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Abstract:  

 

This paper presents a new finite element approach to model the steel-concrete bond effects.  This 

model proposes to relate steel, represented by truss elements, with the surrounding concrete in the case 

where the two meshes are not necessary coincident. The theoretical formulation is described and the 

model is applied on a reinforced concrete tie. A characteristic stress distribution is observed, related to 

the transfer of bond forces from steel to concrete. The results of this simulation are compared with a 

computation in which a perfect relation between steel and concrete is supposed. It clearly shows how 

the introduction of the bond model can improve the description of the cracking process (finite number 

of cracks). 

 

I Introduction 

Reinforced concrete structures may have to fulfill functions that go beyond their simple mechanical 

resistance. In some cases, information about the cracking behavior related to the quasi-brittle evolution 

of concrete can also become essential.  For example, in the case of containment buildings for nuclear 

power plants, cracking has a direct impact on the transfer properties that govern the potential leakage 

rate (damage – permeability law (Picandet et al, 2001) among others). Predicting the mechanical 

behavior but also characterizing the crack evolution (opening and spacing) are thus key points in the 

evaluation of this type of reinforced concrete structures. 

 

Cracking in reinforced concrete structures is generally influenced by the stress distribution along the 

interface between steel and concrete. For example, in the case of a reinforced tie, once the first crack 

appears in the weakest point of the structure, the concrete stress in the cracked zone drops to zero 

while the load is totally supported by the steel reinforcement. The stresses are then progressively 

transferred from steel to concrete (Figure 1). This transition zone has an impact on the crack properties 

and is directly influenced by the steel-concrete interface (Eurocode 2, 2007). Taking into account these 

effects seems thus essential to predict correctly the cracking of reinforced concrete structures.  
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Figure 1 : Distribution of stresses in steel and concrete in a reinforced concrete tie after the first crack 

( c and s are the stresses in concrete and steel respectively, and 
st

c  is the concrete strength). 

 

Different models exist to represent the steel-concrete bond behavior. For example, Ngo and Scordelis 

(1967) proposed a spring element, associated with a linear law, to relate concrete and steel nodes. To 

improve the description of the bond behavior, joint elements were developed. These zero thickness 

elements, introduced at the interface between steel and concrete, allow the use of a non linear law 

(Clément, 1987), (Daoud, 2003), (Lowes et al, 2004), (Dominguez et al, 2005), (Boulkertous 2009) 

and (Richard et al, 2010). Finally, special finite elements are proposed to enclose, in a same element, 

the material behavior (steel or/and concrete) and the bond effects (Monti et al 1997). Dominguez 

(2005) and Boulkertous, (2009), among others, developped embedded elements whose principle is to 

describe the steel-concrete bond behavior through an enrichment of the degrees of freedom (Figure 2).  

Even if these solutions give appropriate results, one of their main drawbacks, in the context of 

industrial applications, is the need to explicitly consider the interface between steel and concrete. It 

may impose meshing difficulties and heavy computational cost which are not compatible with large 

scale simulations.  
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Figure 2 : Examples of bond elements (at the top left: spring element, at the top right: joint element, at the 

bottom: embedded element) 
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To overcome these difficulties, a perfect relation between steel and concrete is generally considered 

for structural applications and the reinforcement is modeled using truss elements. This hypothesis 

imposes the same strain in both materials. Although this approach simplifies the simulation, it is not 

fully representative of the experimental behavior (Figure 1).  

 

In this contribution, a model is proposed to combine the advantages of the two approaches. It will be 

able to represent the bond effects (the evolution of the slip between steel and concrete especially) and 

will be appropriate for structural applications (mesh and computational cost). The general 

configuration is to consider steel truss elements and concrete (1D, 2D or 3D elements) in the case 

where steel and concrete nodes are not necessary coincident (Figure 3).  
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Figure 3 : Description of the problem (steel and concrete nodes are not coincident) 

 

The theoretical formulation of the model is presented in the first section. It is then validated in the 

second section on the case of a reinforced concrete tie. Finally, the influence of the bond effect is 

investigated by a comparison with a simulation using the hypothesis of a perfect relation. 

