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Introduction

There has been tremendous interest in the investigation of array signal processing during the last three decades due to its importance in radar, sonar, seismology and communication systems [START_REF] Delmas | Stochastic Cramér-Rao bound for noncircular signals with application to DOA estimation[END_REF][START_REF] Berriche | Cramér-Rao bounds for MIMO channel estimation[END_REF][START_REF] Krim | Two decades of array signal processing research: the parametric approach[END_REF][START_REF] Stoica | Performance study of conditional and unconditional direction-of-arrival estimation[END_REF][START_REF] Ben-Haim | On the constrained Cramér-Rao bound with a singular Fisher information matrix[END_REF][START_REF] Anastasio | Cramer-Rao lower bound with pd < 1 for target localisation accuracy in multistatic passive radar[END_REF][START_REF] Noel | Bounds on distance estimation via diffusive molecular communication[END_REF][START_REF] Boyer | Performance bounds and angular resolution limit for the moving colocated MIMO radar[END_REF]. One can classify source localization, in the context of array processing, into the so-called far-field and near-field cases. The context of far-field sources assumes planar wavefronts of the propagating waves as they reach the array. Nevertheless, when the sources are located in the so-called near-field region, this assumption is no longer valid. More precisely, the source wavefronts must be assumed spherical, which requires both the range and the direction-of-arrival (DOA) parameter estimation to carry out the localization procedure [START_REF] Foroozan | Time reversal MIMO radar: improved CRB and angular resolution limit[END_REF][START_REF] Liu | Statistical angular resolution limit for point sources[END_REF][START_REF] Lu | Statistical resolution limit based on Cramér-Rao bound[END_REF]. One can find several estimation algorithms adapted for the near-field source localization [START_REF] El Korso | Conditional and unconditional Cramér-Rao bounds for near-field source localization[END_REF][START_REF] Haardt | Subspace methods and exploitation of special array structures[END_REF][START_REF] Gazzah | CRB-based design of linear antenna arrays for near-field source localization[END_REF][START_REF] Grosicki | A weighted linear prediction method for near-field source localization[END_REF][START_REF] Huang | Near-field multiple source localization by passive sensor array[END_REF] and some related performance analysis in order to quantify the estimator performance in terms of the mean square error (MSE) [START_REF] Delmas | On the Cramér-Rao bound and maximum likelihood in passive time delay estimation for complex signals[END_REF][START_REF] Berriche | Semi-blind stochastic maximum likelihood for frequency selective MIMO channels[END_REF][START_REF] Begriche | Exact Cramér-Rao bound for near field source localization[END_REF][START_REF] Delmas | CRB analysis of near-field source localization using uniform circular arrays[END_REF][START_REF] Begriche | Exact conditional and unconditional Cramér-Rao bounds for near field localization[END_REF]. However, to fully characterize estimator performance, one has, additionally, to perform the resolvability analysis of two closely spaced sources. Recently, some works considered both far field and near field scenario. In [START_REF] Zhu | Angular resolution limit of two closely-spaced point sources based on hypothesis testing[END_REF][START_REF] Zhang | On the asymptotic resolvability of farfield stochastic sources[END_REF][START_REF] Meurisse | Bounds for sparse planar and volume arrays[END_REF] the authors studied, respectively, the asymptotic resolvability of far-field, deterministic, discrete and stochastic source signals, whereas, in [START_REF] El Korso | Statistical resolution limit of the uniform linear cocentered orthogonal loop and dipole array[END_REF] the authors focused on polarized far-field sources and in [START_REF] Tran | Angular resolution limit for array processing: estimation and information theory approaches[END_REF], the authors studied the angular resolution limit for far-field sources in the presence of modeling errors. Moreover, in [START_REF] Thameri | Derivation of an analytical expression of the Gaussian model statistical resolution limit[END_REF], the authors provide a novel methodology to derive an approximation of the resolution limit.

Nevertheless, to the best of our knowledge, no works have been done to quantify the resolvability of two closely spaced near-field sources in the non-uniform linear array (NULA) context for the general case 1 (general case, means that the time varying source signals, the noise variance, the range and the bearing are all unknown parameters). Consequently, the goal of this paper is to fill this lack by addressing the following question: "What is, in a nearfield source scenario, the minimum source separation required, under which two near-field sources can still be correctly resolved?"

To this end, one common tool is the distance resolution limit (DRL) of two closely spaced sources, defined as the minimum distance with respect to the sources for which allows a correct resolvability. The DRL can be derived based on one of the following three fundamental approaches: i) the analysis of the mean null spectrum [START_REF] Mir | Range resolution of unequal strength targets[END_REF], ii) the detection theory [START_REF] Berriche | Semi-blind stochastic maximum likelihood for frequency selective MIMO channels[END_REF][START_REF] Zhu | Angular resolution limit of two closely-spaced point sources based on hypothesis testing[END_REF] (using a binary hypothesis test and a proper generalized likelihood ratio test [START_REF] Tran | Angular resolution limit for array processing: estimation and information theory approaches[END_REF]), or iii) the estimation accuracy (namely, based on the Cramér-Rao bound (CRB) tool). More precisely, in [START_REF] Smith | Statistical resolution limits and the complexified Cramér-Rao bound[END_REF], Smith proposed the following DRL criterion: "Two sources are resolvable if the separation between them, denoted by d NF , is less than the standard deviation of the separation estimation". Since the standard deviation can be approximated using the CRB by √ CRB (d NF ) [31], thus, Smith's cri- terion states that the DRL is given as the particular value of the distance d NF between two sources which is equal to

√ CRB (d NF ).
This means that the DRL is the solution of the following equation

DRL = √ CRB (DRL).
It is worth noting that this DRL, which is based on the CRB, is widely and commonly used for the following reasons: i) it takes the coupling between the parameters into account, ii) it avoids the well-known drawback of the mean null spectrum approach which is valid for a specific given high-resolution algorithm and hence lacks generality [START_REF] Zhang | On the asymptotic resolvability of farfield stochastic sources[END_REF], and finally, iii) it is related to the detection theory based approach thanks to a translator factor which is given in [START_REF] Liu | Statistical angular resolution limit for point sources[END_REF].

