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1. Introduction

Range-spread target detection has received an increasing atten-
tion in the last two decades [1], which is mainly due to the rise 
of high resolution radar (HRR). Indeed, an HRR can resolve a sin-
gle target as multiple scattering centers, depending on the range 
extent of the target and the range resolution of the radar system 
[2]. The improvement of the range resolution capabilities results 
in a reduction of the clutter power in each range cell, hence im-
proving the detection performance. It is worth mentioning that 
range-spread target detectors are useful in many situations, e.g., 
for the detection of large ships with coastal radars or detection of 
a cluster of point like target, moving at the same velocity and in 
close spatial proximity to each other [3].

Nevertheless, performing range-spread target detection requires 
to develop a proper strategy since classical adaptive detection 
schemes, originally proposed for point-like targets, may lead to 
poor performances [4,5]. This is mainly due to the fact that the 
target signal may contaminate the secondary cells, while these 
are generally assumed to be target-free in the classical context of 
point-like target detection.

* Corresponding author.
E-mail address: amennad@spg.tu-darmstadt.de (A. Mennad).
Range-spread target detection under Gaussian distributed clut-
ter has been extensively investigated. In [6], the authors proposed 
a detector for spatially distributed targets embedded in white 
Gaussian noise, based on a priori knowledge of the target scatterer 
density. A modified generalized likelihood ratio test (MGLRT) de-
tector was proposed in [7] to account for a singular estimated clut-
ter covariance matrix. Furthermore, a fast converging detector with 
bounded constant false alarm rate (CFAR) property was derived in 
[8], under the assumption of dominant thermal noise at the re-
ceiver. On the other hand, an adaptive detection of range-spread 
target in homogeneous and partially homogeneous environments 
was addressed in [1] and [9]. Specifically, [1] and [9] assume that 
the secondary data are signal-free components and that they share 
the same covariance matrix structure, but with possibly fluctuating 
power.

Nevertheless, for HRR operating at low grazing angles or in a 
maritime environment, the Gaussian model of the clutter is no 
longer valid. More precisely, in [10], the clutter has been suc-
cessfully modeled as a compound-Gaussian process. A compound-
Gaussian process is the product of a real positive random process, 
named texture, and a complex Gaussian process, named speckle. In 
the last few years, many results have been obtained for the adap-
tive target detection in compound-Gaussian clutter. As an example, 
Gini and Farina proposed the so-called generalized matched sub-
space detector (GMSD) [11]. The GMSD, which is a CFAR detector, 
aims to detect an unknown deterministic signal, but known to lie 
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in a given subspace, corrupted by a compound-Gaussian clutter. In 
[12], the authors have derived an adaptive detector for range and 
Doppler distributed targets, embedded in a compound-Gaussian 
clutter, assuming target-free secondary cells.

In practice, the clutter covariance matrix is often unknown and 
commonly estimated from signal free-target secondary data in the 
context of compound-Gaussian process. In [13], the authors used 
the approximated maximum likelihood method (AML), to estimate 
the clutter covariance matrix, from a set of homogeneous and sig-
nal free-target secondary data. Nevertheless, to respect the non-
singularity condition of the estimated covariance matrix, a large 
number of secondary data is required, which in practice, can con-
tain interfering targets or other kind of non-homogeneities [14]. 
To cope with the issue of low sample, structural information about 
the clutter covariance matrix can be exploited. Specifically, in this 
paper, we take advantage of modeling the clutter as an autore-
gressive process. Such modeling does not rely on a covariance 
matrix estimation step and consequently, avoids the need for large 
homogeneous secondary data set. This methodology has already 
been applied in the context of radar. More precisely, adaptive de-
tection in unknown colored noise, modeled by an autoregressive 
process is addressed in [15], for known point-like target signals 
and in [16] for a target signal known up to a scaling factor. In [17]
and [18], the authors modeled the speckle component of the clut-
ter by a complex Gaussian autoregressive process of order P , for 
range-spread target detection in homogeneous and heterogeneous 
environment.

Nevertheless, in this paper, for each range cell and for an au-
toregressive process of order P and N samples, we propose to 
predict the P first samples in a backward manner, and samples 
from P + 1 until N in a forward manner, using only cells un-
der test. The proposed scheme is compared with some existing 
ones, especially the recent algorithms presented in [17] and [18], 
which use only the forward prediction, by considering just N − P
samples, unlike the proposed algorithm which uses all available 
samples. A performance analysis in terms of false alarm proba-
bility and detection probability is performed for different target 
models. Our numerical results indicate that the proposed detector 
outperforms the autoregressive GLRT (ARGLRT) detector from [17]
and [18] in homogeneous and heterogeneous environment, espe-
cially when few samples are available. In addition, the proposed 
method outperforms the GLRT detector based on the AML estima-
tor of the clutter covariance matrix, which requires a large number 
of secondary data [19].