 

II Description of the bond model 

 

In reinforced concrete structures, the relation between steel and concrete is governed by a bond stress 

distributed along the interface. The evolution of this bond stress is generally studied in the form of a 

bond stress-relative displacement (slip between steel and concrete) curve (Figure 4). Therefore, the 

bond behavior can be represented by a bond stress-slip ( - s ) law bf defined by:  

 )(sfb  (1) 

To take this effect into account, the principle of our approach is to introduce internal forces on both 

steel and concrete in the direction of the steel truss element.  
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Figure 4 : Shape of the bond stress-slip law (Eligehausen et al, 1983) 

 

As concrete and steel nodes are not necessary coincident, each steel node is thus associated with the 

concrete element in witch it is included and with a tangential direction t


. 

 

In this contribution, equations will be developed in the particular case of a unique steel node inside a 

cubic concrete element as illustrated in Figure 5 (initial configuration). In order to simplify the 

equations, t


coincides with the principal direction x


. 

 

The formulation of the model is divided into 4 steps:  

- The evaluation of the steel-concrete slip with non coincident meshes 

- The calculation of the nodal bond forces in the steel element direction 

- The introduction of kinematic relations in the normal directions  

- The implementation of the model within the small displacements theory  

 

II.1 Evaluation of the relative displacement between steel and concrete 

 

The steel-concrete slip is represented by the relative displacement in the x direction between the steel 

( 1su  at node 1s ) and the concrete at the steel node ( 1csu  at virtual point 1cs ) (Figure 5).  

 xcsxs uus ,1,1   (2) 

with xuu sxs


 1,1  and  xuu csxcs


 1,1 . 

As the meshes are not necessary coincident, the displacement in concrete at the steel node is obtained 

using the shape functions, following the equation:  

 



8

1

,111,1 ),,(
i

xcicscscsixcs uzyxNu  (3) 

where ),,( 111 cscscs zyx  are the coordinates of 1cs  point. ),,( 111 cscscsi zyxN represents the shape 

function of the i-th concrete node evaluated at 1cs  point and xciu ,  its displacement in the x


 direction. 
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Figure 5 : Evaluation of the relative displacement between steel and concrete 

 

II.2 Nodal forces in the tangential direction  

From equations (1), (2) and (3), the bond stress is computed:  

 









 



8

1

,111,1 ),,(
i

xcicscscsixsb uzyxNuf  (4) 

The internal nodal force induced by concrete on steel, 1/1 scsF


, is calculated using the equation:  

 xuzyxNufldxldF
i

xcicscscsixsbssscs












 



8

1

,111,11/1 ),,(*  

 with 




















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

0),,(1

0),,(1

8

1

,111,1

8

1

,111,1

i

xcicscscsixs

i

xcicscscsixs

uzyxNuif

uzyxNuif





 

(5) 

where sd  is the diameter of the steel bar and l  is derived from the length of the steel elements 

connected to the node 1s . For example, in Figure 6: 

 

 
2

21 ll
l


  (6) 
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Figure 6 : definition of l 

The balance of the internal bond forces involves ( 1/ 1s csF ) :   

 1/11/1 scscss FF


  (7) 

 

1/1 cssF


 is converted in 8 nodal equivalent forces cjsF /1


 applied on each concrete node (Figure 7). 

 1/1111/1 ),,( csscscscsjcjs FzyxNF
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  (8) 
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Figure 7 : Balance of the internal bond forces  

II.3 Kinematics relations in normal the normal directions 

 

Equations (5) and (8) relate the degrees of freedom of concrete and steel in the tangent direction of the 

reinforcement. In the other directions, a perfect relation is supposed for the displacement. Two 

equations are thus added to close the system:  

 





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


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


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


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1

,111,1,1

8

1
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),,(

),,(

i
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i
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 (9) 

 

II.4 Implementation of the bond element model 

 

This bond model has been implemented in the finite element code Cast3M (Cast3M, 2010). For non 

linear problems (material and/or bond law), a Newton Raphson iterative method is used. In its 
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classical form, the nodal displacement  1nu  at the n+1th iteration is calculated following equation 

(10). 

       n

matext

nn

mat FFuK int,

1   (10) 

where      11   nnn uuu  . 

