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1. Introduction

During the past decade, multiple-input multiple-output
(MIMO) radar has been attracting an increasing academic interest
[1,2]. MIMO radar, as opposed to conventional phased-array radar,
can exploit multiple antennas both to simultaneously transmit
orthogonal waveforms and also to receive the reflected signals. By
virtue of this waveform diversity, MIMO radar enables to sig-
nificantly ameliorate the performance of radar systems, in terms of
improved parameter identifiability, more flexible beam-pattern
design, direct applicability of space–time adaptive processing
techniques [2–4], etc. Abounding works have been dedicated to
MIMO radar, either to investigate algorithms for target localization
or to evaluate their performances in terms of lower bounds or
resolvability [2–14]. In the larger part of the radar literature, the
clutter is simply assumed to be a Gaussian stochastic process. Such
assumption is generally a good approximation in many cases and
has its theoretical basis in the central limit theorem. However, in
certain specific scenarios, the radar clutter cannot be correctly
described by the Gaussian model anymore. As an example, ex-
perimental measurements reveal that the ground clutter data
ang).
heavily deviate from the Gaussian model [15]. This is also true, e.g.,
for the sea clutter in a high-resolution and low-grazing-angle ra-
dar context, where the scatter number is random and the clutter
shows nonstationarity [16].

To account for such problems, where the clutter is a non-
Gaussian process, numerous clutter models have been developed.
Among them, the so-called spherically invariant random process
(SIRP) model has become the most notable and popular one in
radar clutter modeling [15–19]. Its main advantage lies in its fea-
sibility to describe different scales of the clutter roughness, as well
as its generality to encompass a wide variety of non-Gaussian
distributions (K-distribution, t-distribution, Laplace, Cauchy and
Weibull distribution, etc.). A SIRP is a two-scale, complex, com-
pound Gaussian process with random power, structured as the
product of two components: a complex Gaussian process with
zero mean and unknown covariance matrix, and the square root of
a positive scalar random process [17]. In the radar context, the
former describes the local scattering and is usually referred to as
speckle, while the latter, modeling the local power changing, is
called texture. A SIRP is fully characterized by its texture parameter
(s) and the covariance matrix of its speckle. Till now, the SIRP
model has gained widespread use to treat the heavy-tailed, non-
Gaussian distributions of radar clutters [16,20,21,22,23].

Not few works have addressed the estimation problems asso-
ciated with the SIRP clutter. Most of them deal solely with the

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.06.031
http://dx.doi.org/10.1016/j.sigpro.2016.06.031
http://dx.doi.org/10.1016/j.sigpro.2016.06.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.06.031&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.06.031&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.06.031&domain=pdf
mailto:xzhang@nt.tu-darmstadt.de
http://dx.doi.org/10.1016/j.sigpro.2016.06.031


1 The so-called ARL refers to the RL when angular parameters are considered as
the only parameters of interest.

2 Note that our derivations and results in this paper can be generalized to the
case where more than one pulse per CPI is considered.

3 Note that, since we are considering a colocated MIMO radar, a target has the
same electrical angle at the transmitter and the receiver.
estimation of clutter parameters. Specifically, the texture para-
meter(s) and/or the speckle covariance are estimated, by assuming
the presence of secondary data (known noise-only realizations) in
designing their algorithms [22,24–28]. However, in our context, we
consider unknown clutter realizations embedded in and con-
taminating the received signal. Furthermore, we are interested in
the target's spacing parameter instead of the unknown clutter
nuisance parameters. In [26,,29], on the other hand, the authors
devised parameter-expanded expectation-maximization (PX-EM)
algorithms to estimate the signal as well as clutter parameters for
the traditional phased-array radar and MIMO radar, respectively.
Nevertheless, the algorithms proposed in [26,,29] are restricted to
a special, linear signal model, called the generalized multivariate
analysis of variance (GMANOVA) model [30], under which cate-
gory our context does not fall. To the best of our knowledge, no
available algorithm in the current literature addresses the target
estimation problem, or the problem of the direction-of-departure/
arrival (DOD/DOA) estimation [31] (a highly non-linear problem)
in general, under the SIRP clutter in a comprehensive manner. In
this paper, we devise an iterative maximum likelihood estimator
(IMLE) to serve such a purpose. Furthermore, we also develop a
Bayesian variant of the proposed IMLE, which we call the iterative
maximum a posteriori estimator (IMAPE). Our algorithms carry on
the path trodden by [32,,33] and can be seen as generalizations of
them, due to their common iterative nature and the idea of step-
wise concentration. To evaluate the performance of our algorithms,
we further derive expressions for the standard Cramér–Rao bound
(CRB) and for its variants, including the extended Miller–Chang
bound (EMCB), the modified CRB (MCRB) and the hybrid CRB
(HCRB), w.r.t. the target's spacing parameter. We then provide an
extended examination of their relationships, and the relationships
between them and the texture parameters.

Furthermore, in order to fully characterize the performance
analysis, we further investigate the resolvability problem of two
closely spaced targets. In the MIMO radar context, a few recent
works, e.g., [8–10], have addressed this problem. The clutter in
these works, however, is unexceptionally modeled as a Gaussian
process. In this paper, we take on the resolvability problem con-
cerning two (colocated) MIMO radar targets under non-Gaussian
clutter (modeled as SIRP). To be more specific, this paper sets as its
principal aim the solution to the following question: “What is, in a
colocated MIMO radar context under non-Gaussian clutter, the
minimum angular separation (between two closely spaced targets)
required, under which these two targets can still be correctly re-
solved?” No work in the current literature, to the best of our
knowledge, has been dedicated to this question, except our pre-
liminary work [34], in which we approached this problem by
numerical means. In this paper, we carry on with what was set out
in [34] and bring it to completion, by proposing an analytical ex-
pression as the solution to the question under discussion, and by
considering a wider range of clutter distributions.

To approach this question we resort, in a similar way to [8–10],
to the concept of the resolution limit (RL), which provides the
theoretical foothold of our work to characterize the resolvability of
two targets. The RL is defined as the minimum distance w.r.t. the
parameter of interest (e.g., the DODs/DOAs or the electrical angles,
etc.) that allows distinguishing between two closely spaced sour-
ces [35–37]. Various approaches have been devised to account for
the RL, generally categorized, in view of the respective theories
they rest on, into three families: those based on the mean null
spectrum analysis [38], those capitalizing on the detection theory
[36,39–42], and finally, those concerning the estimation theory
and exploiting the CRB [35,43–46]. Belonging to the family of the
third approach, a widely recognized criterion is proposed by Smith
[35], according to which two targets are resolvable if the distance
between the targets (w.r.t. the parameter of interest) is greater than
the standard deviation of the distance estimation. The prevalence of
Smith's criterion, over other criteria derived from the estimation
theory, e.g., the one proposed in [43,47,48], is largely attributable
to its merit of taking the coupling between the parameters into
account. Moreover, it enjoys generality in contrast to the mean
null spectrum approach, as the latter is designed for certain spe-
cific high-resolution algorithms and not for a specific signal model
itself [49]. Finally, the RL yielded by Smith's criterion is closely
related, as recently revealed in [37], to the class of the detection
theory based approach, meaning that these two approaches can in
fact be unified. In view of these merits, we focus on the RL in
Smith's sense in this paper. First, we propose an analytical ex-
pression for the angular resolution limit (ARL1) between two clo-
sely spaced targets in a colocated MIMO radar system under SIRP
clutter. As a byproduct, closed-form expressions of the standard
CRB w.r.t. the angular spacing are derived. Furthermore, we pro-
vide numerical illustrations to vindicate our expression, as well as
to inspect the properties revealed by it.