In order to derive the DRL, we first investigate and develop explicit closed-form expressions of the deterministic CRB for two closely spaced near-field spaced sources (which, to the best of our knowledge, has not been derived 2 ). Then, we resort Smith's criterion to derive the DRL. Thus, we deduce and analyze the relationship between the minimum distance of resolvability and the minimum signal-to-noise ratio (SNR) required to resolve two closely spaced near-field sources. Finally, we propose a fast, nearly optimal, array design procedure to enhance the capacity of resolvability for a given constraint (number of sensors, array aperture, etc.). Numerical simulations are given to assess the validity of the proposed expressions (for both the deterministic CRB and the DRL) and the enhancement due to the proposed array geometry design.

For the rest part of this paper, the following notation will be used. A lowercase bold letter denotes a vector, and an uppercase one a matrix. Vectors are by default in column orientation unless specified. Upper scripts • T and • H denote, respectively, the transpose and the trans-conjugate of a matrix. The operators diag(•), adiag (•), • and {•} denote, respectively, the diagonal operator, the anti-diagonal operator, the Euclidean norm and the real part. tr{•} and det{•} denote the trace and the determinant of a matrix; whereas, and ⊗ denote the Hadamard and the Kronecker products, respectively. I L denotes the identity matrix of size L × L. [•] i and [•] i, j represent, respectively, the i-th vector element and the (i, j)-th matrix element. Finally, ε denotes any asymptotically unbiased estimator of ε.

This paper is structured as follows. Section 2 introduces the data model and the underlying assumptions. In Section 3, we derive the CRB of a NULA for orthogonal and non-orthogonal sources. We deduced the DRL in Section 4. Discussion of the results and conclusion are presented in Sections 5 and 6, respectively.

System models

Assume a linear (possibly non-uniform) array composed of N sensors with locations This means that d 0 , d 1 , • • • , d N-1 are integers. The observed signal, x n (t), at the t-th snapshot of the (n + 1)-th sensor is given by

d 0 •d, d 1 •d, • • • , d N-1 •d that
x n (t) = s 1 (t)e jτ n1 + s 2 (t)e jτ n2 + v n (t), n = 0, 1, • • • , N -1, t = 1, 2, • • • , T (1)
2 More precisely, in [START_REF] Delmas | On the Cramér-Rao bound and maximum likelihood in passive time delay estimation for complex signals[END_REF][START_REF] Berriche | Semi-blind stochastic maximum likelihood for frequency selective MIMO channels[END_REF][START_REF] Begriche | Exact Cramér-Rao bound for near field source localization[END_REF][START_REF] Delmas | CRB analysis of near-field source localization using uniform circular arrays[END_REF][START_REF] Begriche | Exact conditional and unconditional Cramér-Rao bounds for near field localization[END_REF], only the one single source case was under consideration. where v n (t) denotes a complex circular white Gaussian noise with zero-mean and unknown variance σ 2 , which is assumed to be uncorrelated both temporally and spatially. The i-th source signal, with a carrier frequency equal to f 0 is given by s i (t) = α i (t)e j(2π f 0 t+ψ i (t)) , i = 1, 2, where α i (t) and ψ i (t) are the real amplitude and the shift phase of the i-th source, respectively, and T is the number of snapshots. Moreover, the time delay τ ni associated with the signal propagation time from the i-th source to the (n + 1)-th sensor is represented as [START_REF] Zhu | Angular resolution limit of two closely-spaced point sources based on hypothesis testing[END_REF] 

τ ni = 2π r i λ 1 + d 2 n d 2 r 2 i - 2d n d sin θ i r i -1 , n = 0, 1, • • • , N -1 ( 2 
)
where λ is the signal wavelength, r i and θ i ∈ [0, π/2] are the range and the bearing of the i-th source, respectively. It is well known that if the range is inside the so-called Fresnel region [START_REF] Huang | Near-field multiple source localization by passive sensor array[END_REF], i.e., if 0.62

d 3 N-1 d 3 λ 1/2 < r i < 2d 2 N-1 d 2 λ (3)
then, the time delay τ ni can be approximated by

τ ni ≈ ω i d n + φ i d 2 n + O d 2 r 2 i ( 4 
)
in which ω i and φ i are the so-called electric angles for the i-th source which are connected to the physical parameters by the following relationships

ω i = -2π d λ sin (θ i ) (5) 
and

φ i = π d 2 λr i cos 2 (θ i ) (6) 
Then, based on approximation of time delay in (4), the observation at the t-th snapshot of the (n + 1)-th sensor becomes

x n (t) = s 1 (t)e j ω 1 d n +φ 1 d 2 n + s 2 (t)e j ω 2 d n +φ 2 d 2 n + v n (t) (7) 
Consequently, the t-th observation vector can be expressed as

x(t) = [x 0 (t) • • • x N-1 (t)] T = A(p 1 , p 2 )s(t) + v(t) (8) 
where 

s(t) = [s 1 (t), s 2 (t)] T , v(t) = [v 0 (t), • • • , v N-1 (t)] T , p i = [ω i , φ i ] T for i = 1,
[a(ω i , φ i )] n+1 = e j(ω i d n +φ i d 2 n ) . ( 9 
)
We assume that the unknown parameter vector is

ε = p T 1 , p T 2 , ψ T 1 , ψ T 2 , α T 1 , α T 2 , σ 2 T ( 10 
)
where 

ψ i = [ψ i (1), • • • , ψ i (T )] T , α i = [α i (1), • • • , α i (T )] T .
p (χ |ε) = 1 π NT det (R) e -(χ -μ) H R -1 (χ -μ) (11) 
in which R = σ 2 I NT and

μ = [s T (1)A T (p 1 , p 2 ), • • • , s T (T )A T (p 1 , p 2 )] T . ( 12 
)

