica | | 497 | Psychology, 77, 1042-1054 | | 498 | Cacha, F. B. (1976). Figural creativity, personality, and peer nominations of pre-adolescents | | 499 | Gifted Child Quarterly, 20, 187-195. | | 500 | Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A | | 501 | meta-analysis. Review of Educational Research, 64, 363-423. | | 502 | Carson, D. K., Bittner, M. T., Cameron, B. R., Brown, D. M., & Meyer, S. S. (1994). Creative | | 503 | thinking as a predictor of school-aged children's stress responses and coping abilities | | 504 | Creativity Research Journal, 7, 145-158. | - 505 Christakis, D., Zimmerman, F. J. (2006). Media as a public health issue. *Archives of Pediatrics and Adolescent Medicine*, 160, 445-446. - 507 Cooper, R. B., & Jayatilaka, B. (2006), Group creativity: The effects of extrinsic, intrinsic, - and obligation motivations. *Creativity Research Journal*, 18, 2, 153-172. - 509 Cotta, A. A., Longman, R. S., Holden, R. R., Fekken, G. C., & Xinaris, S. (1993). - Interpolating 95th percentile eigenvalues from random data: An empirical example. - *Educational & Psychological Measurement, 53,* 585–596. - 512 Cox, M. V., & Rowlands, A. (2000). The effect of three different educational approaches on - 513 children's drawing ability: Steiner, Montessori and traditional. British Journal of - 514 Educational Psychology, 70, 485-503. - Davis, M. A. (2009). Understanding the relationship between mood and creativity: a meta- - analysis. Organizational Behavior and Human Decision Processes, 108, 25-38. - De Dreu, C. K. W., Baas, M., & Nijstad, B. A. (2008). Hedonic tone and activation in the - mood-creativity link: Towards a dual pathway to creativity model. Journal of - 519 *Personality and Social Psychology*, 94, 739-756. - 520 Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human - *behavior*. New York: Plenum. - 522 Deci, E. L., & Ryan, R. M. (2000). The "what" and "why" of goal pursuits: Human needs and - the self-determination of behavior. *Psychological Inquiry*, 11, 227-268. - 524 Deci, E. L., Koestner, R., & Ryan, R. M. (1999). The undermining effect is a reality after - all-Extrinsic rewards, task interest, and self-determination: Reply to Eisenberger, - Pierce, and Cameron (1999) and Lepper, Henderlong, and Gingras (1999). - *Psychological Bulletin*, 125, 692-700. - 528 Deci, E. L., Koestner, R., & Ryan, R. M. (2001). Extrinsic rewards and intrinsic motivation in - 629 education: Reconsidered once again. *Review of Educational Research*, 71, 1-27. - DeNeve, K. M., & Cooper, H. (1998). The happy personality: A meta-analysis of 137 - personality traits and subjective well-being. *Psychological Bulletin*, 124, 197-229. - 532 Diener, E. (1984). Subjective well-being. *Psychological Bulletin*, 95, 542–575. - Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life scale. - *Journal of Personality Assessment*, 49, 71–75. - Dusek, J. B., & Danko, M. (1994). Adolescent coping styles and perceptions of parental child - rearing. *Journal of Adolescent Research*, 9, 412-426. - 537 Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden- - and-build theory of positive emotions. *American Psychologist*. 56, 218-226. - 539 Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention - and thought-action repertoires. *Cognition and Emotion*, 19, 313-332. - 541 Fredrickson, B. L., Mancuso, R. A., Branigan, C., & Tugade, M. M. (2000). The undoing - effect of positive emotions. *Motivation and Emotion*, 24, 237-258. - 543 Furrer, C., & Skinner, E. (2003). Sense of relatedness as a factor in children's academic - engagement and performance. Journal of Educational Psychology, 95, 148-162. - 545 Gardner, H. (1996). L'intelligence et l'école: La pensée de l'enfant et les visées de - 546 *l'enseignement*. Paris: Retz. - Horwitz, R. A. (1979). Psychological effects of the open classroom. Review of Educational - 548 Research, 49, 71-85. - 549 