This paper is organized as follows. In section 2, we describe 
the data model. In section 3, we present the classical AR modeling 
and the proposed forward–backward AR modeling. Section 4 is de-
voted to the proposed detection algorithm. Simulation results are 
discussed in section 5 and finally a conclusion is given in section 6.

2. Problem setup

Let us consider a radar that collects N pulses during the time
on target. For the i-th range cell, these pulses form the following 
complex valued received vector

zi = [zi (1) , . . . , zi (N)]T , i = 1, . . . , L (1)

where [.]T denotes the transpose operator and L is the number 
of range cells under test. For sake of simplicity, we assume that 
the received data vectors are independent among range cells [1,
11] and that the target is completely contained within L cells.

The detection problem is formulated as the following binary hy-
pothesis testing problem{
H0 : zi = ci, i = 1, . . . , L

H1 : zi = ci + αip, i = 1, . . . , L
(2)
in which, ci = [ci (1) , . . . , ci (N)]T denotes the clutter vector, p =
[p (1) , . . . , p (N)]T = [

1, e j2π fd , . . . , e j2π(N−1) fd
]T

is the N-dimen-
sional time steering vector, where fd denotes the normalized tar-
get Doppler frequency. In addition, we assume that fd is known [9,
16,18–20], or efficiently estimated, see e.g., [12,21]. Finally, the un-
known complex amplitudes αi are accounting for both the channel
attenuation and the target cross section.

According to the compound-Gaussian model, the clutter ci
for the i-th range cell, is modeled as the product of two inde-
pendent random variables. Specifically, ci = √

τix, where x is a 
N-dimensional zero-mean complex circular Gaussian vector, rep-
resenting the speckle component, and τi denotes the variance of
the underlying conditional Gaussian vector, named texture and
represents the local clutter power, for each range cell. In short-
hand notation, we write x ∼ CN (0,M), where M is the normalized
covariance matrix of the speckle, such that trace(M) = N . We as-
sume that τi and x are mutually independent, consequently, one
has E

[
cicH

i

] = τiM = Mc , with Mc denoting the clutter covariance 
matrix and [.]H indicates the conjugate transpose operator. The 
conditional probability density functions (pdf) of zi under H0 and 
H1 can be expressed, respectively, as

f (zi | H0;τi,M) = 1

(πτi)
N |M| exp

(
− zH

i M−1zi

τi

)
(3)

f (zi | H1;αi, τi,M)

= 1

(πτi)
N |M| exp

(
− (zi − αip)H M−1 (zi − αip)

τi

)
(4)

in which, |.| denotes the determinant.

3. AR modeling

3.1. Forward modeling

Let us assume that the clutter model is given by an AR process 
of order P . Then, for n = P + 1, . . . , N and i = 1, . . . , L, we can 
write

ci (n) = −
P∑

k=1

ai(k)ci(n − k) + wi(n) (5)

where ai = [ai(1), . . . , ai(P )]T is the P -dimensional vector of com-
plex forward AR coefficients in the range cell i and wi(n) is zero 
mean complex Gaussian white noise with variance τi [22]. Under 
the AR model [16], we can rewrite (2) as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H0 : zi(n) = −∑P
k=1 ai(k)zi(n − k) + wi(n)

i = 1, . . . , L;n = P + 1, . . . , N

H1 : zi(n) = −∑P
k=1 ai(k) (zi(n − k) − αi p(n − k))

+ αi p(n) + wi(n)

i = 1, . . . , L;n = P + 1, . . . , N

(6)

The conditional pdfs (3) and (4) can be approximated for N � P
[18,23], respectively, by

f (zi | H0;τi,ai) � 1

(πτi)
N−P

exp

(
− (z̃i + Z̃ iai)

H (z̃i + Z̃ iai)

τi

)
(7)

f (zi | H1;αi, τi,ai) � 1

(πτi)
N−P

× exp

(
− (z̃i + Z̃ iai − αi(p̃ + P̃ai))

H (z̃i + Z̃ iai − αi(p̃ + P̃ai))

τi

)
(8)



where the (N − P ) dimensional vectors z̃i and p̃ are given by z̃i =
[zi(P +1), . . . , zi(N)]T and p̃ = [p(P +1), . . . , p(N)]T , whereas, the 
(N − P ) × P -dimensional matrices Z̃ i and P̃ are expressed by

Z̃ i =

⎡⎢⎢⎢⎢⎣
zi(P ) zi(P − 1) . . . zi(1)

zi(P + 1) zi(P ) . . . zi(2)

...
...