The remaining part of this paper is structured as follows. Sec-
tion 2 introduces the observation model of the colocated MIMO
radar system and specifies the observation statistics. In Section 3,
our proposed IMLE is derived, together with its Bayesian variant,
the IMAPE. Section 4 presents the expressions of the Cramér–Rao-
like bounds (CRLBs) and provides analytical results on their re-
spective properties. Section 5 is dedicated to the derivation of
analytical expression of the ARL. Section 6 provides the simulation
results and discusses the properties of our estimator, bounds and
the ARL revealed by the figures. Finally, Section 7 summarizes the
work of this paper.
2. Model setup

2.1. Observation model for colocated MIMO radar

Consider a colocated MIMO radar system with linear, possibly
non-uniform, arrays both at the transmitter and the receiver. Two
targets are illuminated by the MIMO radar, both modeled as far-
field, narrowband, point sources [2]. Furthermore, consider, for
simplicity of description, that there is one radar pulse in a co-
herent processing interval (CPI).2 The radar output, without mat-
ched filtering, is given as the following vector form [4]:

∑ α ω ω( ) = ( ) ( ) ( ) + ( ) = …
( )=

y a a s nt t t t T, 1, , ,
1i

i i
T

i
1

2

where αi and ωi denote a complex coefficient proportional to the
radar cross section (RCS) and the electrical angle3 of the ith target,
respectively; T denotes the number of snapshots per pulse; the
transmit and receive steering vectors are defined as

ω( ) = …ω ω( ) ( )⎡⎣ ⎤⎦a e e, ,i
j d j d

T
i i M1 and ω( ) = …ω ω( ) ( )⎡⎣ ⎤⎦a e e, ,i

j d j d
T

i i N1 , in

which M and N represent the number of sensors at the transmitter
and the receiver, respectively; ( )di and ( )di denote the distance
between the ith sensor and the reference sensor, for the trans-
mitter and the receiver, respectively; ( ) = ( ) … ( )⎡⎣ ⎤⎦s t s t s t, , M

T
1 and

( ) = …n t t T, 1, , denote the signal target source vectors and the
received clutter vectors, respectively; and (·)T denotes the trans-
pose of a matrix.



2.2. Observation statistics

The signal target source vectors ( ) = …s t t T, 1, , , are viewed as
deterministic, while the received clutter vectors ( ) = …n t t T, 1, , ,
are assumed to be independent, identically distributed (i.i.d.)
spherically invariant random vectors (SIRVs) [17], modeled as the
product of two components statistically independent of each
other:

τ( ) = ( ) ( ) = … ( )n xt t t t T, 1, , ; 2

where the texture terms τ ( ) = …t t T, 1, , , are i.i.d. positive ran-
dom variables, and the speckle terms ( ) = …x t t T, 1, , , are i.i.d. N-
dimensional circular complex Gaussian vectors with zero mean
and second-order moments:

δ δ σΣ Σ{ ( ) ( )} = ̌ = ̌ ̌

{ ( ) ( )} = = … ( )×

x x

x x

i j

i j i j T0

E ,

E , , 1, , ; 3

H
ij ij

T
N N

2

in which Σ denotes the speckle covariance matrix, {·}E is the
expectation operator, (·)H denotes the conjugate transpose of a
matrix, δ̌ij is the Kronecker delta, s2 is a scale factor to adjust the

clutter power, Σ̌ is the normalized Σ with { }Σ̌ =tr 1, where {·}tr
represents the trace of a matrix, and ×0N N denotes the ×N N zero
matrix.

In this paper, we mainly focus on two kinds of SIRP clutters,
namely, the K-distributed and the t-distributed clutters. In both
cases the texture is characterized by two parameters, the shape
parameter a and the scale parameter b. Thus, the texture pdf is
denoted by τ( ( ) )τ ( )p t a b; ,t :

� K-distributed clutter, in which τ ( )t follows the gamma distribu-
tion, i.e., ( )τ ( ) ∼t a bGamma , [16,50,51,52], namely,

τ
Γ

τ( ( ) ) =
( )

( )
( )τ

τ

( )
− − ( )

p t a b
a b

t e; ,
1

,
4t a

a
t

b1

in which ∫Γ ( ) =
+∞ − −a x e xda x

0
1 denotes the gamma function.

� t-distributed clutter, in which τ ( )t follows the inverse-gamma
distribution,4 i.e., τ ( ) ∼ ‐ ( )t a bInv Gamma , [24,53–55], thus,

τ
Γ

τ( ( ) ) =
( )

( )
( )τ τ( )

− − − ( )p t a b
b

a
t e; , .

5t

a
a

b
t1

2.3. Unknown parameter vector

Assume, in the above model, both the target amplitudes α1 and
α2 to be arbitrary, deterministic, unknown complex parameters.
We consider the electric angle ω1 to be known while ω2 is
unknown.5 Furthermore, for the convenience of later derivation,
let Δ ω ω= −2 1 denote the angular spacing between the two tar-
gets. Consequently, Eq. (1) becomes:

( ) = ( ) + ( ) = … ( )nt t t t T, 1, , ; 6

in which α ω ω α ω Δ ω Δ( ) = ( ) ( ) ( ) + ( + )· ( + ) ( )v a a s a a st t tT T
1 1 1 2 1 1

denotes the target component in the observation. Let us introduce
a vector parameter μ Δ α α α α= [ ]∼ ∼, , , , T

1 1 2 2 which contains all the
unknown real target parameters, in which (·) and (·)͠ represent the
real and the imaginary part, respectively.

With regard to the SIRP clutter, assume both of its texture
parameters, a and b, as well as its speckle covariance matrix Σ, to
be unknown. In addition, we introduce the N2-element vector
4 Equivalently, τ ( )t1/ follows a gamma distribution.
5 This assumption makes good sense in many scenarios, e.g., in those whereω1

is considered a friend target whose position is known and ω2 represents the un-
known position of the enemy.
parameter ζ containing the real and imaginary parts of the entries
of the lower triangular part of Σ. Consequently, the full unknown
parameter vector of our problem is given by:

ξ μ ζ= ( )⎡⎣ ⎤⎦a b, , , , 7T T T

in which Δ is our parameter of interest.

2.4. Likelihood functions

Let = [ ( ) … ( )]y y y T1 , ,T T T denote the full observation vector,
and τ τ τ= ( ) … ( )⎡⎣ ⎤⎦T1 , , T represent the texture vector containing
the texture components from all snapshots. Since the clutter
vectors of different snapshots are i.i.d., the full observation like-
lihood conditioned on τ is:

( )
( )∏ ( )

τ ψ
β β

πτ Σ
( ) =

− ( ) ( )

∣ ∣ ( )
τ

τ

=

yp
t t

t
;

exp
;

8
y

t

T
t

H

1

1

in which ψ μ ζ= [ ],T T T , and ( )β Σ( ) = ( ) − ( )− y vt t t1/2 , standing for
the clutter spatially whitened by its speckle covariance matrix, at
snapshot t.

Multiplying τ ψ( )τ yp ;y by τ( )τp a b; , (which is equal to

τ∏ ( ( ) )τ= ( )p t a b; ,t
T

t1 , as the texture components are i.i.d.) leads to
the predictive likelihood [56] between y and τ , viz.:

( )
( )∏ ( )

( )

τ ξ τ ψ τ

β β

πτ
τ

Σ

( ) = ( ) ( )

=
− ( ) ( )

∣ ∣
( ( ) )

( )

τ τ τ

τ
τ

=

y yp p p a b

t t

t
p t a b

, ; ; ; ,

exp
; , .