Huebner, E. S. (1991). Correlates of life satisfaction in children. School Psychology - *Quarterly*, 6, 103-111. - Isen, A. (1999). On the relationship between affect and creative problem solving. In S. - Russ (Ed.), Affect, creative experience, and psychological adjustment (pp. 3-19). - 553 Philadelphia, PA: Taylor and Francis. - Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative - problem solving. *Journal of Personality and Social Psychology*, 56, 1122-1131. - Jesus, S. N., Rus, C., Lens, W., & Imaginário, S. (2013). Creativity and intrinsic motivation: - A meta-analysis of the studies between 1990-2010. Creativity Research Journal, 25, 80- - 558 84. - Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four c model of - 560 creativity. *Review of General Psychology*, 13, 1-12. - Kaufmann, G. & Vosburg, S. (2002). The effects of mood on early and late idea production. - 562 *Creativity Research Journal*, 14, 317-330. - Kendall, S. (1992). The development of autonomy in children: An experiment of the - Montessori educational model. Doctoral Thesis, Waldon University, Unites-States of - 565 America. - 566 Kliewer, W., & Lewis, H. (1995). Family influences on coping processes in children and - adolescents with sickle cell disease. *Journal of Pediatric Psychology*, 20, 511-525. - Lillard, A., & Else-Quest, N. (2006). Evaluating Montessori education. Science, 313, 1893- - 569 1894. - 570 See Fig.1 - 571 Lin, W.-L., Tsai, P.-H., Lin, H.-Y., & Chen, H.-C; (2014). How does emotion influence - different creative performances? The mediating role of cognitive flexibility. *Cognition* - 573 and Emotion, 28, 834-844. - 574 Lubart T.I., Besançon M, Barbot B. (2011). Evaluation du Potentiel Créatif. (EPoC). Paris, - France : Editions Hogrefe. - Lubart, T., Mouchiroud, C., Todjman, S., & Zenasni, F. (2003). Psychologie de la créativité. - 577 Cahors, France: Armand Colin. - 578 Masmoudi, S., & Charaf, I. (2013). Verbal creativity and emotional valence: "I become more - creative when I see a positive word". European Revue of Applied Psychology, 63, 219- - 580 229 - McIntyre, J. G., & Dusek, J. B. (1995). Perceived parental rearing practices and styles of - coping. *Journal of Youth and Adolescence*, 24, 499-509. - Mellou, E. (1996). Can creativity be nurtured in young children? Early Child Development - 584 and Care, 119, 119-30. - Mumford, M. D., Mobley, M. I., Uhlman, C. E., Reiter-Palmon, R., & Doares, L. M. (1991). - Process analytic models of creative capacities. *Creative Research Journal*, 4, 91-122. - Murdock, M. C. (2003). The effects of teaching programmes intended to stimulate creativity: - A disciplinary view. Scandinavian Journal of Educational Research, 47, 339-57. - O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components - using parallel analysis and Velicer's MAP test. *Behavior Research Methods*, - *Instrumentation, and Computers*, 32, 396-402. - Ochse, R. (1990). Before the gates of excellence: The determinants of creative genius. New- - York: Cambridge University Press. - 594 Ogletree, E. J. (2000). Creative thinking development of Waldorf school students. Trans - 595 *Intelligence Magazine*, 8, 1-6. - Osin, E. N. (2009). Social desirability in positive psychology: Bias or desirable sociality? In - T. Freire (Ed.), Understanding Positive Life Research and Practice on Positive - 598 *Psychology*. Climepsi: Lisabon, Portugal, 407-428. - Paulus, P. B., & Nijstad, B. A. (2003). Group creativity: Innovation through collaboration. - New York: Oxford University Press. - Rathunde, K., & Csikszentmihalyi, M. (2005). Middle school students' motivation and quality - of experience: A comparison of Montessori and traditional school environments. - American Journal of Education, 111, 341-371. - Rose, S. E., Jolley, R. P., & Charman, A. (2012). An investigation of the expressive and - representational drawing development in National Curriculum, Steiner