In this expression  extF  represents the external forces, n

matFint,  the usual internal forces induced by 

concrete and steel and  n

matK  the stiffness matrix at iteration n.  

 

As describe in the previous sections, to take into account the bond effects, kinematics relations and 

bond forces are added. The kinematics equations (9) are introduced using the Lagrange’s multiplier 

method. Global internal bond forces  n

bondFint,  are calculated from equations (5) and (8) using the 

distribution of the nodal displacements at iteration n. Internal forces thus become:  

      n

bond

n

mat

n FFF int,int,int   (11) 

The global stiffness matrix  nK  is also updated:  

      n

bond

n

mat

n KKK   (12) 

where :  

  
nu

n

bondn

bond
u

F
K






int,
 (13) 

 

The system finally becomes:   

       n

ext

nn FFuK int

1   (14) 

The steps for the resolution of the system are summarized in the following diagram:  
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Figure 8 : Iterative diagram for the numerical resolution  

 

III Validation and application of the bond model  

In this part, the model is applied on a uniaxial problem. A reinforced concrete tie is studied in order to 

evaluate the influence of the bond effects on the mechanical behavior. 

  

III.1  Presentation of the problem 

 

A concrete cylinder reinforced with a longitudinal steel bar is considered. A displacement is imposed 

at the first end of the steel reinforcement while the other end is blocked (Figure 9). There are no 

boundary conditions on the concrete. 
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Figure 9 : presentation of the problem 
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For the simulation, concrete and steel are meshed by truss elements. The total length L (equal to 3 

meters) is divided into 100 identical trusses as illustrated in Figure 10.  
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Figure 10 : Mesh of the tie 

 

The steel behavior is modeled by a perfect plastic law (Young modulus sE and yield strength 
st

s  

given in Table 1). Concrete is represented by a softening law, using an isotropic plastic model 

illustrated on Figure 11 (Table 2). To represent the heterogeneity of concrete properties and in order to 

localize the mechanical degradation, a scattered distribution of the concrete strength 
st

c  is chosen. 

Figure 12 represents the evolution 
st

c  along concrete (from x = 0 to x = 3m). The average strength 

st

medc ,  and the standard deviation y  are given in Table 3.  
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Figure 11 : Form of the softening 

concrete law 

Figure 12 : Distribution of the strength values along the tie 

 

sE  (GPa) sS  (m2) st

s  (MPa) 

210 7.854*10-5 400 

Table 1 : Steel parameters ( sS is the cross section of steel) 

cE  (GPa) cS  (m2) u  

30 10-2 0.045% 

Table 2 : Concrete parameters ( cS is the cross section of concrete) 



10 

 

 

 

 

st

medc ,  (MPa) y  (MPa) 

2 0.03*
st

medc ,  

Table 3 :  parameters of the scattered distribution 

 

The bond stress-slip law is represented by a linear function ( skb *  where bk  is equal to 1010 

Pa.m-1) 

 

III.2 Global mechanical behavior 

Figure 13 represents the global behavior of the tie. This curve can be divided in 3 parts:  

- An elastic phase where the behavior of both materials remains linear 

- A phase of concrete cracking which is characterized by several peaks and drops of force  

- A perfect plastic phase where the behavior is only governed by the steel plastic law (constant force) 

It is to be noted that these 3 phases are representative of the experimental behavior (Mivelaz, 1996). 
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Figure 13 : Force-displacement curve  

 

In the following sections, each phase is going to be discussed. 

 

III.3 Elastic phase 

Figure 14 represents an example of stress distribution in both materials along the tie during the elastic 

phase. As the loading is applied directly on the reinforcement, at each end the force is essentially 

supported by the steel (
S

s
S

F
  with s  the steel stress and F the applied load). Then, in a transition 

zone, forces are gradually transferred from steel to concrete through the interface: stresses in concrete 
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increase while stresses in steel decrease from the end toward the middle of the tie. Finally, in the 

central zone, stresses are homogeneous. 
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Figure 14 : Distribution of the stress along the tie (elastic phase) 

 

To validate the results of the simulation, an analytical resolution is proposed. This solution is obtained 

from the balance of forces between steel and concrete from a = x to a = L (Figure 15). 
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Figure 15 : Force balance between a = x and a= L 

 

The external force F applied on steel is balanced by an internal force  xFs  and a bond force 

 xF sbond / .  