9

y y

t

T
t

H

t

,

1

1

Finally, the marginal likelihood, w.r.t. ξ , is obtained by in-
tegrating out τ from Eq. (9):

∫

( )
∏

∫ ( )

ξ τ ξ τ

β β
τ

τ
τ τ

πΣ

( ) = ( )

=

− ( ) ( )

( )
( ( ) ) ( )

∣ ∣ ( )

τ

τ

+∞

=

+∞

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

y yp p

t
t t

t
p t a b t

; , ; d

exp
1

; , d
.

10

y y

t

T

H

N t

0
,

1

0

3. Iterative maximum likelihood estimator

To over come the difficulty in maximizing the intractable
marginal likelihood function in Eq. (10), various estimation pro-
cedures in the SIRP context have chosen to use the predictive
likelihood in Eq. (9) [26] as a tool to achieve the maximization of
the marginal likelihood, or to maximize the conditional likelihood
in Eq. (8) [57]. The latter approach treats τ as deterministic, i.e., one
realization from the texture process rather than the process itself.
In deriving our IMLE we adopt this idea and the usage of the term
maximum likelihood estimator (MLE) is with regard to this kind of
deterministic texture modeling.

3.1. Estimates of the unknown parameters

From Eq. (9) arises the conditional log-likelihood (LL) function,
denoted by ΛC, as:

( )∑ ∑

τ ψ

β β

Λ π

τ
τ

Σ= ( ) = − − | |

− ( ) − ( ) ( )
( )

τ

= =

yp TN T

N t
t

t t

ln ; ln ln

ln
1

.
11

y

t

T

t

T
H

C

1 1



Equating Λ τ∂ ∂ ( )t/C to zero leads to τ ( )t 's estimate when μ and ζ
are fixed. This, denoted by τ̂ ( )t , is given by:

( )( ) ( ) ( ) ( )τ Σ^( ) = − ( − ) ( )
−y v y vt

N
t t t t

1
. 12

H 1

On the other hand, the estimate of Σ, denoted by Σ̂, when μ and τ
and are fixed, can be found by applying Lemma 3.2.2. in [58] to Eq.
(11), as:

∑
τ

Σ̂ =
( )

( ( ) − ( ))( ( ) − ( ))
( )=

y v y v
T t

t t t t
1 1

.
13t

T
H

1

Plugging Eq. (12) into Eq. (13), we obtain the following iterative
expression of Σ̂:

( )
∑( )

( )
Σ

Σ

^ = ( ( ) − ( ))( ( ) − ( ))

( ) − ( ) ^ ( ( ) − ( ))
( )

+

=
−⎛

⎝⎜
⎞
⎠⎟

y v y v

y v y v

N
T

t t t t

t t t t

,

14

i

t

T H

H i

1

1
1

for which the initialization matrix Σ̂ =
( )

IN
0

, where IN represents
the identity matrix of size N.

Iteration (14) was first derived in [59], and then proved in [25]
to be the exact maximum likelihood (ML) estimator of Σ̂ when the
vector τ is assumed to be deterministic, as is in our current case.
The convergence properties of the iteration have been analyzed in
[25,59].

To make the clutter parameters uniquely identifiable, the
scaling ambiguity in the clutter model needs to be resolved. To-
wards this aim, we stipulate for our estimation problem that

Σ{ } =tr 1, i.e., σ = 12 in Eq. (3). Thus Σ̂
( + )i 1

, in Eq. (14), needs to be
further normalized as:

( ) ( )

( )
Σ Σ

Σ

^ =
^

^
( )

+
+

+⎧⎨⎩
⎫⎬⎭tr

,

15

i
i

in
1

1

1

in which Σ̂
( + )i

n
1
denotes the normalized Σ̂

( + )i 1
.

Now, let us consider the estimation of the target parameters μ.
To begin with, we reformulate the expression of ( )v t as:

αΔ( ) = ( ) = … ( )v Bt t t T, , 1, , , 16

in which α α α= [ ], T
1 2 and Δ Δ( ) = ( ) ( )⎡⎣ ⎤⎦B b bt t t, , ,1 2 , where

ω ω( ) = ( ) ( ) ( )b a a st tT
1 1 1 and ( ) ( )Δ ω Δ ω Δ( ) = + · + ( )b a a st t, T

2 1 1 .
The ML estimate of α, when Δ, τ and ζ are fixed, is given by the

solution of αΛ∂ ∂ =/ 0C calculated from Eq. (11). We denote this
estimate by α̂, which has the following expression:

( )α Δ Δ Δ^ = ̌ ( ) ̌ ( ) ̌ ( ) ̌ ( )
−

B B B y , 17
H H1

in which ˇ = −y G y1/2 , Δ Δˇ ( ) = ( )−B G B1/2 , where
τ τ Σ= { ( ) … ( )} ⊗G Tdiag 1 , , , in which ⊗ denotes the Kronecker

product, and {·}diag represents the diagonal matrix whose diag-
onal entries are arguments inside {·}. Furthermore, the matrix

Δ Δ( ) = ( )⎡⎣ ⎤⎦B b b,1 2 , in which = [ ( ) … ( )]b b b T1 , ,T T T
1 1 1 and

Δ Δ Δ( ) = [ ( ) … ( )]b b b T1, , , ,T T T
2 2 2 . We note that the matrix G serves

the purpose of de-texturizing and pre-whitening.

3.2. Stepwise numerical concentration approach

It is obvious from Eqs. (12), (14) and (17) that the estimation of
the involved parameters is mutually dependent, in the sense that
the expression for the estimate of any of these parameters con-
tains all the rest of them. In [26,,29], the authors overcame the
similar difficulty by exploiting the special structure of their
GMANOVA model and obtained an expression of Σ̂ independent of
their unknown signal parameters. However, such analytical con-
centration approach is inapplicable to the estimation problem
under consideration. Therefore, in this paper we adopt the so-
called stepwise numerical concentration method, whose concept
was introduced and employed, in the context of non-uniform
white Gaussian noise in [32], and colored Gaussian noise in [33].

The idea of the stepwise concentration consists in the con-
centration of the LL function w.r.t. certain unknown parameters in
an iterative manner. In our case, we assume for each iteration that
Σ and τ are fixed and known, and use their values to compute the
estimate of μ, which is then used, in its turn, to update the values
of Σ and τ for the next iteration. We continue this procedure until
convergence, which can be defined, e.g., by the criterion that the
difference between the values of estimates obtained from con-
secutive iterations falls below a certain small threshold.

This general procedure borne in mind, we return to the LL
function in Eq. (11). Now, our aim is to find the estimate of Δ, our
parameter of interest, by considering the values of Σ and τ as fixed
and known from the previous iteration. Thus, neglecting the
constant terms, the conditional LL function in Eq. (11) can be re-
formulated as:

∑ β βΛ
τ

= −
( )

( ) ( )
( )= t

t t
1

.
18t

T
H

C
1

Inserting Eq. (17) into Eq. (18) and maximizing the latter w.r.t. Δ
leads to the following estimate:

{ }Δ Π^ = ˇ
( )Δ Δˇ ( )

⊥ yarg min ,
19B

in which · denotes the Euclidean norm and

Δ Δ Δ ΔΠ = − ̌ ( )( ̌ ( ) ̌ ( )) ̌ ( ) ( )Δ̌ ( )
⊥ −I B B B B , 20B NT

H H1

stands for the orthogonal projection matrix onto the null space of
Δˇ ( )B .