Cramér-Rao bound definition and derivation

Let E ( εε)( εε) T be the covariance matrix of an estimate of ε. Let us assume that ε is an asymptotically unbiased estimate of the true parameter vector ε, and let us, in the following, define the CRB for the considered model [START_REF] Cramér | Mathematical Methods of Statistics[END_REF]. The covariance inequality principle states that under asymptotic conditions [START_REF] Chi | Fundamentals of statistical signal processing, Blind Equalization and System Identification: Batch Processing Algorithms[END_REF], we have

MSE [ ε] i = E [ ε] i -[ε] i 2 ≥ [CRB (ε)] i,i (13) 
where the CRB is given as the inverse of the so-called Fisher information matrix (FIM) as follows

CRB (ε) = FIM -1 (ε) (14) 
Since we are working with a complex circular Gaussian observation model, the i-th row, k-th column element of the FIM for the unknown real parameter vector, given in [START_REF] Foroozan | Time reversal MIMO radar: improved CRB and angular resolution limit[END_REF], can be written as [START_REF] Stoica | Spectral Analysis of Signals[END_REF]:

[CRB -1 (ε)] i,k = [FIM (ε)] i,k = tr R -1 ∂ R ∂[ε] i R -1 ∂ R ∂[ε] k + 2 ∂μ H ∂[ε] i R -1 ∂μ ∂[ε] k = NT σ 4 ∂σ 2 ∂[ε] i ∂σ 2 ∂[ε] k + 2 σ 2 ∂μ H ∂[ε] i ∂μ ∂[ε] k (15)

FIM derivation

From [START_REF] Gazzah | CRB-based design of linear antenna arrays for near-field source localization[END_REF] we can easily see that the noise variance σ 2 is decoupled from the others parameters. Thus, for simplicity and without loss of generality, we compute the FIM without taking into account the noise variance. Consequently, the variance parameter is omitted from the vector parameter ε. So that the structure of the FIM is as follows (for proof, please refer to Appendix A):

FIM(ε) = 2 σ 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ F p 1 p 1 F p 1 p 2 F p 2 p 1 F p 2 p 2 F p 1 ψ 1 F p 1 ψ 2 0 F p 1 α 2 F p 2 ψ 1 F p 2 ψ 2 F p 2 α 1 0 F ψ 1 p 1 F ψ 1 p 2 F ψ 2 p 1 F ψ 2 p 2 0 F α 1 p 2 F α 2 p 1 0 F LL ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (16) 
where

3 L = [ψ T 1 , ψ T 2 , α T 1 , α T 2 ] T .
3 For sake of simplicity and to avoid any misunderstanding, we used the following notation, F uv , where the lower script uv denotes the considered part of the FIM which corresponds to the derivation according to the vector parameters u and v as shown in [START_REF] Anastasio | Cramer-Rao lower bound with pd < 1 for target localisation accuracy in multistatic passive radar[END_REF], respectively.

Analytical inversion

First, we note that the 4T × 4T matrix F LL in ( 16) can be partitioned into diagonal sub-blocks as

F LL = ⎡ ⎢ ⎢ ⎣ F ψ 1 ψ 1 F ψ 1 ψ 2 F ψ 2 ψ 1 F ψ 2 ψ 2 0 F ψ 1 α 2 F ψ 2 α 1 0 0 F α 1 ψ 2 F α 2 ψ 1 0 F α 1 α 1 F α 1 α 2 F α 2 α 1 F α 2 α 2 ⎤ ⎥ ⎥ ⎦ (17) 
in which, the expression of each sub-block is given in Appendix A. Second, the F LL matrix is fully inverted by applying the Schur complement [START_REF] Zhang | The Schur Complement and Its Applications[END_REF] formula twice as follows:

1) Using the Schur complement with respect to the lower right block matrix in [START_REF] Huang | Near-field multiple source localization by passive sensor array[END_REF] represented by the dotted line partition, one obtains

F α 1 α 1 F α 1 α 2 F α 2 α 1 F α 2 α 2 -1 = S -1 -S -1 F α 1 α 2 F -1 α 1 α 1 -F -1 α 1 α 1 F α 2 α 1 S -1 F -1 α 1 α 1 + F -1 α 1 α 1 F α 2 α 1 S -1 F α 1 α 2 F -1 α 1 α 1 ( 18 
)
in which

S = F α 2 α 2 -F α 1 α 2 F -1 α 1 α 1 F α 2 α 1 . ( 19 
)
2) Now, we use the Schur complement with respect to the lower right block matrix in [START_REF] Huang | Near-field multiple source localization by passive sensor array[END_REF] represented by the solid line partition and we obtain

F -1 LL = ⎡ ⎣ F ψ 1 ψ 1 F ψ 1 ψ 2 0 F ψ 1 α 2 F ψ 2 ψ 1 F ψ 2 ψ 2 F ψ 2 α 1 0 0 F α1ψ 2 F α1α1 F α 1 α 2 F α 2 ψ 1 0 F α2α1 F α2α2 ⎤ ⎦ -1 = A -BD -1 C -1 -A -BD -1 C -1 BD -1 -D -1 C A -BD -1 C -1 D -1 + D -1 C A -BD -1 C -1 BD -1 (20) 
where

A = F ψ 1 ψ 1 F ψ 1 ψ 2 F ψ 2 ψ 1 F ψ 2 ψ 2 , B = 0 F ψ 1 α 2 F ψ 2 α 1 0 , C = 0 F α 1 ψ 2 F α 2 ψ 1 0 and D = F α 1 α 1 F α 1 α 2 F α 2 α 1 F α 2 α 2 . 
3) Finally, having the inverse of F LL matrix one can apply again this method to compute analytically the Schur complement of the lower right block of the matrix FIM(ε) in ( 16).