     FxFxF sbonds  /  (15) 

with, considering the small displacement theory, 

  
 

dx

xdu
ESxF s

sss   (16) 

where  xus  is the steel displacement at a = x. 
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The bond force  xF sbond /  is evaluated integrating the bond stress between a = x and a = L. 

Therefore:  

        

L

x

csbssbond daauaukdxF /  (17) 

where sd is the diameter of the steel bar and  auc  represents the displacement in concrete at a. 

 

In the same way, the balance on concrete is given by 

     0/  xFxF cbondc  (18) 

with  

  
 

dx

xdu
ESxF c

ccc   (19) 

and  

    xFxF sbondcbond //   (20) 

 

After development, equations (15) and (18) give the following system:  
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with  
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After resolution, it comes:  

 

 

 




























cc

xKxK

cc

ssc

xKxKs

SE

F

K

K
BeAe

SE

SE

dx

xdu

K

K
BeAe

dx

xdu

1

2

1

2

11

11

 (23) 

where 
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Steel and concrete stresses along the tie are finally calculated using equation 
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The numerical results are compared with the analytical solution. Figure 16 represents the stress 

evolution in concrete along the tie. The results are similar and validate the numerical implementation 

in this particular case. 
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Figure 16 : Stress distribution in concrete along the tie 

 

III.4 Cracking process 

During the elastic phase, the stresses increase in concrete with the imposed displacement. When the 

strength is reached in a concrete element, an unloading is observed in this element and the stress drops 

to zero (Figure 17). The load is then fully supported by the corresponding steel element. Its stress 

becomes equal to 
SS

F
(Figure 18). It is to be noted that this phenomenon is amplified by the use of 1D 

truss element for concrete. Contrary to what happens in 3D simulation, no evolution of the strain 

distribution is possible in the concrete cross section. It has nevertheless the advantage to directly 

highlight the bond effect model on the structural behavior.  

When a concrete element is damaged, the stresses are redistributed  on each side of the crack. On both 

sides the stress distribution is similar what was observed during the elastic phase with a gradual 

transfer from steel to concrete. 
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On a global point of view, the apparition of the first crack coincides with the first partial unloading on 

the force displacement curve (Figure 13). 
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Figure 17 : Distribution of the stress in the concrete along the tie 
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Figure 18 : Distribution of the stress in the steel along the tie 

After the apparition of the first crack, stresses in concrete continue to increase until a tensile strength is 

reached in a second element. Another crack appears, and a total unloading of the considered element is 

obtained. The same effect is observed until the steel stress in the cracked zones reaches it yield limit 

(Figure 19). At this step, the global force cannot increase any more and the distribution of Figure 20 is 

obtained (5 cracks). The crack length corresponds to the length of one finite element. This effect can 
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be explained by the well-known stress localization due to the use of a softening law. It could be solved 

by including a regularization technique ((Pijaudier-Cabot and Bazant, 1987) or (Peerlings et al, 2001)). 

This point will not be discussed in this paper. 
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Figure 19 : Stress distribution in the steel at the beginning of the plastic phase 
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Figure 20 : Stress distribution in the concrete at the beginning of the plastic phase 
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It is to be noted that the crack position is governed, as expected, by the strength distribution but also 

by the stress evolution imposed by the bond effects. To underline this effect, 10 computations have 

been carried out considering 10 different distributions of the initial concrete tensile strength.  
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Figure 21 : Position of cracks for the 10 ties. The numbers on the figure correspond to the order of 

apparition (1 for the first crack until 5 for the fifth crack). The dotted lines correspond to the average 

positions of each crack. 