3.3. Algorithmic procedure

Our proposed IMLE, which consist of two steps, can be sum-
marized as follows:

� Initialization: At iteration i¼0, set τ̂ ( ) = = …( ) t t T1, 1, ,0 , and

Σ̂ = ·
( )

IN1/ Nn
0

.
� Step 1: Calculate Δ̂

( )i
from Eq. (19) using τ̂ ( )( ) ti and Σ̂

( )i
n , then α̂( )i

from Eq. (17) using Δ̂
( )i
, τ̂ ( )( ) ti and Σ̂

( )i
n , and finally ^ ( )( )

v t
i

from Eq.

(16) using Δ̂
( )i

and α̂( )i .
� Step 2: Use ^ ( )( )

v t
i

and Σ̂
( )i
n to update Σ̂

( + )i

n
1

from Eqs. (14) and

(15). Then, use ^ ( )( )
v t

i
and the updated Σ̂

( + )i

n
1
to find the updated

τ̂ ( )( + ) ti 1 from Eq. (12). Set = +i i 1.

Repeat Step 1 and Step 2 until a stop criterion (convergence or a
maximum number of iteration) to obtain the final estimate of Δ,

which is denoted by Δ̂IMLE.
The following remarks on our IMLE are in order:

Remark 1. The convergence of the LL function in our algorithm is
guaranteed by the fact that the value of the objective function at
each step can either improve or maintain but cannot increase [33].
In fact, as the simulations in Section 6 show, the convergence of
the estimate of the unknown parameter Δ can also be observed
with only two iteration, a result in accordance with those in

[32,,33]. Here the convergence of Δ is defined as that Δ Δ^ − ^( + ) ( )i i1



falls into a small range ϵ, and further iterations do not lead to
substantial improvement of performance in terms of the resulting
mean square errors (MSEs).

Remark 2. Based on the observation in Remark 1, we can con-
clude that the computational cost of our algorithm, which lies
mainly in the solution of the highly nonlinear optimization pro-
blem in Step 1, is only a few times of that of the conventional MLE
(CMLE). The latter corresponds to the case where the clutter is
assumed to be uniform white Gaussian, such that Eq. (19) de-
generate into:

{ }Δ Π^ = ( )Δ
Δ( )

⊥ yarg min .
21BCMLE

Remark 3. One should also notice that, in the case where <T N ,
the sample covariance matrix is rank deficient. In this case, the
Moore–Penrose pseudoinverse rather than the true inverse should
be used for the calculation of Σ−1 in Eqs. (12) and (14), as well as of

−G 1/2 in the expression of Δˇ ( )B and y̌ .

Remark 4. By modeling the texture realizations as unknown de-
terministic parameters, the proposed IMLE can be seen as a par-
allel to the well-known deterministic ML (DML) approach, which
models the signal waveforms as deterministic. Accordingly, the
IMLE also shares the disadvantages of the DML approach. For in-
stance, the number of unknown parameters increases with the
snapshot number, and, consequently, the estimator cannot achieve
the CRB calculated based on such a deterministic modeling.
Nevertheless, the DML approach achieves its deterministic CRB for
a fixed number of snapshots under high SNRs [60].

3.4. A Bayesian variant of the IMLE

The IMLE presented above, in which we treat the texture as
deterministic and thereby ignore information regarding its sta-
tistical properties, has the advantage of easier and faster im-
plementation. It is also a natural approach when the texture does
not have a closed-form expression of distribution (e.g., in the case
of Weibull clutter) or its distribution is unknown. In general cases,
however, it is intuitively appealing to adopt a Bayesian approach,
i.e., to exploit information from the texture's prior distribution to
facilitate the estimation. The modification of the IMLE using such
an approach leads to the IMAPE that we propose in this
subsection.

The IMAPE differs from the IMLE in that it uses the maximum a
posteriori (MAP) estimates of the texture realizations based on the
predictive LL function, which, denoted by ΛJ, is equal to:
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The expression of τ̂ ( )t for the IMAPE, when all the remaining
unknown parameters are fixed, can be found by solving
Λ τ∂ ∂ ( ) =t/ 0J , as:
)
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Substituting τ̂ ( )t in Eq. (23) into Eq. (13), we arrive at the fol-

lowing iterative expression for Σ̂ for the IMAPE:
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which, similar to the expression of Σ̂
( + )i 1

in Eq. (14) for the IMLE,

needs to be substituted into Eq. (15) to obtain the normalized Σ̂
( + )i 1

denoted as Σ̂
( + )i

n
1
.

Since the texture parameters a and b in Eqs. (23) and (24) are

unknown, they also need to be estimated. Let â and b̂ denote the their

estimates. The estimate b̂ can be obtained by solving Λ∂ ∂ =b/ 0J , as:
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Furthermore, calculating Λ∂ ∂a/J yields:
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in which Ψ (·) stands for the digamma function. From Eq. (26) it turns
out that Λ∂ ∂ =a/ 0J does not allow an analytical expression of the

root, thus â, unlike b̂ in Eq. (25), can only be calculated numerically.
On the other hand, the estimates of α and Δ for the IMAPE have

the same expression as for the IMLE (cf. Eqs. (17) and (19)). As a
result, the iterative estimation procedure of the proposed IMAPE
can be summarized as follows:



� Initialization: The same initialization as in the IMLE algorithm
is used.

� Step 1: Implement Step 1 of the IMLE algorithm. Furthermore, if
the iteration number >i 0, substitute Eq. (25) into Eq. (26), and

find numerically ^( )
a

i
from Eq. (26) using τ̂ ( )( ) ti , then find ^( )

b
i
from

Eq. (25) using τ̂ ( )( ) ti and ^( )
a

i
.

� Step 2: If the iteration number i¼0, implement Step 2 of the

IMLE algorithm. Otherwise, use ^ ( )( )
v t

i
, Σ̂

( )i
n , ^( )

a
i
and ^( )

b
i
to update

Σ̂
( + )i

n
1
from Eqs. (24) and (15). Then, use ^ ( )( )

v t
i

, ^( )
a

i
, ^( )

b
i
and the

updated Σ̂
( + )i

n
1

to find the updated τ̂ ( )( + ) ti 1 from Eq. (23). Set
= +i i 1.

Repeat Step 1 and Step 2 until a stop criterion (convergence or a

maximum number of iteration) to obtain the final Δ̂, denoted by

Δ̂IMAPE.
Remarks 1–3 at the end of Section 3.3 also directly apply to the

proposed IMAPE. We also point out that the Bayesian method adopted
by the IMAPE exhibits a bias, as can be seen from Eqs. (23) and (24).
However, in spite of this drawback, our proposed IMAPE does not lead
to worse performance than the proposed IMLE. Indeed, as our simu-
lations in Section 6 will show, it yields slightly better estimation per-
formance in most cases than the IMLE. This performance improve-
ment comes from the exploitation of a priori knowledge of the texture
distribution in the parameter estimation, which can be observed in the
simulations despite the fact that the texture parameters in the dis-
tribution function are unknown and need to be estimated.
4. Cramér–Rao-like bounds

The CRLBs provide an essential tool for evaluating the perfor-
mance of any unbiased estimator. Furthermore, closed-form ex-
pressions of the CRLBs are required in the computation of the
expression for the ARL in Smith's sense. In this section, we derive
the expressions of various CRLBs w.r.t. Δ, including the standard
CRB, the EMCB, the MCRB and the HCRB, and provides a compar-
ison between them.

4.1. Standard Cramér–Rao Bound

In [34], we have derived the expression for the standard CRB w.
r.t. Δ, denoted by Δ( )CRB , under a K-distributed clutter. This result
also holds true for the t-distributed clutter case, except for the
factor κ (that will be detailed later), which takes another expres-
sion under a t-distributed clutter.