After tedious calculation, we are able to express in closed form the Schur complement of the matrix F LL , which corresponds to CRB -1 P P :

CRB -1

P P = 2 σ 2 ⎡ ⎢ ⎢ ⎣ (1, 1, 2) (1) ( 1) (1) (1, 2, 4) (2) (1) ( 2, 1, 2) (2) ( 2) ( 2) (2, 2, 4) ⎤ ⎥ ⎥ ⎦ (21) 
in which P = [p 

CRB p i p k = σ 2 2 ϒ -1 (i) for i = k, ∀i = 1, 2 -σ 2 2 ϒ -1 (1) ℵ(2) for i = k, ∀i, k = 1, 2 (22) 
where

ℵ(i) = 1 (i, 1, 2) (i, 2, 4) -2 (i) (i, 2, 4) -(i) -(i) (i, 1, 2) , = (1) (2) 
and

ϒ(i) = (i, 1, 2) (i) (i) (i, 2, 4) -ℵ(3 -i) ,
which, finally, leads to the following result 1) ,

CRB p i p i = σ 2 2 1 h(i, 1)h(i, 2) -m(i) 2 h(i, 2) -m(1) -m(1) h(i,
∀ i = 1, 2 (23) 
where

h(i, j) = (i, j, 2 j) + ( j)( (3 -i, 3 -j, 2(3 -j)) ( j) -(3 -i) ) 2 (3 -i) -(3 -i, 1, 2) (3 -i, 2, 4) + ( (3 -i, j, 2 j) -(3 -i) ( j)) 2 (3 -i) -(3 -i, 1, 2) (3 -i, 2, 4) , ( 24 
)
and

m(i) = (i) + (1)( (3 -i, 2, 4)) -(3 -i) (2)) 2 (3 -i) -(3 -i, 1, 2) (3 -i, 2, 4) + ( (3 -i, 1, 2) (2) -(3 -i) ) 2 (3 -i) -(3 -i, 1, 2) (3 -i, 2, 4)
.

(25)

CRB for the physical parameter vector κ

Even if the model ( 7) is usually used in array signal processing, its CRB related to ε does not bring us physical information. Then, it is interesting to analyze this CRB regarding the bearing θ and range r.

That is, the new unknown physical parameter vector becomes

κ = g(ε) = θ 1 , r 1 , θ 2 , r 2 , ψ T 1 , ψ T 2 , α T 1 , α T 2 T ( 26 
)
From CRB(ε), we deduce CRB(κ ) by using the following formula (see [36, p. 45])

CRB(κ ) = ∂ g(ε) ∂ε CRB(ε) ∂ g(ε) ∂ε T ( 27 
)
where the Jacobian matrix is given by

∂ g(ε) ∂ε = λ πd ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 -2 cos(θ 1 ) 0 0 0 0 r 1 sin(θ 1 ) cos 2 (θ 1 ) -r 2 1 d cos 2 (θ 1 ) 0 0 0 0 0 1 -2 cos(θ 2 ) 0 0 0 0 r 2 sin(θ 2 ) cos 2 (θ 2 ) -r 2 2 d cos 2 (θ 2 ) 0 0 0 0 0 πd λ I 4T ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (28) 
Using [START_REF] Tran | Angular resolution limit for array processing: estimation and information theory approaches[END_REF] and the Jacobian matrix above, we obtain

CRB(θ i ) = σ 2 2 λ 2 h(i, 2) 4π 2 d 2 cos 2 (θ i ) h(i, 1)h(i, 2) -m(i) 2 , ( 29 
) and CRB(r i ) = σ 2 2 λ 2 m(i) 2 h(i, 2)d 2 sin 2 (θ i ) + 2k(i)r i d sin(θ i ) + h(i, 1)r 2 i π 2 d 4 cos 4 (θ i ) h(i, 1)h(i, 2) -m(i) 2 . ( 30 
)

The special case of two orthogonal sources

In this subsection, we consider the particular case of two nearfield orthogonal sources. This kind of signal is commonly used in radar and radio communication to facilitate the task of separating signals [START_REF] D'amico | Joint channel and DOA estimation for multicarrier CDMA uplink transmissions[END_REF]. From the above results, we deduce the CRB for two near-field orthogonal sources. The assumption of two orthogonal sources means that [START_REF] Li | Maximum likelihood angle estimation for signals with known waveforms[END_REF] T t=1 s H 1 (t)s 2 (t) = 0 [START_REF] Smith | Statistical resolution limits and the complexified Cramér-Rao bound[END_REF] Substituting [START_REF] Smith | Statistical resolution limits and the complexified Cramér-Rao bound[END_REF] in [START_REF] Delmas | On the Cramér-Rao bound and maximum likelihood in passive time delay estimation for complex signals[END_REF], we obtain = 0 2×2 [START_REF] Cramér | Mathematical Methods of Statistics[END_REF] Consequently, the CRB p i p k for near-field orthogonal sources is given by

CRB p i p k = σ 2 2 ℵ(i) for i = k, ∀i = 1, 2 0 for i = k, ∀i, k = 1, 2 (33) 
which leads to the following results

CRB(ω

i ) = σ 2 2 (i, 2, 4) (i, 1, 2) (i, 2, 4) -2 (i) , ( 34 
) CRB(φ i ) = σ 2 2 (i, 1, 2) (i, 1, 2) (i, 2, 4) -2 (i) , ( 35 
) CRB(θ i ) = σ 2 2 λ 2 (i, 2, 4) 4π 2 d 2 cos 2 (θ i ) (i, 1, 2) (i, 2, 4) -2 (i)
, (36) and

CRB(r i ) = σ 2 2 λ 2 r 2 i (i, 2, 4)d 2 sin 2 (θ i ) + 2 (i)r i d sin(θ i ) + (i, 1, 2)r 2 i π 2 d 4 cos 4 (θ i ) (i, 1, 2) (i, 2, 4) -2 (i) . ( 37 
)

The minimum SNR required to resolve two closely spaced near-field sources

The aim of this section is to derive a closed-form expression of the minimum SNR, denoted by SNR min , required to resolve two closely spaced near-field sources. By using Smith's criterion [START_REF] Smith | Accuracy and resolution bounds for adaptive sensor array processing[END_REF], the DRL is the particular value of the distance d NF between two sources for which