. . .
...

zi(N − 1) zi(N − 2) . . . zi(N − P )

⎤⎥⎥⎥⎥⎦
and

P̃ =

⎡⎢⎢⎢⎢⎣
p(P ) p(P − 1) . . . p(1)

p(P + 1) p(P ) . . . p(2)

...
...

. . .
...

p(N − 1) p(N − 2) . . . p(N − P )

⎤⎥⎥⎥⎥⎦ .

In the above equations, we used samples from P + 1 to N to 
model the received observation in a forward manner. In the follow-
ing, we propose to extend this modeling by adding the prediction 
of samples from 1 to P , in a backward manner in order to gain 
more information, thus enhancing the performance of the pro-
posed detector.

3.2. The proposed forward–backward modeling

In the backward prediction, we propose to predict the (n − P )-
th sample from the P future samples. Thus, for n = P + 1, . . . , N
and i = 1, . . . , L, we obtain

ci(n − P ) = −
P∑

k=1

bi(k)ci(n − k + 1) + wi(n) (9)

where bi = [bi(1), . . . , bi(P )]T is the P -dimensional vector of com-
plex backward AR coefficients in the i-th range cell and wi(n)

denotes a zero mean complex Gaussian white noise with variance 
τi [22].

In the backward context, we can rewrite (2), for n = P +
1, . . . , N and i = 1, . . . , L,⎧⎪⎨⎪⎩

H0 : zi(n − P ) = −∑P
k=1 bi(k)zi(n − k + 1) + wi(n)

H1 : zi(n − P ) = −∑P
k=1 bi(k)(zi(n − k + 1)

− αi p(n − k + 1)) + αi p(n − P ) + wi(n).

(10)

Let

zi = [z̆T
i z̃T

i ]T (11)

in which z̆i = [zi(1), ..., zi(P )]T and z̃i = [zi(P + 1), ..., zi(N)]T . In 
the following, samples of the vector z̆i are predicted by a backward 
manner and samples of the vector z̃i are predicted by a forward 
manner.

3.2.1. Prediction under H0 hypothesis
Under H0 hypothesis and from (10), the backward prediction 

of z̆i is given by

ˆ̆zi = − Z̆ ibi (12)

with

Z̆ i =

⎡⎢⎢⎢⎢⎣
zi(P + 1) zi(P ) . . . zi(2)

zi(P + 2) zi(P + 1) . . . zi(3)

...
...

. . .
...

z (2P ) z (2P − 1) . . . z (P + 1)

⎤⎥⎥⎥⎥⎦ . (13)
i i i
Using (6), the forward prediction of z̃i is given by

ˆ̃zi = − Z̃ iai . (14)

Consequently, from (12) and (14), and under H0, the forward–
backward prediction of zi is given by

ẑi =
⎡⎣ ˆ̆zi

ˆ̃zi

⎤⎦ = −Z idi (15)

with Z i = bdiag( Z̆ i, ̃Z i) and di = [bT
i , aT

i ]T . The residual of the 
forward–backward prediction of zi is given by

w i = zi − ẑi = zi + Z idi (16)

Then, the conditional pdf (3), under H0, can be approximated 
for N � P by [23]

f (zi | H0;τi,di) � 1

(πτi)
N

exp

(
− (zi + Z idi)

H (zi + Z idi)

τi

)
(17)

3.2.2. Prediction under H1 hypothesis
Let us denote

si = [s̆T
i s̃T

i ]T (18)

with

s̆i = [si(1), ..., si(P )]T , (19)

s̃i = [si(P + 1), ..., si(N)]T (20)

in which, si(n) = zi(n) − αi p(n), for n = 1, . . . , N . Under H1 hy-
pothesis and from (10), the backward prediction of s̆i conditioned 
to αi , is given by

ˆ̆si = − S̆ ibi (21)

with

S̆ i =

⎡⎢⎢⎢⎢⎣
si(P + 1) si(P ) . . . si(2)

si(P + 2) si(P + 1) . . . si(3)

...
...

. . .
...

si(2P ) si(2P − 1) . . . si(P + 1)

⎤⎥⎥⎥⎥⎦ . (22)

On the other hand, from (6), the forward prediction of s̃i condi-
tioned to αi , can be expressed by

ˆ̃si = − S̃ iai (23)

with

S̃ i =

⎡⎢⎢⎢⎢⎢⎣
si(P ) si(P − 1) . . . si(1)

si(P + 1) si(P ) . . . si(2)

...
...

. . .
...

si(N − 1) si(N − 2) . . . si(N − P )

⎤⎥⎥⎥⎥⎥⎦ . (24)

Finally, from (21) and (23), the forward–backward prediction of si
under H1 is given by

ŝi =
⎡⎣ ˆ̆si

ˆ̃si

⎤⎦ (25)

and its error vector is expressed as

w i = si − ŝi =
[

w̆

w̃

]
(26)



in which

w̆ = s̆i + S̆ ibi (27)

and

w̃ = s̃i + S̃ iai . (28)

In addition, using (10) and (19), we have

s̆i = z̆i − αi p̆, (29)

S̆ i = Z̆ i − αi P̆ (30)

with p̆ = [p(1), . . . , p(P )]T and

P̆ =

⎡⎢⎢⎣
p(P + 1) . . . p(2)

...
. . .