Δ( )CRB considers the parameter vector ξ , and is obtained as the
upper-leftmost element of the inverse of the Fisher Information
Matrix (FIM), denoted by F . The FIM is calculated from the mar-
ginal likelihood ( )ξyp ;y in Eq. (10). The elements of F are given
by:

ξ
ξ

ξ
ξ

=
∂ ( ( ))

∂
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E
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in which [·]i j, denotes the (i,j)th entry of a matrix, and [·]i denotes
the ith element of a vector. Derivations show that F takes the
following block-diagonal structured form:
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in which Φ denotes the 5�5 FIM block w.r.t. the target parameters
(those in μ), whose entries, denoted by ϕij, are given by:

{ }∑ϕ κ Σ= ( ) ( ) = …
( )=

−v v
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i j
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tr t t , , 1, , 5,
29
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where μ( ) = ∂ ( ) ∂[ ]v vt t /i i. The matrix Ξ in Eq. (28) represents the
FIM block w.r.t. the clutter parameters (a, b and ζ⎡⎣ ⎤⎦i

). As Φ and Ξ
are decoupled, we have:

Δ Φ( ) = [ ] ( )−CRB . 301
1,1

The expression of the positive real factor κ in Eq. (29) depends
on the distribution of the texture and is given by:
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in which Kn(x) is the modified Bessel functions of the second kind
of order n. For a t-distributed clutter, Eq. (31) is a generalization of
the result in [26] to the two texture parameter cases. For a
K-distributed clutter, we have found a more compact expression of
κ than [26], which yet still can only be evaluated numerically.
4.2. Extended Miller–Chang bound

The EMCB was first proposed in [61] as an extension to the
conventional Miller–Chang Bound (MCB) [62]. Its general motiva-
tion is to first treat the random nuisance parameters (τ in our case)
as deterministic and derive the CRB calculated from the condi-
tional likelihood ( )τ ψ|τ| yp ;y in Eq. (8). Then in the next step, the

assumption of constant τ is relaxed and the CRB is averaged over
different realizations of τ drawn from the corresponding random
distribution. This approach has in common with the proposed
IMLE in Section 3 that the latter also treats τ to be deterministic.
The performance of this algorithm, in terms of the averaged MSE
resulting from many independent Monte-Carlo trials, can be
evaluated by averaging the CRBs calculated for each of the trials. It
is clear that such an averaged CRB, when the trial number be-
comes large, approaches the EMCB.

The parameter vector ψ τ[ ],T T T is considered in the calculation
of the EMCB. The entries of the corresponding FIM, denoted by FE,
are calculated by:

τ ψ
ψ

τ ψ
ψ

=
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whose calculation resembles that of the FIM under Gaussian
clutter (with the difference that the data are weighted by τ ( )t1/
varying at each snapshot) and is omitted here for brevity. Similar
to F , FE exhibits a block-diagonal structure, where the blocks for
the target and clutter parameters are decoupled from each other.
We denote the parameter block of interest by ΦE, and its entries by
ϕ = …i j, , 1, , 5ij

E . The following expressions are obtained:

( )∑ϕ
τ

Σ= { ( ) ( ) }
( )=

−v v
t

t t2
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Consequently, the EMCB w.r.t. Δ , denoted by ( )ΔEMCB , is given by:

{ }Δ Φ( ) = [ ] ( )τ
−EMCB E , 34E

1
1,1

for which no closed-form expression exists.



4.3. Modified and hybrid Cramér–Rao bound

The MCRB [63], like the EMCB, also considers the unknown
parameter vector as ψ τ[ ],T T T . Its corresponding FIM, denoted by
FM, is likewise calculated from the conditional likelihood in Eq. (8).
The MCRB differs from the EMCB only in that it averages over the
random parameters before the FIM inversion, namely:
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Similar to F and FE, FM also has a block-diagonal structure, whose
parameter block of interest, denoted by ΦM, contains the following
entries ϕ = …i j, , 1, , 5:ij

M
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and the MCRB w.r.t. Δ, denoted by ( )ΔMCRB , is equal to:

Δ Φ( ) = ( )
−⎡⎣ ⎤⎦MCRB . 38M

1
1,1

The HCRB as defined in [64], on the other hand, considers the
unknown parameter vector as ξ τ[ ],T T T . Furthermore, it uses the
predictive likelihood in Eq. (9), instead of the conditional like-
lihood in Eq. (8), similar as in the derivation of the EMCB and
MCRB, to obtain its FIM, which is denoted by FH. The entries of FH

are calculated by:

τ ξ
ξ

τ ξ
ξ

ϕ =
∂ ( ( ))

∂
∂ ( ( ))

∂ ( )
τ

τ τ
⎪ ⎪
⎪ ⎪⎧
⎨
⎩ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎫
⎬
⎭

y yp p
E

ln , ; ln , ;
.

39
y

y y
ij

i j

H
,

, ,

Our derivations show that FH also has a block structure, and its
parameter block of interest is equal to that of the MCRB, ΦM.
Consequently, we have:

( ) ( )Δ Δ= ( )HCRB MCRB , 40

in which ( )ΔHCRB represents the HCRB w.r.t. Δ.

4.4. Relationships between the CRLBs

It is theoretically proved in [64] that the standard CRB is always
larger than the HCRB. As we also have ( ) ( )Δ Δ=HCRB MCRB , it
follows that:

( ) ( ) ( )Δ Δ Δ≥ = ( )CRB HCRB MCRB . 41

This relationship, however, becomes apparent when the clutter
follows a t-distribution, where ( )ΔCRB has a closed-form expres-
sion. By comparison of Eqs. (29)–(31) with Eqs. (30), (36) and (40),
we have:
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a N
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1
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42
Moreover, since ( + + ) ( + ) →a N a N1 / 1 when → ∞N , it follows
that Δ Δ Δ( ) → ( ) = ( )CRB MCRB HCRB when the number of receiver
antennas becomes large.

The relationship between Δ( )EMCB and ( )ΔMCRB (or ( )ΔHCRB )
can be revealed by noticing, from Eq. (34), that:
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and, according to Eqs. (35) and (38), that:
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Since the quadratic form in Φ−
E

1 is a convex function of the entries
of ΦE [65], by Jensen's inequality, we have:
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1
E

1

Hence { } ( ){ }Φ Φ≥τ τ
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, viz.,

Δ Δ Δ( ) ≥ ( ) = ( ) ( )EMCB MCRB HCRB . 46

Furthermore, since Φ Φ→E M when → ∞T , we have that
Δ Δ Δ( ) → ( ) = ( )EMCB MCRB HCRB as the number of snapshots be-

comes large.
The relationship between Δ( )CRB and Δ( )EMCB , on the other

hand, is indefinite and dependent on T and N, as will be illustrated
by numerical simulations.

4.5. CRLBs and the texture parameters

At the end of this section, we investigate the impact of the
clutter's texture parameters, a and b, on the CRLBs. To achieve this,
we first define the signal-to-clutter ratio (SCR) as [26]:

( )
τ σ Σ

=
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{ ( )} { ̌} ( )
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t
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TE tr
,
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in which τ{ ( )}tE is equal to ab for a K-distributed clutter and
( − )b a/ 1 for a t-distributed clutter (for >a 1) [66]. It then turns out

that for a fixed SCR, we have:
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in which ∝ denotes direct proportionality. Furthermore, from Eq.
(31), we have:
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4.5.1. CRLBs vs. a
We begin with the standard CRB. The expression in Eq. (29) can

be converted to:
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namely, ϕ κ σ∝ /ij
2, to which we apply Eqs. (50) and (48) and have

straightforwardly:
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For both clutter distributions ϕij decreases as a increases6; as a
result, ( )ΔCRB increases with a, i.e., the standard CRB is positively
correlated with the shape parameter a.