 

Figure 21 shows the crack position along the 10 ties. In most cases (except for one tie), 5 cracks are 

observed. These cracks are generally localized on one concrete element except when the distribution 

of strength imposes a simultaneous cracking of two elements (the 3rd crack of tie 1 for example). It is 

to be noted that, due to the transfer zone between steel and concrete, no crack can develop at both 

ends. Finally, the crack spacing is constant with an average value of about 50 cm.  

As a conclusion, the order of crack apparition is rather governed by the distribution of the mechanical 

strength whereas the final state (constant average spacing) is imposed by the stress distribution related 

to the bond effects. 

 

IV Influence of the bond model  

 

In order to evaluate the influence of the bond effects on the behavior of the tie, the results of the 

previous simulation are compared with the case where steel and concrete are perfectly bound. In this 

situation, steel and concrete nodes are identical and the simulation is carried out in the same conditions 

as described in section III. Figure 22 illustrates the global behavior. It is once again divided in 3 main 

phases (elastic phase, development of cracking and plastic zone). During the development of cracks, a 

higher number of partial unloading is observed. 
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Figure 22 : Force-displacement curve at the loaded end of the steel 

 

Figure 23 describes the distribution of stress in both materials during the elastic phase. Contrary to 

what was observed with the bond model, stresses in steel and concrete are homogeneous along the tie. 

This can be explained by the perfect relation that imposes an identical strain in both materials. It 

comes:  
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Figure 23 : Stress distribution in both materials along the tie (elastic phase) 
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c  increases with the load until the minimal value of the concrete strength is reached. A crack appears 

in the element. Figure 24 represents the stress distribution in concrete after the first crack. It is to be 

noted that, with the perfect relation, the stress remains homogeneous in the uncracked concrete. In this 

zone, the stress can increase until the second concrete strength limit.  

Contrary to what was observed with the bond model, the apparition of the cracks is only governed by 

the strength distribution (Figure 25). At the final state (Figure 26), concrete is totally cracked because 

the concrete strength has been reached in every element. It explains the high number of partial 

unloading on the force-displacement curve (Figure 22). The loading is then only supported by steel.  
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Figure 24 : Comparison of stress distributions in concrete after the first crack apparition 
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Figure 25 : Comparison of stress distributions in concrete after the third crack apparition  
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Figure 26 : Stress distribution in both materials when concrete is totally cracked (perfect relation) 

 

As expected, the perfect relation is not able to represent the experimental situation where a finite 

number of cracks is observed. The introduction of the bond effects, as presented in section II, solves 

this problem. 

 

V Conclusions 

 

In this contribution, a new finite element model is proposed to represent bond effects between steel, 

modeled with truss elements, and the surrounding concrete. These bond effects are taken into account 

through additional internal forces calculated from the steel-concrete slip. The proposed model has 

been applied on a reinforced concrete tie. A characteristic stress distribution has been observed, related 

to the transfer of bond forces from steel to concrete. In this case, crack apparition is both induced by 

the heterogeneous characteristics of concrete (distribution of the tensile strength along the tie) and by 

the transition zones where stresses are redistributed between the materials. At the end of the simulation 

(mechanical behavior only governed by the steel plastic law), a finite number of crack is observed 

which corresponds qualitatively to experimental observations (Mivelaz, 1996).  

Another simulation, using the hypothesis of a perfect relation between steel and concrete (classical 

hypothesis used in structural applications) has been also proposed. In this case, the evolution of 

cracking is only governed by the distribution of the concrete strength since the stresses distribution is 

homogeneous in uncracked zones.  At the final state, the concrete is totally cracked. It shows how the 

introduction of the bond model can improve the description of the cracking process. 

Forthcoming 3D simulations will allow to also evaluate the effects of the stress distribution in the 

concrete cross section. 
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Even if these results are promising, crack evolution is strongly related to the choice of the bond stress-

slip law which has a direct influence on the final number of cracks. 

To take this influence into account, an investigation on the bond stress – slip law will thus be 

launched, based either on literature (Eligehausen et al, 1983), (Kwak and Kim, 2001) or on an 

experimental campaign to be more representative of the experimental behavior. 
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