...

p(2P ) . . . p(P + 1)

⎤⎥⎥⎦ . (31)

Then, from (27), (29), (30) and after straightforward manipulations, 
we obtain

w̆ = z̆i + Z̆ ibi − αi

(
p̆ + P̆ bi

)
. (32)

Using the same methodology for w̃ , we have from (6) and (20):

s̃i = z̃i − αi p̃. (33)

On the other hand, (6) and (24) lead to

S̃ i = Z̃ i − αi P̃ (34)

Consequently, combining (28), (33) and (34), we obtain

w̃ = z̃i + Z̃ iai − αi

(
p̃ + P̃ai

)
(35)

Finally, from (32) and (35), the forward–backward residual vector 
of si conditioned to αi is given by

w i = zi + Z idi − αi (p + Pdi) (36)

with P = bdiag
(

P̆ , P̃
)

=
[

P̆ 0
0 P̃

]
.

In summary, using the same methodology as for H0, we con-
clude that the conditional pdf given in (4), under H1, can be ap-
proximated for N � P by

p(zi |H1;αi, τi,di) � 1

(πτi)
N

× exp

(
− (zi + Z idi − αi(p + Pdi))

H (zi + Z idi − αi(p + Pdi))

τi

)
(37)

4. The proposed adaptive detection algorithm

4.1. Homogeneous environment

In a homogeneous environment, it is commonly assumed that 
the clutter parameters do not change from cell to cell, which 
means that d � d1 = . . . = dL , and τ � τ1 = . . . = τL [17,18].

The optimum decision rule for target detection is the well 
known Neyman–Pearson criterion, which leads to the likelihood 
ratio test. Nevertheless, in our context, the parameters α =
[α1, . . . , αL], τ and d are unknown. We therefore resort to the 
suboptimal GLRT detector given by

�GLRT(z1, . . . , zL) =
max
α,τ ,d

f (z1, . . . , zL | H1;α, τ ,d)

max f (z1, . . . , zL | H0;τ ,d)

H1
≷
H0

δ (38)
τ ,d
where δ denotes the detection threshold which is set according to 
the desired value of the false alarm probability [24].

Assuming independent zi for i = 1, . . . , L and using (17)
and (37), the conditional joint pdfs of the total observation vec-
tors z1, . . . , zL under H0 and H1 are, respectively, approximated 
by

f (z1, . . . , zL | H0;τ ,d)

� 1

(πτ )N L
exp

(
−

L∑
i=1

(zi + Z id)H (zi + Z id)

τ

)
(39)

and

f (z1, . . . , zL | H1;α, τ ,d) � 1

(πτ )N L

× exp

(
−

L∑
i=1

(zi + Z id − αi(p + Pd))H (zi + Z id − αi(p + Pd))

τ

)
(40)

in which, the estimation of the unknown parameters are per-
formed by the maximum likelihood method in the following.

4.1.1. Maximum likelihood estimate of α
Under H1 hypothesis, we can rewrite (40) as:

f (z1, . . . , zL | H1;α, τ ,d) � 1

(πτ )N L
exp

(
−

L∑
i=1

|gi − αiψ |2
τ

)
(41)

in which gi = zi + Z id and ψ = p + Pd. The maximum likelihood 
estimator (MLE) of αi is given by

α̂i = arg min
αi

|gi − αiψ |2 = ψ H gi

ψ Hψ
. (42)

Plugging (42) into (41), we obtain

f (z1, . . . , zL | H1; α̂, τ ,d)

� 1

(πτ )N L
exp

(
−

L∑
i=1

(zi + Z id)H P ⊥
ψ (zi + Z id)

τ

)
(43)

where the orthogonal projector onto the subspace spanned by ψ is 
given by P ⊥

ψ = IN − ψψ H

ψ H ψ
in which IN is the N × N identity matrix 

and α̂ = [α̂1, . . . , α̂L]T .