Similarly, we deduce from Eqs. (37) and (48) that:

ϕ ϕ= ∝
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‐ ‐ ( )
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a 1
, K distributed and t distributed clutters, 54ij ij

M H

also indicating a positive correlation between the MCRB/HCRB and
a. Furthermore, we notice, as opposed to the standard CRB, which
has different proportionalities to a for K-distributed and t-dis-
tributed clutters respectively, the MCRB/HCRB have the same
proportionality for both clutter distributions.

Finally, for the EMCB, we have from Eq. (55) that:
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Consequently, it follows from Eq. (34) that:
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For a t-distributed clutter, ( )τ ( ) ∼ ‐t a bInv Gamma , ,

( )τ ( ) ∼t a b1/ Gamma , 1/ . Thus, as τ ( ) = …t t T, 1, , are i.i.d. vari-
ables, from the property of the gamma distribution arises that
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which, combined with Eqs. (48) and (56), results in
( ) ( )Δ ∝ −a aEMCB 1 , indicating a positive correlation also between

the EMCB and a. For a K-distributed clutter an analogous deduc-
tion seems, however, impossible or at least complicated, due to the
presence of the sum of inverse gamma variables. The relationship
between the EMCB and a for this case can be numerically
ascertained.

4.5.2. CRLBs vs. b
Associating Eq. (51) with Eq. (52), yields:

ϕ
σ

∝ ‐ ‐ ( )b
1

, K distributed and t distributed clutters. 58ij 2

As from Eq. (49) for both clutter distributions σ∝b 1/ 2, ϕij is thus
independent of b, which means under a fixed SCR, changing b does
not give rise to any variation in the value of Δ( )CRB . The same also
holds true for the MCRB/HCRB for both clutter distributions, and
can be established in a similar vein by considering ν instead of κ.
6 This relationship is obvious for t-distributed clutter, for K-distributed clutter,
however, for which ϕij does not enjoy a closed-form expression, can only be de-
termined numerically.
The independence of the EMCB of b under t-distributed clutter
is straightforwardly confirmable by combining Eqs. (49), (56) and
(57). However, under K-distributed clutter, the relationship be-
tween the EMCB and b can only be determined numerically.

In summary, the performance of the estimation, in terms of the
lowest achievable CRLBs, is only related to the shape parameter a
of the clutter, and decreases as a becomes larger, and is in-
dependent of the scale parameter b. This will also be verified in
Section 6 by numerical simulations.
5. Derivation of the ARL

In this section, we address the question of the target resolva-
bility. In order to obtain an analytical expression for the ARL in
Smith's sense, a closed-form (non-matrix) expression for Δ( )CRB is
required. Our above derived Δ( )CRB in Eq. (30), however, cannot be
analytically inverted, due to the nonlinearity of our model in Eq.
(1) w.r.t. Δ. To cope with this difficulty, we first linearize the model
[8–10,67], and rederive the FIM expression based on it which is
feasible for analytical inversion. The ARL obtained from the line-
arized model approximates the exact ARL obtained from the ori-
ginal model.

5.1. Model linearization

To linearize the model, we resort to the second order Taylor
expansion around Δ = 0 in Eq. (1). This step of approximation is
justified by considering the fact that, in asymptotic cases, e.g.,
those of large SCR or sample size, in which the CRB is a tight
bound, the ARL is always very small, i.e., the value of Δ corre-
sponding to the ARL approaches zero (Δ⪡1) [36,39,40,67,68].7 The
second order Taylor expansions of ω( )a 2 and ω( )a 2 are re-
spectively given by:

ω ω ω Δ ω( ) ≈ ( ) + Δ ̇ ( ) − ¨ ( ) ( )a a a aj
2

, 59a2 1 1

2

1

ω ω ω Δ ω( ) ≈ ( ) + Δ ̇ ( ) − ¨ ( ) ( )a a a aj
2

, 59b2 1 1

2

1

where ( ) ( )̇ · = · ⊙a a d , ( ) ( )̇ · = · ⊙a a d , ( ) ( )¨ · ≜ · ⊙ ⊙a a d d ,

( ) ( )¨ · ≜ · ⊙ ⊙a a d d , in which ⊙ denotes the Hadamard pro-

duct, and = [ … ( − ) ]d d M d0, , , 1 T , = [ … ( − ) ]d d N d0, , , 1 T .
One can then approximate Eq. (1) as (omitting all terms containing
Δ > )n, 2 :n

η( ) ≈ ( ) + ( ) = … ( )y C nt t t t T, 1, , ; 60

where η α α α Δ α Δ= + −⎡⎣ ⎤⎦j T
1 2 2 2

2 , ρ ρ ρ( ) = ( ) ( ) ( )⎡⎣ ⎤⎦C t t t t1 2 3 , in
which ρ ( ) = ( ) =R st t i j, , 1, 2, 3i i , where

ω ω= ( ) ( ) ( )R a a , 61aT
1 1 1

ω ω ω ω= ̇ ( ) ( ) + ( ) ̇ ( ) ( )R a a a a , 61bT T
2 1 1 1 1

ω ω ω ω ω ω= ̇ ( ) ̇ ( ) + ¨ ( ) ( ) + ( ) ¨ ( ) ( )R a a a a a a
1
2

1
2

. 61c
T T T

3 1 1 1 1 1 1

5.2. Analytical expression of Δ( )CRB
We obtain the analytical expression for ( )ΔCRB by rederiving
the FIM expression based on the model Eq. (60) and then invert its
7 This is also supported by the fact that the ML estimator, and generally all high
resolution estimators, have asymptotically an infinite resolution capability, leading
to the ARL infinitely approaching to 0 [49,69].



5�5 parameter block of interest. The procedure of the derivation,
which can be found in Appendix A, leads to the following result:

Δ
ϕ

( ) =
′ + ( )Q

CRB
1

,
6211

for
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) ( )

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
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2

25
2

22 44

,

and in which ϕ′ = …i j, , 1, 5ij are the entries of the parameter
block of interest of the FIM based on the linearized model, defined
in Eqs. (A.1a)–(A.1j).

By the same vein of the derivation procedure for Eq. (62), we
can also obtain an analytical expression for ( )ΔMCRB and ( )ΔHCRB .
The resulting MCRB and HCRB retain the same expression as Eq.
(62), yet with ϕ′ij calculated by replacing κ N/ with ν in Eqs. (A.1a)–

(A.1j). The analytical expression for ( )ΔEMCB , however, cannot be
attained in an analogous way.

5.3. Smith equation and ARL expression

Let δ denote the ARL of the two targets in our model. In light of
Smith's criterion [35], these two targets can be resolved w.r.t. their
electrical angles if Δ is greater than the standard deviation of the
estimate of Δ (denoted by σΔ).

