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1. Introduction

There has been tremendous interest in the investigation of ar-
ray signal processing during the last three decades due to its 
importance in radar, sonar, seismology and communication sys-
tems [2–9]. One can classify source localization, in the context of 
array processing, into the so-called far-field and near-field cases. 
The context of far-field sources assumes planar wavefronts of the 
propagating waves as they reach the array. Nevertheless, when 
the sources are located in the so-called near-field region, this as-
sumption is no longer valid. More precisely, the source wavefronts 
must be assumed spherical, which requires both the range and the 
direction-of-arrival (DOA) parameter estimation to carry out the 
localization procedure [10–12]. One can find several estimation al-
gorithms adapted for the near-field source localization [13–17] and 
some related performance analysis in order to quantify the estima-
tor performance in terms of the mean square error (MSE) [18–22]. 
However, to fully characterize estimator performance, one has, 
additionally, to perform the resolvability analysis of two closely 
spaced sources. Recently, some works considered both far field and 
near field scenario. In [23–25] the authors studied, respectively, 
the asymptotic resolvability of far-field, deterministic, discrete and 
stochastic source signals, whereas, in [26] the authors focused on 
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polarized far-field sources and in [27], the authors studied the 
angular resolution limit for far-field sources in the presence of 
modeling errors. Moreover, in [28], the authors provide a novel 
methodology to derive an approximation of the resolution limit.

Nevertheless, to the best of our knowledge, no works have been 
done to quantify the resolvability of two closely spaced near-field 
sources in the non-uniform linear array (NULA) context for the 
general case1 (general case, means that the time varying source 
signals, the noise variance, the range and the bearing are all un-
known parameters). Consequently, the goal of this paper is to fill 
this lack by addressing the following question: “What is, in a near-
field source scenario, the minimum source separation required, 
under which two near-field sources can still be correctly resolved?”

To this end, one common tool is the distance resolution limit 
(DRL) of two closely spaced sources, defined as the minimum dis-
tance with respect to the sources for which allows a correct re-
solvability. The DRL can be derived based on one of the following 
three fundamental approaches: i) the analysis of the mean null 
spectrum [30], ii) the detection theory [19,23] (using a binary hy-
pothesis test and a proper generalized likelihood ratio test [27]), 
or iii) the estimation accuracy (namely, based on the Cramér–Rao 

1 In [29], the authors studied the resolvability in the near field context for the
special optimistic case in which the source signals and the noise variance are as-
sumed known, and the only unknown parameters are the range and the bearing.
Whereas, in [28], the authors derived the resolution limit with respect to the bear-
ing parameter only, without considering the range as a parameter of interest affect-
ing the resolution.
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bound (CRB) tool). More precisely, in [31], Smith proposed the fol-
lowing DRL criterion: “Two sources are resolvable if the separation 
between them, denoted by dNF , is less than the standard deviation 
of the separation estimation”. Since the standard deviation can be 
approximated using the CRB by 

√
CRB (dNF) [31], thus, Smith’s cri-

terion states that the DRL is given as the particular value of the 
distance dNF between two sources which is equal to 

√
CRB (dNF). 

This means that the DRL is the solution of the following equation 
DRL = √

CRB (DRL).
It is worth noting that this DRL, which is based on the CRB, is 

widely and commonly used for the following reasons: i) it takes 
the coupling between the parameters into account, ii) it avoids the 
well-known drawback of the mean null spectrum approach which 
is valid for a specific given high-resolution algorithm and hence 
lacks generality [24], and finally, iii) it is related to the detection 
theory based approach thanks to a translator factor which is given 
in [11].

In order to derive the DRL, we first investigate and develop 
explicit closed-form expressions of the deterministic CRB for two 
closely spaced near-field spaced sources (which, to the best of 
our knowledge, has not been derived2). Then, we resort Smith’s 
criterion to derive the DRL. Thus, we deduce and analyze the 
relationship between the minimum distance of resolvability and 
the minimum signal-to-noise ratio (SNR) required to resolve two 
closely spaced near-field sources. Finally, we propose a fast, nearly 
optimal, array design procedure to enhance the capacity of resolv-
ability for a given constraint (number of sensors, array aperture, 
etc.). Numerical simulations are given to assess the validity of the 
proposed expressions (for both the deterministic CRB and the DRL) 
and the enhancement due to the proposed array geometry design.