4.1.2. Maximum likelihood estimates of τ and d
To find the maximum likelihood estimate of τ under H0 and 

H1, we maximize (39) and (43) with respect to τ , respectively. 
After some manipulations, we obtain

τ̂H0 =
∑L

i=1

(
zi + Z idH0

)H (
zi + Z idH0

)
N L

(44)

τ̂H1 =
∑L

i=1

(
zi + Z idH1

)H P ⊥
ψ

(
zi + Z idH1

)
N L

(45)

Following the same methodology as in [18], the MLE of the for-
ward part, i.e., a under H0 and H1, respectively, is given by

âH0 = −
(

L∑
i=1

Z̃
H
i Z̃ i

)−1 (
L∑

i=1

Z̃
H
i z̃i

)
(46)

âH1 = −
(

L∑
Z̃

H
i P ⊥

φ̃
Z̃ i

)−1 (
L∑

Z̃
H
i P ⊥

φ̃
z̃i

)
(47)
i=1 i=1



where the orthogonal projector onto the subspace spanned by 

φ̃ = [1, . . . , e j2π fd(N−P−1)]T is given by P ⊥
φ̃

= IN−P − φ̃φ̃
H

φ̃
H
φ̃

. Conse-

quently, the backward coefficients are deduced, under H0 and H1, 
thanks to the following relationship (c.f. [22] for proof)

b(k) = a∗(P − k + 1), k = 1, . . . , P (48)

4.1.3. Decision rule of the proposed forward–backward autoregressive 
GLRT detector

We replace the unknown parameters by their MLE estimates, in 
the joint conditional pdfs of the total observation z1, . . . , zL under 
H0 and H1, from (39) and (40), we find, respectively,

f (z1, . . . , zL | H0; τ̂H0 , d̂H0)

�
⎡⎢⎣ N L

π exp(1)
∑L

i=1

(
zi + Z id̂H0

)H (
zi + Z id̂H0

)
⎤⎥⎦

N L

(49)

and

f (z1, . . . , zL | H1; α̂, τ̂H1 , d̂H1)

�
⎡⎢⎣ N L

π exp(1)
∑L

i=1

(
zi + Z id̂H1

)H
P ⊥

ψ

(
zi + Z id̂H1

)
⎤⎥⎦

N L

.

(50)

where P⊥
ψ is evaluated for d̂H1 .

Consequently, from the above equations, the decision rule of 
the proposed detector is given thanks to approximations (49) and 
(50), i.e.,

�FBD-H(z1, . . . , zL) =
∑L

i=1(zi + Z id̂H0)
H (zi + Z id̂H0)∑L

i=1(zi + Z id̂H1)
H P ⊥

ψ (zi + Z id̂H1)

H1
≷
H0

δ.

(51)

The proposed detector (51) is named forward–backward autore-
gressive GLRT detector in a homogeneous context (FBD-H). It uses 
all available samples (i.e., from 1 to N) in contrast to the ARGLRT-
CG detector given in [17] and the ARGLRT detector given in [18], 
which use only N − P samples.

4.2. Heterogeneous environment

In a heterogeneous environment, the clutter parameters change 
in space. This means that the autoregressive coefficients di , as well 
the clutter power τi , change from range cell to range cell. As in the 
homogeneous environment context, we resort to the GLRT strategy 
in order to setup our detector. Let us denote α = [α1, . . . , αL]T , 
τ = [τ1, . . . , τL]T and d = [dT

1 , . . . , dT
L ]T , which represent the un-

known parameters. The GLRT is expressed as follows:

�GLRT(z1, . . . , zL) =
max
α,τ ,d

f (z1, . . . , zL | H1;α,τ ,a)

max
τ ,d

f (z1, . . . , zL | H0;τ ,a)

H1
≷
H0

δ. (52)

Using (17) and (37), the conditional joint pdfs of the total ob-
servation under H0 and H1 and for independent zi , i = 1, . . . , L, 
are approximated, respectively, by

f (z1, . . . , zL | H0;τ ,d)

� 1∏L
(πτi)

N
exp

(
−

L∑ (zi + Z idi)
H (zi + Z idi)

τi

)
(53)
i=1 i=1
f (z1, . . . , zL | H1;α,τ ,d) � 1∏L
i=1(πτi)

N

× exp

(
−

L∑
i=1

(zi + Z idi − αi(p + Pdi))
H (zi + Z idi − αi(p + Pdi))

τi

)
(54)

in which, the estimation of the unknown parameters will be per-
formed by the maximum likelihood method in the following.

4.2.1. Maximum likelihood estimate of α
Let us denote, under H1 hypothesis, gi = zi + Z idi and ψ i =

p + Pdi . Then (54) can be rewritten as

f (z1, . . . , zL | H1;α,τ ,d)

� 1∏L
i=1(πτi)

N
exp

(
−

L∑
i=1

|gi − αiψ i|2
τi

)
. (55)

The MLE of αi is given by

α̂i = ψ i
H gi

ψ i
Hψ i

. (56)