8 Hence, the ARL δ, being per defi-
nitionem the lower limit of Δ that fulfills the above criterion, is
identical to the value of Δ for which Δ σ= Δ

2 2 holds. Furthermore, it
is known that under mild conditions [70] σ Δ≈ ( )Δ CRB , therefore
the value of δ can compute as the solution to the following
equation:

Δ Δ= ( ) ( )CRB , 632

which is referred to, conventionally, as the Smith equation.
The solution of the Smith equation (63) is given by substituting

Eqs. (A.1a)–(A.1j) into Eq. (62) and then combining the latter with
Eq. (63). In doing so, we omit all the terms containing Δ >n, 4n , to
make the equation easier to solve. Besides, we know from the
parameter transformation property of the CRB [71] that

Δ Δ( ) = ( − )CRB CRB , meaning if Δ is a root of (63), then Δ− will also
be a root thereof, thus allowing us to justifiably remove those
terms in the equation that contain Δ =n, 1, 3n (odd powers of Δ).
As a result, we obtain the following quartic equation of Δ:

Δ Δ− − = ( )A B C 0, 644 2

where

( ) ( )
κ α γ γ γ γ γ γ γ γ γ γ γ γ= | | + * * − | | − | | − | | 65aA

N
2

2 ,2
2

11 22 33 13 12 23 11 23
2

22 13
2

33 12
2

γ γ γ= − | | ( )B , 65b11 33 13
2

γ γ γ= − | | ( )C ; 65c11 22 12
2

in which (·)* denotes the complex conjugate, and γ =i j, , 1, 2, 3ij

are defined in Eq. (A.2).
The ARL δ is taken as the positive real root of Eq. (64), namely:

δ = + +
( )

B B AC
A

4
2

,
66

2

while the other roots are trivial and rejected.
8 Here we assume, without loss of generality, that Δ > 0.
5.4. Existence of the valid root

We remark that Eq. (65a) can be reformulated as:

κ α Γ= | | ( )A
N

2
, 67

2
2

in which Γ is a 3�3 Gramian matrix whose entries are:

ϱ ϱγΓ = = = ( )⎡⎣ ⎤⎦ i j, , 1, 2, 3, 68i j ij i
H

j,

where ϱ ρϒ=i i
1
2 ( ϒ is defined in Appendix A.) From Eqs. (61a)–

(61c) it is clear that ϱ =i j, , 1, 2, 3i , are linearly independent from
one another, unless when =d p1M and =d q1N , where 1M and 1N

represent the ones vectors of dimension M and N, respectively, p
and q are constants not both zero, which occurs only when the
inter-sensor spacings at both the transmitter and the receiver all
become zero, which is an invalid condition in practice. Thus the
Gramian matrix Γ is positive definite, and >A 0.

Meanwhile, we can show that >B 0 and >C 0 by employing
the Cauchy–Schwarz inequality to Eqs. (65b) and (65c); here the
equality also holds only under the invalid condition explained
above. Now, it follows that + >B AC4 02 , signifying that the
quadratic equation (64) has two distinct real roots, of which our
expression in Eq. (66) is the positive one.
5.5. Asymptotic expression of δ

The expression in Eq. (66) has room for further simplification.
Consider the structure of γij in Eq. (A.2):

∑

∑ ∑

ρ ργ
σ

σ
λ

Υ Σ= = ( ) ̌ ( )

= ( ) [ ( )]
( )

=

−

= =

⎡⎣ ⎤⎦

s R R s

UR s UR s

t t

t t

1

1
,
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ij i
H

j
t

T
H

i
H

j

t

T

n

N

n i
H

j

2
1

1

2
1 1

in which U is a the matrix containing the singular vectors of Σ̌−1,
with corresponding eigenvalues denoted as λ = …n N, 1, ,n . From
Eq. (A.2), it is apparent that in the asymptotic cases, e.g., large T, N,
or high SCR (which signifies large ∑ ( )= s tt

T
1

2 or small s2), we
have γ ⪢0ij . Furthermore, since from Eqs. (65a)–(65c) we have

asymptotically that γ= ( )A O ij
3 , γ= ( )B O ij

2 , and γ= ( )C O ij
2 , thus

γ γ( ) = ( )⪡( ) = ( )− −B A O C A O/2 /ij ij
2 2 1 , which, applied consecutively to

Eq. (66), results in:

δ = + + ≈
( )

⎛
⎝⎜

⎞
⎠⎟

B
A

B
A

C
A

C
A2 2

,
70

2
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which is our proposed asymptotic expression for δ.
5.6. ARL and the texture parameters

Eq. (70) is not only more concise in form, but allows us to re-
veal the relationship between the ARL and the texture parameters
of the clutter. The derivation follows similar steps as in Section 4.5.

First, note that Eq. (A.2) shows γ σ∝ 1/ij
2, which, applied to Eqs.

(65a) and (65c), leads to κ σ∝ ( )A / 2 3 and σ∝ ( )C 1/ 2 2. With Eq. (70)
it then follows that:

δ σ κ∝ ( )/ , 7124

and further, by invoking Eqs. (48) and (50), that:



10-2

10-1

100

101

102

M
S

E

CRB( )
CMLE
IMLE, one iteration
IMLE, two iterations
IMAPE, one iteration
IMAPE, two iterations

2 4 6 8 10 12 14

T

10-2

10-1

100

101

M
S

E

CRB( )
CMLE
IMLE, one iteration
IMLE, two iterations
IMAPE, one iteration
IMAPE, two iterations

Fig. 1. Δ( )MSE vs. T under K-distributed clutter, =SCR 10 dB.
( )
( )

( )
( )( )

( )

∫
δ

Γ

∝

‐

+ + −
+

‐
> ( )

+ −

+∞ + − − −

−

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

a

a x
K x

K x
x

a N a

a a N
a

2

d

, K distributed clutter,

1 1
, t distributed

clutter, for 1. 72

N a

N a a N

a N

2

0
1 1

2
4

4

In both cases δ decreases as a increases,9 viz., the ARL is positively
correlated with a.

Furthermore, by combining Eqs. (71), (49) and (51), we observe
the independence of the ARL of the scale parameter b under both
forms of clutter.

The impact of the texture parameters on the ARL is thus in
accordance to that on the CRLBs, and will likewise be certified by
our simulation.

5.7. ARL based on other CRLBs

Apart from the ARL based on the standard CRB, one can also
obtain its variants based on each of the other CRLBs discussed in
Section 4, by equating Δ2 to the specific CRLB and finding its valid
root. For the ARL based on the EMCB, no closed-form expression
seems attainable, and its value can be numerically evaluated by
the procedure we used in [34]. For the ARL based on the MCRB/
HCRB, on the other hand, one can use the analytical expression of

( )ΔMCRB or ( )ΔHCRB proposed at the end of Section 5.2 and obtain
an analytical expression for δ by following the same procedure as
that in Section 5.3. In this case, δ retains the expression as Eqs. (66)
and (70), with only the difference that in the expression of A in Eq.
(65a) κ N/ is replaced by ν.
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Fig. 2. Δ( )MSE vs. SCR under K-distributed clutter.
6. Numerical illustrations

In our simulations we consider, unless otherwise stipulated, a
collocated MIMO radar comprising M¼5 sensors at the transmit-
ter and N¼4 at the receiver, both with half-wave length inter-
element spacing. The DOD/DOA of the first target is 60°, and the
angular spacing Δ between the targets has the value of 1. Fur-
thermore, the coefficients α1 and α2 are chosen to be + j2 0.5 and

− − j1 3 , respectively. The snapshot number T¼6. Both the real
and imaginary parts of the entries of the target source vectors ( )s t
are generated within the interval [ − ]1, 1 . For K-distributed clut-
ter, we choose a¼2 and b¼50; and for t-distributed clutter, a¼1.1
and b¼10. The entries of the speckle covariance matrix Σ are
generated by σΣ[ ] = · = …| − | ( − )π

e m n N0. 9 , , 1, ,m n
m n j m n

,
2 2 [72]. The

SCR is 0 dB and the number of Monte-Carlo trials is 500.
In Figs. 1 and 2, we plot the MSEs of the estimation of Δ under a

K-distributed clutter, and in Figs. 3 and 4 under a t-distributed
clutter, versus the snapshot number T and the SCR, respectively.
The MSEs are obtained by implementing the CMLE in Eq. (21) and
our proposed IMLE and IMAPE, and are compared with Δ( )CRB
derived in Section 4.1. From these four figures, it becomes appar-
ent that the conventional algorithm becomes poor when the
clutter is follows a SIRP, and the proposed algorithms lead to far
superior performance. The figures also show that as few as two
iterations are sufficient for both of our algorithms to have a sa-
tisfactory performance in terms of a resulting MSE appropriately
close to Δ( )CRB , in asymptotic T and SCR cases.