√ CRB(d NF ) is equal to d NF ,
where the distance between two near field sources is defined as

d NF = r 2 1 + r 2 2 -2r 1 r 2 cos(θ 2 -θ 1 ). ( 38 
)
Consequently, the new unknown physical parameter vector is

j(κ ) = r 2 1 + r 2 2 -2r 1 r 2 cos(θ 2 -θ 1 ), r 1 , θ 2 , r 2 , ψ T 1 , ψ T 2 , α T 1 , α T 2 T ( 39 
)
As in [START_REF] Tran | Angular resolution limit for array processing: estimation and information theory approaches[END_REF], we obtain CRB(d NF ) from the following formula

CRB(d NF ) = ∂ j(κ ) ∂κ CRB(κ ) ∂ j(κ ) ∂κ T 1,1 (40) 
From ( 21), [START_REF] Begriche | Exact conditional and unconditional Cramér-Rao bounds for near field localization[END_REF] and using the relation [START_REF] Tran | Angular resolution limit for array processing: estimation and information theory approaches[END_REF], one notices that

CRB(κ ) = CRB(κ ) σ 2
does not depend on σ 2 . Denoting CRB(d

NF ) = CRB(d NF ) σ 2
equation ( 40) can be written as Consequently, one obtains

CRB(d NF ) = ∂ j(κ ) ∂κ CRB(κ ) ∂ j(κ ) ∂κ T 1,1 (41) 
CRB(d NF ) = 4 i, j=1 ∂ j(κ ) ∂κ 1,i ∂ j(κ ) ∂κ 1, j [ CRB(κ )] i, j (42) 
where

∂ j(κ ) ∂κ 1,1 = - ∂ j(κ ) ∂κ 1,3 = - r 1 r 2 sin(θ 2 -θ 1 ) d NF , ( 43 
)
and

∂ j(κ ) ∂κ 1,2 = - ∂ j(κ ) ∂κ 1,4 = r 1 -r 2 cos(θ 2 -θ 1 ) d NF . ( 44 
)
Let us define the SNR as

SNR = α 1 2 + α 2 2 σ 2 . ( 45 
)
Furthermore, from ( 40) and ( 42), one has CRB(d

NF ) = CRB(d NF ) σ 2 .
Since, CRB(d NF ) is σ 2 independent and the SNR min is given by the SNR for which the following equation holds

σ 2 CRB(DRL) = r 2 1 + r 2 2 -2r 1 r 2 cos(θ 2 -θ 1 ) (46) 
Consequently, from (45) and ( 46), one obtains

SNR min = α 1 2 + α 2 2 CRB(DRL) r 2 1 + r 2 2 -2r 1 r 2 cos(θ 2 -θ 1 ) (47) 
Remark. We should precise that using the definition of the total SNR in the deterministic case (i.e., SNR = SNR 1 + SNR 2 , in which

SNR 1 = ||α 1 || 2 σ 2
and SNR 2 = ||α 2 || 2 σ 2 ) to characterize the SNR min we lose the information related to the ratio of SNRs, i.e., SNR 1 SNR 2 . Consequently, one has to take a precaution using the SNR min , since, for a given DRL one may require a higher SNR min if the ratio SNR 1 SNR 2 is far from 1 as represented in Fig. 2. Indeed, Fig. 2 shows the variation of the DRL w.r.t. SNR 1 SNR 2 subject to a fixed total SNR (i.e., SNR 1 + SNR 2 = constant). Furthermore, we can notice, by simulation, that the smallest SNR min possible for a given DRL is obtained in the case of SNR 1 SNR 2 = 1. 

Numerical investigation: CRB, DRL and geometry design

Numerical results are presented in this section for a NULA with six sensors (with the following locations: 0, 3 [START_REF] Boyer | Performance bounds and angular resolution limit for the moving colocated MIMO radar[END_REF] • d) that receives a signal emitted by two sources in the Fresnel region in which their amplitudes and phases are generated from a realization of an i.i.d. Gaussian distribution with zero mean and unit variance unless specified. The number of snapshots is given by T = 100.

• d, 4 • d, 5 • d, 6 • d,

Numerical analysis of the CRB

In this section, we analyze the proposed closed-form expressions given in Section 3 by comparing the analytical results with the numerical results to illustrate the validity of our derived CRB closed form expressions. More precisely,

• In Fig. 3, we compare the analytical CRBs given in [START_REF] Zhu | Angular resolution limit of two closely-spaced point sources based on hypothesis testing[END_REF] with the numerical exact CRBs given in [START_REF] Ben-Haim | On the constrained Cramér-Rao bound with a singular Fisher information matrix[END_REF]. This figure shows that the proposed closed-form expressions are in a good agreement with the true numerical CRBs, which validates our derived expressions. Furthermore, we have the same results for CRB(θ ) and CRB(r) with respect to ( 29) and [START_REF] Mir | Range resolution of unequal strength targets[END_REF].

• From (24), we notice that ∀i = 1, 2,

h(i, 1) is O (N 3 ), however h(i, 2) is O (N 8
), which means that the estimation of the socalled second electrical angle φ i is more accurate than estimating the so-called first electrical angle ω i . This is corroborated by Fig. 3.

• From ( 22) and using the inversion lemma matrix, we can quantify the effect of the estimation accuracy of one source on the other one by the following relationship

CRB p 1 p 1 = σ 2 2 ℵ(1) + ℵ(1) CRB p 2 p 2 ℵ(1) = σ 2 2 ℵ(1)(I 2×2 + 2 σ 2 CRB p 2 p 2 ℵ(1)) (48) 
and in the same way we obtain

CRB p 2 p 2 = σ 2 2 ℵ(2)(I 2×2 + 2 σ 2 CRB p 1 p 1 ℵ(2)) (49) 
Thus, in the general case, the estimation error of the electrical angles of one source affects the electrical angles estimation of the other source. Whereas, from ( 48) and ( 49), we note that this is not the case if the sources are orthogonal, meaning that the estimation accuracy of one source neither depends on nor affects the estimation accuracy of the other source. However, it is obvious that CRB p i p i is affected by the position of both sources, more precisely, by the distance between the electric angles of both sources (because (i, k, p) depends on ω and φ even in the orthogonal case, and thus CRB p i p i depends on the distance between the electrical angles).