and Montessori - schools. *Psychology of Aesthetics, Creativity and the Arts*, 6, 85-93. - Ryan, R. M., & Deci, E. L. (2001). On happiness and human potentials: A review of research - on hedonic and eudaimonic well-being. In S. Fiske (Ed), Annual review of psychology - 609 (Vol 52, pp. 141-166). Palo Alto, CA: Annual Reviews, Inc. - Ryan, R. M., Stiller, J. D., & Lynch, J. H. (1994). Representations and relationships to - teachers, parents, and friends as predictors of academic motivation and self-esteem. - *Journal of Early Adolescence*, 14, 226-249. - Ruchkin, V. V., Eisemann, M., & Hagglof, B. (1999). Coping styles in delinquent adolescents - and controls: The role of personality and parental rearing. Journal of Youth and - 615 *Adolescence*, 28, 705-717. - Runco, M. A. (1986). Flexibility and originality in children's divergent thinking. *Journal of* - 617 *Psychology*, 120, 345-52. - Runco, M. A. & Jaeger, G. J. (2012). The standard definition of creativity. Creativity - 619 *Research Journal*, 24, 92-96. - Russ, S. W., Robins, A. L., & Christiano, B. A. (1999). Pretend Play: Longitudinal Prediction - of Creativity and Affect in Fantasy in Children. Creativity Research Journal, 12, 129- - 622 139. - 623 Seligman, M. E. P., Csikszentmihalyi, M. (2000). Positive psychology: An introduction. - 624 American Psychologist, 35, 5-14. - Shankland, R. (2008). *Développer les compétences psychosociales*. Paris: L'Harmattan. - 626 Shankland, R., Genolini, C., Riou França, L., Guelfi, J.-D., & Ionescu, S. (2010). Student - adjustment to higher education: The role of alternative educational pathways in coping - with the demands of student life. *Higher Education*, 59, 353-366. - 629 Shankland, R., Riou França, L., Genolini, C., Guelfi, J.-D., & Ionescu, S. (2009). Preliminary
- study on the role of alternative educational pathways in promoting the use of problem- - focused coping strategies. *European Journal of Psychology of Education*, 24, 499-512. - Shaw, M. P., & Runco, M. A. (1994). Creativity and affect. Norwood, NJ: Ablex. - Snow, R. (1994). A Person-Situation Interaction Theory of Intelligence in Outline. In A. - Demetriou, & A. Efklides (Eds.), Intelligence, Mind, and Reasoning: Structure and - 635 Development (pp. 11-28). Amsterdam: Elveiser Science. - 636 Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture - of conformity. New York: Free Press. - Thomas, N. G., & Berk, L. E. (1981). Effects of school environments on the development of - young children's creativity. *Child-Development*, 52(4), 1153-1162. - To, M. L., Fisher, C. D., Ashkanasy, N. M., & Rowe, P. A. (2012). Within-person - relationships between mood and creativity. *Journal of Applied Psychology*, 97, 599-612. - Torrance, E. P. (1976). Les tests de pensée créative. Paris: Les Editions du Centre de - Psychologie Appliquée. - Tsai, P.-H., Lin, W.-L., & Lin, H.-Y. (2013). Right moods, right creativities: Differential - effects of emotional states on divergent thinking and insight problem solving. *Bulletin* - *of Educational Psychology*, 45, 19-38. - 647 Turner, N. E. (1998). The effect of common variance and structure on random data - 648 eigenvalues: Implications for the accuracy of parallel analysis. Educational & - 649 Psychological Measurement, 58, 541–568 - Vallerand, R. J., Blais, M. R., Brière, N. M., & Pelletier, L. G. (1989). Construction and - validation of the Motivation Toward Education Scale. Canadian Journal of Behavioural - 652 Science, 21, 323-349. - Van de Mortel, T. F. (2008). Faking it: Social desirability response bias in self-report - research. Australian Journal of Advanced Nursing, 25, 40-48. - Woods, P., Ashley, M., & Woods, G. (2005). Steiner Schools in England. University of the - West of England: Centre for Research in Education and Democracy. Table 1 EPoC Structured framework for tasks sampling | | Thinking Process | | | | |--------------|-------------------------|------------------------|--|--| | Domain | Divergent-Exploratory | Convergent-Integrative | | | | Community of | DG1 - Abstract Stimulus | IG1 - Abstract Stimuli | | | | Graphic | DG2 - Concrete Stimulus | IG2 - Concrete Stimuli | | | | T7 1 1 | DV1 - Story Endings | IV1 - Story Title | | | | Verbal | DV2 - Story Beginnings | IV2 - Story Characters | | | **Tables** **Table 2**669 *Parallel analysis results* | Factor | Eigenvalue | Mean | 95% | |--------|------------|------|------| | 1 | 2.39 | 1.39 | 1.53 | | 2 | 1.32 | 1.23 | 1.32 | | 3 | 1.01 | 1.12 | 1.18 | Table 3 Motivation types, well-being, descriptive and inferential statistical analyses according to the group (with age as controlled variable) | | | n | Mean | SD | F[1,128] | η2 | |-------------------------|-------------|-----|------|------|----------|------| | Amotivation | Waldorf | 41 | 1.74 | 0.90 | | | | | Traditional | 90 | 1.68 | 0.87 | 0.00 | 0.00 | | | Total | 131 | 1.70 | 0.88 | | | | EM
External | Waldorf | 41 | 3.75 | 1.14 | | | | Zitteriiai | Traditional | 90 | 4.38 | 0.63 | 0.88 | 0.01 | | | Total | 131 | 4.19 | 0.87 | | | | EM
Introjected | Waldorf | 41 | 2.94 | 1.06 | | | | J | Traditional | 90 | 3.76 | .99 | 6.26* | 0.05 | | | Total | 131 | 3.50 | 1.08 | | | | EM
Identified | Waldorf | 41 | 3.77 | .88 | | | | 14011111104 | Traditional | 90 | 4.34 | 0.70 | 5.79* | 0.04 | | | Total | 131 | 4.16 | 0.80 | | | | Intrinsic
Motivation | Waldorf | 41 | 3.47 | 0.87 | | | | 1/10/1/ 401011 | Traditional | 90 | 3.68 | 1.02 | 0.20 | 0.00 | | | Total | 131 | 3.62 | 0.98 | | | | | Waldorf | 41 | 4.76 | 1.14 | | | | SWLS | Traditional | 90 | 4.85 | 1.48 | 1.46 | 0.01 | | | Total | 131 | 4.82 | 1.38 | | | | | Waldorf | 41 | 4.36 | 0.90 | | | | SLSS | Traditional | 90 | 4.18 | 1.19 | 8.20** | .06 | | | Total | 131 | 4.23 | 1.11 | | | 677 Note: *p<.05 **p<.01 Table 4 Divergent and integrative thinking creativity scores partial correlations (with age as controlled variable) with the different types of motivations | - | | | | | | Group | |----|------|----------|-------------|------------|-----|-------------| | | Am | External | Introjected | Identified | IM | _ | | DT | 16 | 03 | 20* | 07 | 11 | n=131 | | IT | 23** | 27** | 22* | 14 | 10 | Total | | DT | 14 | .02 | .14 | .15 | .19 | n=41 | | IT | 09 | 51** | 50** | 39* | 12 | Waldorf | | DT | 14 | 05 | 32** | 15 | 19 | n=90 | | IT | 29** | 11 | 08 | .01 | 08 | Traditional | Note: * p<.05; ** p<.01; ***p<.001 Table 5 Partial correlations (with age as controlled variable) between divergent or integrative thinking creativity scores and mean well-being score (n=131). | | DT | IT | SWLS | Group | |-------------|--------|------|--------|-------------| | DT | 1 | | | | | IT | .28** | 1 | | | | SWLS | 08 | 08 | 1 | Total | | SLSS | .02 | 01 | .84*** | n=131 | | DT | 1 | | | _ | | IT | 12 | 1 | | | | SWLS | 20 | 48** | 1 | Waldorf | | SLSS | 11 | 41** | .77*** | n=41 | | DT | 1 | | | _ | | IT | .41*** | 1 | | | | SWLS | 04 | .02 | 1 | Traditional | | SLSS | .07 | .07 | .86*** | n=90 | 692 Note: * p<.05; ** p<.01; ***p<.001 **Figures** Figure 1: Mean score of Students' Life Satisfaction Scale (SLSS) according to the type of educational method with age as controlled variable (Vertical bars denote 0.95 confidence intervals). - Amabile, T. M., Barsade, S. G., Mueller, J. S., & Staw, B. M. (2005). Affect and Creativity at - work. *Administrative Science Quarterly*, 50(3), 367-403. - Hirt, E. R., Melton, R. J., McDonald, H. E., & Harackiewicz, J. M. (1996). Processing goals, - task interest, and the mood-performance relationship: A mediational analysis. Journal of - 727 *Personality and Social Psychology*, 71(2), 245-261. 728 - Examining the gambling behaviors of Chinese online lottery gamblers: Are they rational? - 730 Yuan, Jia; Journal of Gambling Studies, Vol 31(2), Jun, 2015 pp. 573-584. Publisher: - 731 Springer; [Journal Article]