In Fig. 5, we plot the CRLBs derived in Section 3 under K-dis-
tributed clutter, and in Fig. 6 under t-distributed clutter, versus T
9 Again, this relationship for a K-distributed clutter can only be determined
numerically.
and N, respectively. In both figures, we add, for comparison, the
CRB under Gaussian clutter assumption (denoted by Δ( )CRBG , for
which κ = N). From the figures, we notice that these bounds ex-
hibit exactly the same relationships as were explained in Section
4.4, namely, that both the EMCB and the standard CRB is larger
than the MCRB/HCRB, to which the EMCB approaches as T gets
larger, or the CRB approaches as N does. Furthermore, the EMCB is
indifferent to the change of N, and the CRB to that of T, in terms of



Fig. 6. Left: CRLBs vs. T, M¼6, N¼3; right: CRLBs vs

Fig. 5. Left: CRLBs vs. T, M¼6, N¼3; right: CRLBs vs.
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Fig. 4. Δ( )MSE vs. SCR under t-distributed clutter.
their relative distance to the MCRB/HCRB. Which of the two is
larger is then indefinite and depends on the specific choice of T
and N. Furthermore, one can see that the CRB under a SIRP clutter
assumption is lower than that under the Gaussian one, which
is in accordance with the result in [73], where it was proved
that the CRB under the Gaussian data assumption is the worst-case
one.

In Fig. 7, we inspect the impact of the texture parameters on
the CRLBs under K-distributed clutter, and in Fig. 8 under t-dis-
tributed clutter, by plotting, in the left part of both figures, the
CRLBs versus a under fixed b, and in the right versus b under fixed
a ( Δ( )CRBG is also plotted in all the four cases for comparison). The
results are in exact accordance with what we have discussed in
Section 4.5, that for both clutter distributions, the CRLBs increase
with a and remain indifferent to the change of b. It is notable that
the EMCB under K-distributed clutter, whose relationship with a
and b has not been analytically established, also follows the same
rule as the other CRLBs.
. N, M¼6, T¼2. Both under t-distributed clutter.

N, M¼6, T¼2. Both under K-distributed clutter.



Fig. 8. Left: CRLBs vs. a; right: CRLBs vs. b. Both under t-distributed clutter.

Fig. 7. Left: CRLBs vs. a; right: CRLBs vs. b. Both under K-distributed clutter.
In Fig. 9, we verify, under both K-distributed and t-distributed
clutters, our proposed analytical expressions of the ARL in Eqs.
(66) and (70) (denoted in the figure by δ2 and δ3, respectively) by
plotting them versus the SCR together with the exact ARL (denoted
in the figure by δ1), which is numerically obtained by the approach
that we proposed in [34] without any approximation. The figure
shows clearly that the values of the three curves essentially co-
incide in asymptotic cases (above 0 dB in the context) for both
distributions of clutter.

In Figs. 10 and 11, we investigate the impact of the texture
parameters a and b on the ARL under K-distributed and t-dis-
tributed clutters, respectively. Again, we fix one of the two
parameters and vary the other, and compare the resulting ARLs.
One can see from these figures that δ increases with a, but remains
invariant w.r.t. changes in b, as discussed in Section 5.6. We also
plot the ARL under Gaussian clutter for comparison, which upper-
bounds all the ARL results obtained under the various SIRP clutter
models considered. In fact we can say, as a direct generalization to
the conclusion in [73], that for given noise power, the targets
under Gaussian noise are the most difficult to be correctly
resolved.

Finally, in Fig. 12 we inspect the respective impact of the power
of the two targets on the ARL, by plotting the exact ARL (denoted
by δ1) and the analytical ARL in Eq. (66) (denoted by δ2) for both
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Fig. 9. ARL vs. SCR, M¼6, N¼8, under K-distributed and t-distributed clutters.
distributions of clutter, with the power (represented by the ab-
solute value of the RCS factor) of one of the sources fixed and the
other varying. From the figure one may observe that, while the
ARL decreases with an increasing α| |2 , it is independent of the
value of α| |1 . One may also gain insight into this from our expres-
sion in Eq. (65a), which is only dependent on α| |2 . This follows from
the fact that in our model we consider the DOD/DOA of the first
source to be known, and the second unknown. Thus, increasing
the power of the known source is of no avail in meliorating the
resolvability of the sources, and the ARL depends solely on the
concrete value of the power of the unknown source, rather than
the relative ratio between the power of the two sources.

7. Conclusion

This paper is dedicated to a systematical investigation into the
target estimation and target resolvability problem in a MIMO



Fig. 11. ARL vs. SCR. Left: varying a, fixed b; right: varying b, fixed a. Both with M¼6 and N¼8 under t-distributed clutter.

Fig. 12. Left: ARL vs. α| |2 , α| | = 11 ; right: ARL vs. α| |1 , α| | = 12 . Both with M¼6 and N¼8, under K-distributed and t-distributed clutters.
context under SIRP clutter. We first devised, employing the step-
wise numerical concentration approach, two independent but in-
terconnected algorithms, the IMLE and the IMAPE, to deal with the
estimation problem of the target spacing. Simulations show that
both of our algorithms require only a few iterations to attain
convergence, and lead to significantly superior performance than
the conventional ML approach.

Next, we derived various CRLBs w.r.t. the target spacing as
measures of performance for our algorithms, and analytically
compared their relationships. Furthermore, by analytically in-
vestigating the effects of the texture parameters on the CRLBs,
we found that they all have a positive correlation with
the shape parameter, but are all independent of the scale
parameter.

We then turned to the resolvability problem, namely, the ARL
of two closely spaced targets. Based on the non-matrix form ex-
pression of the CRB w.r.t. the target spacing, which was derived as
a by-product, we obtained two analytical expressions for the ARL.
We then analyzed the effects of the texture parameters on the ARL,
which is analogous to their effect on the CRLBs. Our analytical
findings on the CRLBs and the ARL are also numerically corrobo-
rated by simulations.



Appendix A. Derivation of the analytical Δ( )CRB

We follow the same procedure as in Section 4.1 to rederive
Δ( )CRB based on the model Eq. (60), from which the FIM obtained

has exactly the same block structure as shown in Eq. (27). The
elements of its parameter block of interest Φ′ have the following
expressions:

ϕ κ α γ γ Δ γ′ = ( − Δ + ) ( )
∼

N
2

4 4 A.1a11
2

2

22 23
2

33
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in which

ρ ργ ϒ= = ( )i j, , 1, 2, 3, A.2ij i
H

j

where ρ ρ ρ= [ ( ) … ( )]T1 , ,i i
T

i
T T , ρ ρ ρ= [ ( ) … ( )]T1 , ,j j

T
j
T T , and

ϒ Σ= ⊗ −IT
1. The symbols Φ′ and ϕ′ij are used for these to be

distinguished from their parallels Φ and ϕij derived in Section 4.1
based on the original model.

Let us introduce the following compact block matrix re-
presentation of Φ′:

φ
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By employing the block matrix inversion lemma [74] on Φ′ and on
Ω consecutively, we obtain:
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are 2�2 matrices, and Ω−
1

1 and Ω−
3

1 are simply ϕ ′ I1/ 22 2 and ϕ′ I1/ 44 2,
respectively.

After calculation, we obtain the analytical expression for
( )ΔCRB from Eq. (30) as:
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