• Unlike the case of one source, the CRB for two sources are not phase-invariant. However, we notice that for two orthogonal sources the CRB becomes phase-invariant. Numerical simulation shows the improvement due to orthogonality.

• For a sufficient number of sensors, CRB θ i θ i and CRB r i r i are O (1/N 3 ). • CRB r i r i is bearing-invariant and range-invariant.

• For λ, r i ∝ d, the dependence on the range is O (r 2 i ), meaning that nearer the source is, the better the estimation (keeping in mind the Fresnel constraints). This is corroborated by Fig. 4.

The dependence of the range on the bearing is O (1/cos 4 (θ i )).

For θ i close to π/2, we observe that CRB r i r i goes to infinity but faster than CRB θ i θ i (cf. Fig. 5 for CRB(θ 1 )).

• Fig. 6 shows that, for a different value of bearing and for a fixed SNR, the higher the frequency is, the lower the CRB r i r i .

Correlation factor

In the following, we investigate the effect of the correlation factor on the DRL. We define the correlation factor ξ between the two sources as [START_REF] Zhang | Angular resolution limit for deterministic correlated sources[END_REF] ξ =

s H 1 s 2 s 1 s 2 (50) in which s i = [s i (1), . .

. , s i (T )]

T denotes the i-th signal vector. We use the same simulation parameters as in Fig. 3, expect the fact the signal sources satisfy (50) for a given ξ . From ( 34) to [START_REF] D'amico | Joint channel and DOA estimation for multicarrier CDMA uplink transmissions[END_REF], we know that the orthogonality between two sources implies the uncoupling property. Then, since the sources are decoupled, ξ = 0, the estimation will be improved (at least for any efficient algorithm). In Fig. 7, we compare the correlation effect of the real amplitude of ξ on the DRL. Note that, for a given SNR, DRL becomes greater as the value of the real amplitude of ξ increases. In other words, the smaller the correlation between both sources, the better the resolution limit performance. Meanwhile, DRL achieves its lowest value when ξ = 0, which means that two signals enjoy a minimum (best) resolution limit between them if they have the orthogonal relationship.

SNR min behavior w.r.t. central angle

Let us define the central angle as

θ c = θ 1 + θ 2 2 ( 51 
)
In Fig. 8, we have plotted the SNR min required to resolves two closely spaced sources for different values of θ c . It should be noted that for a given resolution limit, as the central angle θ c increases, the minimum signal to noise ratio required increases also.

Minimum resolution limit boundary

In practical applications, one may need the knowledge of the physical boundary, which delimits the resolvability region (mean- ing the region for which two near field sources are resolvable). Although this question is worth consideration, to the best of our knowledge, no work has been done on it in the literature. In this subsection, the minimum resolution limit boundary for two sources is investigated and discussed for different SNRs.

Following similar steps as those employed in Section 4, we obtain the minimum resolution limit boundary of two sources for different SNR value. Such boundary is represented in Fig. 9, in which the star symbol represents the coordinates of the first source w.r.t. the reference sensor (x o , y o ) = (0, 0), in which (θ 1 , r 1 ) = (45 • , 6λ), α 1 2 = 1 and α 2 2 = 1. For different SNR, the second source must be outside this boundary to ensure a correct resolvability given by Smith's criterion. As expected, one notices that for higher SNR, one obtains a small boundary. Furthermore, we can notice that this boundary is more bearing sensitive than range sensitive. As said before, this boundary is a physical limitation. Nevertheless, this latter can be compensated by a proper array geometry design which is the aim of the next section.

Effect of sensors' position

The remaining part of this section is devoted to the numerical analysis of the effect of sensor array geometry on the DRL. Assume 

(θ 1 , r 1 ) = (30 • , 6λ), (θ 2 , r 2 ) = (60 • , 10λ) and α 1 2 = α 2 2 = 1.

Table 1

Different array geometric configurations.

Array type

Geometric configuration Type 1

• • • • • • • • • • Type 2 • • • • • • • • • • Type 3 • • • • • • • • • • Type 4 • • • • • • • • • • Type 5 • • • • • • • • • •
Keep the array aperture A = 9 (in unit of d = λ/2) fixed and N = 6, there are 10 positions available for six sensors. In Fig. 10, we plot the DRL which compares the impact of the different sensor array geometry w.r.t. SNR min . Five types of array configurations are considered, as shown in Table 1. Type 1 to type 4 are listed in Table 1 with N = 6 sensors, Type 5 is an ULA configuration with N = 10 sensors.

From comparison of simulation results, one can further notice that

• For the same array aperture, same SNR and same number of sensors, the DRL is greatly affected by the array geometric configuration.

• By comparing the results given from Type 1 to Type 4, the configuration that puts two sensors at the extremity and the rest in the middle seems to be the best geometry configuration (at least, it is the case for A = 9 and N = 6 sensors). 

Table 2

The best and worst array geometric configurations for different number of sensors.

Array type Geometric configuration SNR min

Type 6

• • • • • • • • • • lowest SNR min Type 7 • • • • • • • • • • lowest SNR min Type 8 • • • • • • • • • • highest SNR min Type 9 • • • • • • • • • • lowest SNR min Type 10 • • • • • • • • • • highest SNR min Type 11 • • • • • • • • • • lowest SNR min Type 12 • • • • • • • • • • highest SNR min Type 13 • • • • • • • • • • highest SNR min
• Type 4, with six sensors, is slightly worse than the ULA configuration with 10 sensors.

Furthermore, to better comprehend the resolvability performance as a function of array geometric configuration, consider Fig. 11, where we compare the minimum signal to noise ratio with respect to the best and worst performance of different number of sensors. The considered type of sensor geometry configuration is list in Table 2.

From this figure, we can see that the Type 11 represents the best achievable performance, and Type 8 has the worst performance. Furthermore, on one hand, we can notice that with the same array aperture, Type 6 (with 3 sensors) and Type 13 (with 7 sensors) have, approximately, the same performance (Type 6 is only 0.2 dB worse than the Type 13); and, on the other hand, one can notice that Type 6 (with 3 sensors) has a better performance in regard to Type 12 (which has 6 sensors) by 1.5 dB. This means that depending on the array geometry, one can have better performance using a less number of sensors. The relatively poor performance of the type 8, 10, 12 and 13 is due to the sensor geometry configuration. Consequently, with the same aperture, one can optimally design the array using the proposed method below, in order to obtain better performance even with less sensors.