For the rest part of this paper, the following notation will be 
used. A lowercase bold letter denotes a vector, and an uppercase 
one a matrix. Vectors are by default in column orientation unless 
specified. Upper scripts ·T and ·H denote, respectively, the trans-
pose and the trans-conjugate of a matrix. The operators diag(·), 
adiag (·), ‖ · ‖ and �{·} denote, respectively, the diagonal operator, 
the anti-diagonal operator, the Euclidean norm and the real part. 
tr{·} and det{·} denote the trace and the determinant of a matrix; 
whereas, � and ⊗ denote the Hadamard and the Kronecker prod-
ucts, respectively. IL denotes the identity matrix of size L × L. [·]i
and [·]i, j represent, respectively, the i-th vector element and the 
(i, j)-th matrix element. Finally, ε̂ denotes any asymptotically un-
biased estimator of ε.

This paper is structured as follows. Section 2 introduces the 
data model and the underlying assumptions. In Section 3, we de-
rive the CRB of a NULA for orthogonal and non-orthogonal sources. 
We deduced the DRL in Section 4. Discussion of the results and 
conclusion are presented in Sections 5 and 6, respectively.

2. System models

Assume a linear (possibly non-uniform) array composed of N
sensors with locations d0 ·d, d1 ·d, · · · , dN−1 ·d that receives a signal 
emitted by two near-field, narrow-band sources s1 (t) and s2 (t), as 
shown in Fig. 1. Let dn ·d denote the location of the (n + 1)-th sen-
sor, in which d is the unit and the reference sensor is the first one 
(i.e., d0 = 0). Furthermore, for sake of simplicity, the sensor loca-
tions are expressed as multiplication of a common unit base-line d. 
This means that d0, d1, · · · , dN−1 are integers. The observed signal, 
xn(t), at the t-th snapshot of the (n + 1)-th sensor is given by

xn(t) = s1(t)e jτn1 + s2(t)e jτn2 + vn(t),

n = 0,1, · · · , N − 1, t = 1,2, · · · , T (1)

2 More precisely, in [18–22], only the one single source case was under consider-
ation.
Fig. 1. Localization of two sources in the near-field region using a non-uniform lin-
ear array. Symbols • and ◦ represent the position of a sensor and the position of a
missing sensor, respectively.

where vn(t) denotes a complex circular white Gaussian noise with 
zero-mean and unknown variance σ 2, which is assumed to be 
uncorrelated both temporally and spatially. The i-th source sig-
nal, with a carrier frequency equal to f0 is given by si(t) =
αi(t)e j(2π f0t+ψi(t)) , i = 1, 2, where αi(t) and ψi(t) are the real am-
plitude and the shift phase of the i-th source, respectively, and T
is the number of snapshots. Moreover, the time delay τni associ-
ated with the signal propagation time from the i-th source to the 
(n + 1)-th sensor is represented as [23]

τni = 2πri

λ

(√
1 + d2

nd2

r2
i

− 2dnd sin θi

ri
− 1

)
,n = 0,1, · · · , N − 1

(2)

where λ is the signal wavelength, ri and θi ∈ [0, π/2] are the range 
and the bearing of the i-th source, respectively. It is well known 
that if the range is inside the so-called Fresnel region [17], i.e., if

0.62

(
d3

N−1d3

λ

)1/2

< ri <
2d2

N−1d2

λ
(3)

then, the time delay τni can be approximated by

τni ≈ ωidn + φid
2
n + O

(
d2

r2
i

)
(4)

in which ωi and φi are the so-called electric angles for the i-th 
source which are connected to the physical parameters by the fol-
lowing relationships

ωi = −2π
d

λ
sin (θi) (5)

and

φi = π
d2

λri
cos2 (θi) (6)

Then, based on approximation of time delay in (4), the observation 
at the t-th snapshot of the (n + 1)-th sensor becomes

xn(t) = s1(t)e j
(
ω1dn+φ1d2

n

)
+ s2(t)e j

(
ω2dn+φ2d2

n

)
+ vn(t) (7)