Plugging (56) into (55), we obtain

|gi − α̂iψ i|2 = |gi|2 − |gi
Hψ i|2

ψ i
Hψ i

= gi
H P ⊥

ψ i
gi (57)

in which the orthogonal projector onto the subspace ψ is given by

P ⊥
ψ i

= IN − ψ iψ i
H

ψ i
Hψ i

, (58)

leading to

f (z1, . . . , zL | H1; α̂,τ ,d) � 1∏L
i=1(πτi)

N

× exp

(
−

L∑
i=1

(zi + Z idi)
H P ⊥

ψ i
(zi + Z idi)

τi

)
. (59)

4.2.2. Maximum likelihood estimates of τ and d
To find the maximum likelihood estimate of τi under H0 and 

H1 we maximize (53) and (59) with respect to τi , respectively. 
After some manipulations, we obtain

τ̂H0,i =
(

zi + Z id̂H0,i

)H (
zi + Z id̂H0,i

)
N

(60)

τ̂H1,i =
(

zi + Z id̂H1,i

)H
P ⊥

ψ i

(
zi + Z id̂H1,i

)
N

(61)

Following the same methodology as in [18], the MLE of the for-
ward coefficients under H0 and H1, are given, respectively, by

âH0,i = −
(

Z̃
H
i Z̃ i

)−1 (
Z̃

H
i z̃i

)
(62)

and

âH1,i = −
(

Z̃
H
i P ⊥

φ̃
Z̃ i

)−1 (
Z̃

H
i P ⊥

φ̃
z̃i

)
. (63)

Then, we deduce the backward coefficients estimation thanks to 
bi(k) = a∗(P − k + 1), k = 1, . . . , P [22].
i



4.2.3. Decision rule of the proposed forward–backward autoregressive 
GLRT detector

Let us replace the unknown parameters by their MLE estimates, 
in the joint conditional pdfs of the total observation vector under 
H0 and H1, from (53) and (54), we find, respectively,

f (z1, . . . , zL | H0; τ̂H0 , d̂H0)

�
⎡⎢⎣ N L

π L exp(L)
∏L

i=1

(
zi + Z id̂H0,i

)H (
zi + Z id̂H0,i

)
⎤⎥⎦

N

(64)

and

f (z1, . . . , zL | H1; α̂, τ̂H1 , d̂H1)

�
⎡⎢⎣ N L

π L exp(L)
∏L

i=1

(
zi + Z id̂H1,i

)H
P ⊥

ψ i

(
zi + Z id̂H1,i

)
⎤⎥⎦

N

(65)

Consequently, from the above equations, we obtain the follow-
ing decision rule

�FBD-T(z1, . . . , zL) =
L∏

i=1

(zi + Z id̂H0,i)
H (zi + Z id̂H0,i)

(zi + Z id̂H1,i)
H P ⊥

ψ i
(zi + Z id̂H1,i)

H1
≷
H0

δ

(66)

in which P ⊥
ψ i

is evaluated for d̂H1,i .
We name this proposed detector as forward–backward autore-

gressive GLRT detector in a heterogeneous environment (FBD-T). 
Unlike ARGLRT-HTG [17] and [18], FBD-T uses all available sam-
ples, i.e., from 1 to N . We will demonstrate in the next section 
that the proposed detectors, namely, FBD-H and FBD-T, have better 
performance compared respectively to the ARGLRT and ARGLRT-
HTG detectors for small data records, both in homogeneous and 
heterogeneous environment.

5. Performance analysis

This section is dedicated to numerical analysis of the proposed
detectors in the homogeneous and heterogeneous contexts.

In both contexts, we perform a numerical comparison between 
the detectors ARGLRT, ARGLRT-HTG [18], the AML-GLRT [13,19]
and the proposed FBD-H and FBD-T detectors, in terms of the false 
alarm probability P fa and the detection probability Pd.

5.1. Simulation setup

The standard Monte Carlo technique based on 100/P fa0 and 
10000 independent trials is used to estimate P fa and Pd respec-
tively, for a nominal value of the false alarm probability P fa0 =
10−4 and a number of cells under test L = 8. Furthermore, the or-
der of the AR model is set to P = 3, which is expected to give good 
performance for radar sea clutter [17,18].

The covariance matrix is derived according to an exponent-
correlation structure [17] given by

[M]m,n = ρ|m−n|,1 ≤ m,n ≤ N,0 ≤ ρ ≤ 1

where ρ represents the one-lag correlation coefficient. Typical val-
ues of ρ for radar sea clutter are in the interval [0.9, 0.99]. For 
these simulations, we set, e.g., ρ = 0.92 [19].

In the following, the clutter is assumed to be K-distributed, 
which models well the sea clutter [25]. In this latter case, the tex-
ture is gamma distributed as
fτ (τi) = 1

�(ν)

(
ν

μ

)ν

τ ν−1
i exp

(
− ν

μ
τi

)
u(τi) i = 1, . . . , L

(67)

where �(.) denotes the gamma function, μ and ν are, respectively, 
the scale and shape parameters and u(.) is the standard unit step 
function. Typical values of ν for sea clutter are greater than 0.4. Let 
us consider ν = 0.5, which represents a spiky clutter situation [12].