Sensors array geometry design

As discussed above, the resolvability is not only constrained by the number of sensors, but also by the array geometry, which affects the optimal resolution capability.

In the following, we give a solution to design an optimal array in order to enhance the resolvability and/or to compensate the performance loss due to the reduction or failure of certain sensors.

The optimal method is given by minimizing SNR min over sensors' position among all possibilities using the derived expression (47). However, this scheme is not feasible for a model with large aperture and small number of sensors. More precisely, for aperture of size A and N sensors, one has C N A+1 possibilities. To overcome this drawback we propose a sub-optimal fast procedure as follows.

Step 1: We place two sensors at each extremity to obtain the largest aperture that leads to the best resolution.

Step 2: We place only one sensor by minimizing SNR min with respect to the A -2 remaining positions.

Step 3: We iterate the second step by placing the (n + 1)-th sensor at once by minimizing sequentially the SNR min with respect to the An + 1 remaining positions.

In the following part, we show that the proposed sub-optimal method produces a nearly optimal result with low complexity. More precisely, the complexity cost ratio of the optimal method over the proposed sub-optimal method is given by f

(N, A) = N opt N prop = 2( A + 1)! N!( A -N + 1)!( A( A -1) -(A -N + 1)( A -N + 2)) ( 52 
)
where N opt means the number of required iterations by using the optimal method and N prop means that by using the proposed suboptimal method.

In the examples studied in this section, we consider several cases: Case 1) N = 4, A = 7; Case 2) N = 5, A = 8, so that we may compare the results of the two methods, as shown in Fig. 12. One notes that our proposed method is nearly identical to the optimal method. In addition, from (52), we have f (4, 7) = 6 and f (5, 8) = 7, which means that the proposed method is six to seven times faster than the optimal one. If we consider a more important aperture, e.g., for N = 6, A = 25, we notice that the proposed method decreases significantly the complexity cost by f [START_REF] Ben-Haim | On the constrained Cramér-Rao bound with a singular Fisher information matrix[END_REF][START_REF] Meurisse | Bounds for sparse planar and volume arrays[END_REF] = 2558 times compared with the optimal one with the same performance. Consequently, we notice that the proposed method is of low complexity, especially for the design of sparse arrays. One should note that for the above discussion, we assume that derived closed form expression of SNR min is given. If no expression of the SNR min is given, one has, first, to numerically inverse the FIM (of size 4(T + 1) × 4(T + 1)) which is costly and which increases dramatically with the number of snapshots and then apply the Smith's criterion.

Conclusion

In this paper, we derived an explicit closed-form expression of the deterministic Cramér-Rao bound for two closely spaced nearfield sources for non-uniform linear array. Taking advantage of these expressions, we deduced the theoretical statistical resolution limit and the minimum signal to noise ratio required to resolve two closely spaced near-field sources. These expressions present two advantages. i) First, they avoid computationally costly numerical inversion of the Fisher information matrix, which increases dramatically with the number of snapshots. ii) Second, we provide a detailed discussion on several enlightening properties of the statistical resolution limit revealed by our expressions, with an emphasis on the effect of the given scenario (e.g., the number of sensors, the correlation factor, the minimum resolution limit boundary, the array geometry, etc.) on the resolvability. Furthermore, we present numerical analysis to corroborate the proposed theoretical expressions. Finally, based on the statistical resolution limit, we proposed a novel, fast method, which is nearly optimal, to find the best sensor arrangement leading to the best achievable resolution.

in which for sake of simplicity f (i) will be used instead of f (i, 0, 0), ω = ω 1ω 2 and φ = φ 1φ 2 . Thus, replacing the above expressions, one has 

F p 2 p 2 = α 2 2 ⊗ f (2) f (3) f (3) f (4) , ( 69 
)
and the 2 × T matrices are given by (for i = 1, 2)

F p i ψ i = F T ψ i p i = (α i α i ) T ⊗ f (1) f (2) = α 2 i (1) f (1) • • • α 2 i (T ) f (1) α 2 i (1) f (2) • • • α 2 i (T ) f (2)
(70) 

F p 1 ψ 2 = F p 2 ψ 1 = F T ψ 2 p 1 = F T ψ 1 p 2 = (s 1 s H 2 ) ⊗ f (1, ω, φ) f (2, ω, φ) = α 1 (1)α 2 (1)β(0, 1, 1, 1) • • • α 1 (T )α 2 (T )β(0, 1, 1, T ) α 1 (1)α 2 (1)β(0, 1, 2, 1) • • • α 1 (T )α 2 (T )β(0, 1, 2, T ) (71) 
F p i α i = F α i p i = F ψ i α i = F α i ψ i = 0, i = 1, 2 (72) 
F α i α i = f (0)I T ( 75 
)
F α 1 α 2 = F α 2 α 1 = diag(s 1 s H 2 α 2 α 1 ) f (0, ω, φ) ( 76 
)
F ψ i ψ i = diag(α 1 α 2 ) f (0), i = 1, 2 (77) 
F ψ 1 ψ 2 = F ψ 2 ψ 1 = diag(s 1 s H 2 ) f (0, ω, φ) (78) F ψ 1 α 2 = F α 2 ψ 1 = jdiag(s 1 s H 2 α 2 ) f (0, ω, φ) (79) F ψ 2 α 1 = F α 1 ψ 2 = -jdiag(s 1 s H 2 α 1 ) f (0, ω, φ) (80)

  receives a signal emitted by two near-field, narrow-band sources s 1 (t) and s 2 (t), as shown in Fig.1. Let d n • d denote the location of the (n + 1)-th sensor, in which d is the unit and the reference sensor is the first one (i.e., d 0 = 0). Furthermore, for sake of simplicity, the sensor locations are expressed as multiplication of a common unit base-line d.