Consequently, the t-th observation vector can be expressed as

x(t) = [x0(t) · · · xN−1(t)]T = A(p1, p2)s(t) + v(t) (8)

where s(t) = [s1(t), s2(t)]T , v(t) = [v0(t), · · · , v N−1(t)]T , pi =
[ωi, φi]T for i = 1, 2 and A(p1, p2) = [a(ω1, φ1), a(ω2, φ2)]. The 
(n + 1)-th element of the steering vector a(ωi, φi) is given by

[a(ωi, φi)]n+1 = e j(ωidn+φid
2
n). (9)

We assume that the unknown parameter vector is

ε =
[

pT
1 , pT

2 ,ψ T
1 ,ψ T

2 ,αT
1 ,αT

2 ,σ 2
]T

(10)



where ψ i = [ψi(1), · · · , ψi(T )]T , αi = [αi(1), · · · , αi(T )]T . It is 
worth noting that the unknown vector parameter ε is assumed 
to be deterministic and its size depends on the number of snap-
shots T .

Under the deterministic model, the joint probability distribution 
function (pdf) of the full observations χ = [xT (1) · · · xT (T )]T , under 
i.i.d. assumption, is written as follows

p (χ |ε) = 1

πNT det (R)
e−(χ−μ)H R−1(χ−μ) (11)

in which R = σ 2 INT and

μ = [sT (1)AT (p1, p2), · · · , sT (T )AT (p1, p2)]T . (12)

3. Cramér–Rao bound definition and derivation

Let E
{
(ε̂ − ε)(ε̂ − ε)T

}
be the covariance matrix of an estimate

of ε. Let us assume that ε̂ is an asymptotically unbiased estimate 
of the true parameter vector ε, and let us, in the following, define 
the CRB for the considered model [32]. The covariance inequality 
principle states that under asymptotic conditions [33], we have

MSE
([ε̂]i
)= E
{([ε̂]i − [ε]i

)2}≥ [CRB (ε)]i,i (13)

where the CRB is given as the inverse of the so-called Fisher infor-
mation matrix (FIM) as follows

CRB (ε) = FIM−1 (ε) (14)

Since we are working with a complex circular Gaussian obser-
vation model, the i-th row, k-th column element of the FIM for 
the unknown real parameter vector, given in (10), can be written 
as [34]:

[CRB−1 (ε)]i,k

= [FIM (ε)]i,k

= tr

{
R−1 ∂ R

∂[ε]i
R−1 ∂ R

∂[ε]k

}
+ 2�
{

∂μH

∂[ε]i
R−1 ∂μ

∂[ε]k

}
= NT

σ 4

∂σ 2

∂[ε]i

∂σ 2

∂[ε]k
+ 2

σ 2
�
{

∂μH

∂[ε]i

∂μ

∂[ε]k

}
(15)

3.1. FIM derivation

From (15) we can easily see that the noise variance σ 2 is de-
coupled from the others parameters. Thus, for simplicity and with-
out loss of generality, we compute the FIM without taking into 
account the noise variance. Consequently, the variance parameter 
is omitted from the vector parameter ε. So that the structure of 
the FIM is as follows (for proof, please refer to Appendix A):

FIM(ε) = 2

σ 2

⎡⎢⎢⎢⎢⎢⎢⎣
Fp1 p1 Fp1 p2

Fp2 p1 Fp2 p2

Fp1ψ1
Fp1ψ2

0 Fp1α2

Fp2ψ1
Fp2ψ2

Fp2α1 0
Fψ1 p1 Fψ1 p2

Fψ2 p1 Fψ2 p2

0 Fα1 p2

Fα2 p1 0

FLL

⎤⎥⎥⎥⎥⎥⎥⎦
(16)

where3 L = [ψ T
1 , ψ T

2 , αT
1 , αT

2 ]T .