5.2. Background on the AML-GLRT detector

In the following, we give a brief description of the GLRT detec-
tor using the so-called AML estimator. We assume that the receiver
collects K i.i.d. vectors of secondary data zk = {√τkxk}K

k=1 from K
adjacent range cells. The AML estimator of the covariance matrix 
is given for K i.i.d. vectors of secondary data as

M̂AML(m + 1) = N

K

K∑
k=1

zkzH
k

zH
k M̂−1

AML(m)zk

(68)

with m = 1, . . . , t and t denotes the iteration number [19]. Regard-
ing the initialization, we use the normalized sample covariance 
matrix estimator, i.e.,

M̂AML(1) = M̂NSCM = N

K

K∑
k=1

zkzH
k

zH
k zk

. (69)

The convergence criterion used for the iterative algorithm is 
given by [13]

C(m) = ‖M̂AML(m + 1) − M̂AML(m)‖
‖M̂AML(m)‖ ≤ 10−3 (70)

where ‖.‖ denotes the Frobenius norm.
In our scenario, the number of iterations t is found to be equal 

to 3 most of the time. Greater values do not lead to further perfor-
mance improvements, this result was also noticed in [13] and [19].

Finally, the AML-GLRT detector based on the AML estimator is 
given by [26]

�AML−GLRT(z1, . . . , zL, z1, . . . , zK )

= −N
L∑

i=1

ln

(
1 − |pH M̂−1

AMLzi|2
(zH

i M̂−1
AMLzi)(pH M̂−1

AMLp)

)
H1
≷
H0

δ (71)

5.3. Performance in terms of false alarm probability

• From Fig. 1, we note that the FBD-H detector and the AML-
GLRT detector outperforms the ARGLRT detector in terms of
the CFAR property, especially for fd = 0, where we have a
maximum in the power spectral density (PSD) of the clutter.
This is due to the use of the whole sample set in the pre-
diction procedure of the FBD-H detector, while the ARGLRT
scheme uses only N − P samples.
On the other hand, we observe comparable performance of the
AML-GLRT and the proposed FBD-H detector. Nevertheless, it
is worth mentioning that the AML-GLRT uses a large number
of secondary data (in this case K = 64), which are supposed to
contain clutter only, to estimate the clutter covariance matrix,
whereas, the FBD-H uses only L = 8 cells under test with-
out the strong assumptions of homogeneous and not corrupted
secondary data.

• In Fig. 2, we compare the false alarm probabilities of the FBD-
H, ARGLRT and AML-GLRT detectors for different values of N
in a homogeneous context. We observe that the proposed FBD-
H detector and the AML-GLRT detector have almost a constant



Fig. 1. P fa versus fd for N = 32 and K = 64 in a homogeneous context.

Fig. 2. P fa versus N for fd = 0.

Fig. 3. P fa versus fd for N = 32, K = 64 in a non-homogeneous secondary data 
context.

false alarm probability equal to the nominal value P fa0, con-
trary to the classical detector ARGLRT which has higher value 
of the P fa.

• Let us focus on the robustness of the aforementioned detec-
tors w.r.t. non-homogeneities of the secondary data. We as-
sume that the primary and the secondary data do not share
the same covariance matrix. Specifically, let us assume a slight
difference of the correlation coefficient ρp = 0.92 for the pri-
mary data, whereas, the first half of the secondary data share
a correlation coefficient ρs,1 = 0.9 and the other half of the
secondary data share a correlation coefficient ρs,2 = 0.91. The
probability of false alarm for such scenario is represented in
Fig. 3. From this figure, we notice, as expected, a severe degra-
dation of the false alarm probability of the AML-GLRT detector
compared with the FBD-H detector. This represents one of the
major drawbacks of the AML-GLRT detector whereas the pro-
posed detector remains robust in such scenario.

• In order to consider the heterogeneous version FBD-T of the
proposed detector and the heterogeneous version ARGLRT-HTG
of the classical detector, we assume a K-distributed clutter
Fig. 4. P fa versus fd for N = 32, K = 64 of FBD-H, FBD-T, ARGLRT and ARGLRT-HTG 
detectors.

Fig. 5. P fa versus ν for N = 8.

data described in the beginning of section 5. The parameters 
are set as ρ = 0.92, ν = 0.5, μ = 1 and L = 8.
In Fig. 4, we plot the false alarm probability vs. the normal-
ized Doppler frequency of the detectors FBD-H, FBD-T, ARGLRT 
and ARGLRT-HTG. As expect, the homogeneous version of the 
proposed algorithm, namely FBD-H, outperforms the ARGLRT 
detector and its heterogeneous version ARGLRT-HTG. This is 
due to the spikiness nature of the clutter, for which the esti-
mated value of the clutter power for each range cell is injected 
on the detector, knowing that, the clutter power changes from 
range cell to range cell.