Fig. 1 .

 1 Fig. 1. Localization of two sources in the near-field region using a non-uniform linear array. Symbols • and • represent the position of a sensor and the position of a missing sensor, respectively.

Fig. 2 .

 2 Fig. 2. DRL vs. the ratio of SNRs in the case of a ULA of 6 sensors, 100 snapshots and SNR 1 + SNR 2 = 30 dB.

Fig. 3 .

 3 Fig. 3. Comparison between numerical and analytical CRB(ω 1 ) and CRB(φ 1 ) with (θ 1 , r 1 ) = (30 • , 10λ) and (θ 2 , r 2 ) = (60 • , 20λ). Lines and markers represent the numerical and analytical CRBs, respectively.

Fig. 4 .

 4 Fig. 4. Variation of the CRB w.r.t. r 1 with fixed r 2 = 2 m and for equal source power.

Fig. 5 .Fig. 6 .

 56 Fig. 5. CRB(θ 1 ) vs. SNR for r 1 = 10λ, (θ 2 , r 2 ) = (60 • , 20λ) and values of θ 1 as shown in the legend. Lines and markers represent the analytical and numerical CRBs, respectively.

Fig. 7 .

 7 Fig. 7. The effect of the amplitude of the correlation factor on the DRL.

Fig. 8 .

 8 Fig. 8. The SNR min versus the distance curves from a non-uniform array for various central angles.

Fig. 9 .

 9 Fig. 9. DRL boundary for 6-sensors.

Fig. 10 .

 10 Fig. 10. The required SNR min to resolve two unknown closely sources for different array geometries.

Fig. 11 .

 11 Fig. 11. The required SNR min to resolve two unknown closely sources for the best & worst performance of different sensors.

Fig. 12 .

 12 Fig. 12. Comparison between two methods of searching the optimal array geometry configuration.

F p 1 p 1 = α 1 ⊗

 11 f (2) f (3) f (3) f (4).

F p 1 α 2 = F T α 2 p 1 =j(s 1 s H 2 α 2 F p 2 α 1 = F T α 1 p 2 = -j(s 1 s H 2 α 1

 122221 ) ⊗ f (1, ω, φ) f (2, ω, φ) = α 1 (1)β(1, 1, 1, 1) • • • α 1 (T )β(1, 1, 1, T ) α 1 (1)β(1, 1, 2, 1) • • • α 1 (T )β(1, 1, 2, T ) ) ⊗ f (1, ω, φ) f (2, ω, φ) = -α 2 (1)β(1, 1, 1, 1) • • • -α 2 (T )β(1, 1, 1, T ) -α 2 (1)β(1, 1, 2, 1) • • • -α 2 (T )β(1, 1, 2, T )(74)and the T × T diagonal matrices (for i = 1, 2)

  2 n e -j( ωd n + φd 2

	∂μ H ∂ω 2	∂μ ∂ω 2	=	N-1 n=0	d 2 n	T t=1	α 2 1 (t),		(66)
	∂μ H ∂φ 2	∂μ ∂φ 2	=	N-1 n=0	d 4 n	T t=1	α 2 1 (t),		(67)
	∂μ H ∂ω 2	∂μ ∂φ 2	=	∂μ H ∂φ 2	∂μ ∂ω 2	=	N-1 n=0	d 3 n	T t=1	α 2 1 (t),	(68)
	and										
												T
												n )	s H 1 (t)s 2 (t)
												t=1
												= { s 2 , s 1 f (2, ω, φ)}	(61)
												∂μ H ∂ω 1	∂μ ∂φ 2	=	∂μ H ∂φ 1	∂μ ∂ω 2
												N-1	T
												=	d 3 n e -j( ωd n + φd 2 n )	s H 1 (t)s 2 (t)
												n=0	t=1
												(62)
												∂μ H ∂ω 2	∂μ ∂φ 1	=	∂μ H ∂φ 2	∂μ ∂ω 1
												N-1	T
												=	d 3 n e j( ωd n + φd 2 n )	s H 2 (t)s 1 (t)
												n=0	t=1
												= { s 2 , s 1 f (3, ω, φ)}	(63)
												∂μ H ∂φ 1	∂μ ∂φ 2	=	∂μ H ∂φ 2	∂μ ∂φ 1
												N-1	T
												=	d 4 n e -j( ωd n + φd 2 n )	s H 1 (t)s 2 (t)
												n=0	t=1
												(64)
												(65)

= { s 2 , s 1 f (3, ω, φ)} = { s 2 , s 1 f (4, ω, φ)}

After some rearrangement and calculation, one obtains the following 2 × 2 matrices

F p 1 p 2 = F p 2 p 1 = (s 1 s H 2 ) ⊗ f (2, ω, φ) f (3, ω, φ) f (3, ω, φ) f (4, ω, φ)

In[START_REF] El Korso | Statistical analysis of achievable resolution limit in the near field source localization context[END_REF], the authors studied the resolvability in the near field context for the special optimistic case in which the source signals and the noise variance are assumed known, and the only unknown parameters are the range and the bearing. Whereas, in[START_REF] Thameri | Derivation of an analytical expression of the Gaussian model statistical resolution limit[END_REF], the authors derived the resolution limit with respect to the bearing parameter only, without considering the range as a parameter of interest affecting the resolution.
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Appendix A

In this appendix, we present the main steps leading to [START_REF] Grosicki | A weighted linear prediction method for near-field source localization[END_REF].

Consider the (i, k)-th element of the FIM for the unknown real parameter vector [START_REF] Foroozan | Time reversal MIMO radar: improved CRB and angular resolution limit[END_REF]. We first obtain the following derivatives (for

and [s i ] t = e j(2π f 0 t+ψ i (t)) for t = 1, . . . , T .

Let us denote

In this appendix we give the expression of functions , , and :

where f (m, ω, φ) = N-1 n=0 d m n e j( ωd n + φd 2 n ) (for sake of clarity f (i) was used instead of f (i, 0, 0)) in which β(q, k, l, t) = j q e jk ψ(t) f (l, ω, φ) ,