3 For sake of simplicity and to avoid any misunderstanding, we used the following
notation, Fuv , where the lower script uv denotes the considered part of the FIM
which corresponds to the derivation according to the vector parameters u and v as
shown in (7), respectively.
3.2. Analytical inversion

First, we note that the 4T × 4T matrix FLL in (16) can be par-
titioned into diagonal sub-blocks as

FLL =

⎡⎢⎢⎣
Fψ1ψ1

Fψ1ψ2

Fψ2ψ1
Fψ2ψ2

0 Fψ1α2

Fψ2α1 0
0 Fα1ψ2

Fα2ψ1
0

Fα1α1 Fα1α2

Fα2α1 Fα2α2

⎤⎥⎥⎦ (17)

in which, the expression of each sub-block is given in Appendix A.
Second, the FLL matrix is fully inverted by applying the Schur 

complement [35] formula twice as follows:

1) Using the Schur complement with respect to the lower right
block matrix in (17) represented by the dotted line partition,
one obtains[

Fα1α1 Fα1α2

Fα2α1 Fα2α2

]−1

=[
S−1 −S−1Fα1α2 F−1

α1α1

−F−1
α1α1 Fα2α1 S−1 F−1

α1α1 + F−1
α1α1 Fα2α1 S−1Fα1α2 F−1

α1α1

]
(18)

in which

S = Fα2α2 − Fα1α2 F−1
α1α1

Fα2α1 . (19)

2) Now, we use the Schur complement with respect to the lower
right block matrix in (17) represented by the solid line parti-
tion and we obtain

F−1
LL =
⎡⎣Fψ1ψ1

Fψ1ψ2
0 Fψ1α2

Fψ2ψ1
Fψ2ψ2

Fψ2α1 0
0 Fα1ψ2

Fα1α1 F α1α2
Fα2ψ1

0 Fα2α1 Fα2α2

⎤⎦−1

=
[ (

A − BD−1C
)−1 − (A − BD−1C

)−1
BD−1

−D−1C
(
A − BD−1C

)−1
D−1 + D−1C

(
A − BD−1C

)−1
BD−1

]
(20)

where

A =
[

Fψ1ψ1
Fψ1ψ2

Fψ2ψ1
Fψ2ψ2

]
, B =

[
0 Fψ1α2

Fψ2α1 0

]
,

C =
[

0 Fα1ψ2

Fα2ψ1
0

]
and D =

[
Fα1α1 Fα1α2

Fα2α1 Fα2α2

]
.

3) Finally, having the inverse of FLL matrix one can apply again
this method to compute analytically the Schur complement of
the lower right block of the matrix FIM(ε) in (16).

After tedious calculation, we are able to express in closed form
the Schur complement of the matrix FLL , which corresponds to 
CRB−1

P P :

CRB−1
P P = 2

σ 2

⎡⎢⎢⎣
�(1,1,2) 
(1) �(1) �


(1) �(1,2,4) � �(2)

�(1) � �(2,1,2) 
(2)

� �(2) 
(2) �(2,2,4)

⎤⎥⎥⎦
(21)

in which P = [pT
1 , pT

2 ]T and functions �, 
, � and � are given in 
Appendix B.

Consequently, instead of inverting a (4T + 4) × (4T + 4) matrix 
to obtain CRBp p , we can invert just a 2 × 2 matrix as follows
i k



CRBpi pk
=
{

σ 2

2 ϒ−1(i) for i = k,∀i = 1,2

−σ 2

2 ϒ−1(1)�ℵ(2) for i 
= k,∀i,k = 1,2
(22)

where

ℵ(i) = 1

�(i,1,2)�(i,2,4) − 
2(i)

[
�(i,2,4) −
(i)
−
(i) �(i,1,2)

]
,

� =
[
�(1) �

� �(2)

]
and

ϒ(i) =
[
�(i,1,2) 
(i)


(i) �(i,2,4)

]
− �ℵ(3 − i)�,

which, finally, leads to the following result

CRBpi pi = σ 2

2

1

h(i,1)h(i,2) − m(i)2

[
h(i,2) −m(1)

−m(1) h(i,1)

]
,

∀ i = 1,2 (23)

where

h(i, j) = �(i, j,2 j)

+ �( j)(�(3 − i,3 − j,2(3 − j))�( j) − 
(3 − i)�)


2(3 − i) − �(3 − i,1,2)�(3 − i,2,4)

+ �(�(3 − i, j,2 j)� − 
(3 − i)�( j))


2(3 − i) − �(3 − i,1,2)�(3 − i,2,4)
, (24)

and

m(i) = 
(i) + �(1)(�(3 − i,2,4))� − 
(3 − i)�(2))


2(3 − i) − �(3 − i,1,2)�(3 − i,2,4)

+ �(�(3 − i,1,2)�(2) − 
(3 − i)�)


2(3 − i) − �(3 − i,1,2)�(3 − i,2,4)
. (25)

3.3. CRB for the physical parameter vector κ

Even if the model (7) is usually used in array signal processing, 
its CRB related to ε does not bring us physical information. Then, 
it is interesting to analyze this CRB regarding the bearing θ and 
range r.