• In Fig. 5, we perform a numerical analysis of the false alarm
probability w.r.t. different values of the shape parameter ν for
N = 8. We observe that the ARGLRT-HTG, FBD-T and AML-
GLRT detectors have the CFAR property with respect to ν . This
is due to the fact that the aforementioned detectors take into
account the heterogeneous nature of the clutter and perform a
normalization with respect to the clutter power in each range
cell.

5.4. Performance in terms of detection probability

• Let us study the influence of samples number N on detection
probability of the FBD-H and the ARGLRT detectors for three
different target models (see Table 1).
From Figs. 6 and 7, we observe that the FBD-H has a better de-
tection performance compared with the ARGLRT for low values
of N . In fact, for N = 8 (cf., Fig. 6), the difference in the signal
to clutter ratio (SCR) between these two detectors is greater
than 1 dB for a detection probability equal to 0.5. This differ-
ence becomes less than 1 dB for N = 16 (cf., Fig. 7) and as N
increases, the two detectors have almost the same detection
probability. The advantage of working with low values of N is
to ensure the temporal stationarity of the clutter. In fact, pre-
vious analysis of recorded real sea clutter data [27,28], showed
that this process is non-stationary, both in time and space.



Table 1
Target models, location of different scatterers and ratio of cells energy with respect
to the total energy reflected.

Target models Cell number

1 2 3 4 5 6 7 8

M1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
M2 5/8 2/8 1/8 0 0 0 0 0
M3 1 0 0 0 0 0 0 0

Fig. 6. Pd versus SCR for N = 8.

Fig. 7. Pd versus SCR for N = 16.

In addition, the aforementioned figures show that the knowl-
edge of the fraction of the cells under test containing the 
target, is very important (see Table 1).
In the case where the target occupies a fraction of L range 
cells (e.g., M2 and M3 models), we observe a degradation 
in the probability of detection. For example, with the target 
model M2, where the target occupies three range cells with a 
dominant scatterer in the first range cell, the detection proba-
bility of the FBD-H decreases from 0.81 for M1 to 0.61 for M2

under SCR = 0 dB and N = 8. In the case where the target oc-
cupies one range cell, which is given by the target model M3, 
we observe a heavy degradation of the detection probability. 
This latter decreases to 0.44 for SCR = 0 dB and N = 8, which 
is due to the fact that one range cell over L cells under test is 
occupied by the target signal and the rest are occupied by the 
clutter, decreasing thus the SCR.

• In addition, Fig. 8 shows a comparison between the AR based
detectors for M1, from which we observe that the proposed
FBD-T detector gives better detection probability compared
with the FBD-H detector. Specifically, we deduce that the pro-
posed schemes (FBD-T, FBD-H) improve detection performance
of the classical scheme, i.e., ARGLRT and ARGLRT-HTG detec-
tors.

• Finally, we study the influence of the number of samples N
and K on detection probability of the FBD-H and the AML-
GLRT detectors, for a target uniformly distributed among the
L range cells. From Fig. 9, we observe that the FBD-H de-
Fig. 8. Comparison between FBD-T, FBD-H, ARGLRT and ARGLRT-HTG for N = 8 in
term of detection probability.

Fig. 9. Comparison between FBD-H and AML-GLRT for N = 8 and different values of
K in term of detection probability.

tector gives better detection performance compared with the 
AML-GLRT detector for K ≤ 2N . Furthermore, we notice that 
the performance becomes equivalent for K � N (not reported 
here), but in practice it is difficult to obtain a large number 
of homogeneous secondary data, whereas the FBD-H detector 
uses only L cells under test, to estimate the clutter covariance 
matrix and without any secondary data.

6. Conclusion

In this paper, we proposed two detectors that require no sec-
ondary data, based on both forward and backward auto-regressive 
GLRT scheme, for which the clutter is modeled by an autoregres-
sive model of order P . The proposed FBD-H and FBD-T detectors 
use the totality of the samples available for the prediction proce-
dure contrary to the classical detectors ARGLRT and ARGLRT-HTG 
that use only N − P samples. The proposed detectors give bet-
ter detection performance and have lower false alarm probability 
compared to the classical detectors ARGLRT and ARGLRT-HTG. Fur-
thermore, it is worth mentioning that they overcome the need for 
large homogeneous data set, which may be unavailable in prac-
tice, contrary to the AML-GLRT detector which requires a number 
of homogeneous secondary data K ≥ 2N in order to achieve same 
performance as the proposed detectors.
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