That is, the new unknown physical parameter vector becomes

κ = g(ε) =
[
θ1, r1, θ2, r2,ψ

T
1 ,ψ T

2 ,αT
1 ,αT

2

]T
(26)

From CRB(ε), we deduce CRB(κ ) by using the following formula 
(see [36, p. 45])

CRB(κ) = ∂ g(ε)

∂ε
CRB(ε)

[
∂ g(ε)

∂ε

]T

(27)

where the Jacobian matrix is given by

∂ g(ε)

∂ε
= λ

πd

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−2 cos(θ1)

0 0 0 0
r1 sin(θ1)

cos2(θ1)

−r2
1

d cos2(θ1)
0 0 0

0 0 1
−2 cos(θ2)

0 0

0 0 r2 sin(θ2)

cos2(θ2)

−r2
2

d cos2(θ2)
0

0 0 0 0 πd
λ

I 4T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(28)

Using (27) and the Jacobian matrix above, we obtain

CRB(θi) = σ 2

2

λ2h(i,2)

4π2d2 cos2(θi)
(
h(i,1)h(i,2) − m(i)2

) , (29)

and

CRB(ri) = σ 2

2

λ2m(i)2
(

h(i,2)d2 sin2(θi) + 2k(i)rid sin(θi) + h(i,1)r2
i

)
π2d4 cos4(θi)

(
h(i,1)h(i,2) − m(i)2

) .

(30)
3.4. The special case of two orthogonal sources

In this subsection, we consider the particular case of two near-
field orthogonal sources. This kind of signal is commonly used in 
radar and radio communication to facilitate the task of separating 
signals [37]. From the above results, we deduce the CRB for two 
near-field orthogonal sources. The assumption of two orthogonal 
sources means that [38]

T∑
t=1

sH
1 (t)s2(t) = 0 (31)

Substituting (31) in (18), we obtain

� = 02×2 (32)

Consequently, the CRBpi pk
for near-field orthogonal sources is 

given by

CRBpi pk
=
{

σ 2

2 ℵ(i) for i = k,∀i = 1,2
0 for i 
= k,∀i,k = 1,2

(33)

which leads to the following results

CRB(ωi) = σ 2

2

�(i,2,4)

�(i,1,2)�(i,2,4) − 
2(i)
, (34)

CRB(φi) = σ 2

2

�(i,1,2)

�(i,1,2)�(i,2,4) − 
2(i)
, (35)

CRB(θi) = σ 2

2

λ2�(i,2,4)

4π2d2 cos2(θi)
[
�(i,1,2)�(i,2,4) − 
2(i)

] , (36)

and

CRB(ri) = σ 2

2

λ2r2
i

[
�(i, 2, 4)d2 sin2(θi) + 2
(i)rid sin(θi) + �(i, 1, 2)r2

i

]
π2d4 cos4(θi)

[
�(i, 1, 2)�(i, 2, 4) − 
2(i)

] .

(37)

4. The minimum SNR required to resolve two closely spaced
near-field sources

The aim of this section is to derive a closed-form expression 
of the minimum SNR, denoted by SNRmin , required to resolve two 
closely spaced near-field sources. By using Smith’s criterion [39], 
the DRL is the particular value of the distance dNF between two 
sources for which 

√
CRB(dNF) is equal to dNF , where the distance 

between two near field sources is defined as

dNF =
√

r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1). (38)

Consequently, the new unknown physical parameter vector is

j(κ) =
[√

r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1), r1, θ2, r2,ψ
T
1 ,ψ T

2 ,αT
1 ,αT

2

]T

(39)

As in (27), we obtain CRB(dNF) from the following formula

CRB(dNF) =
[

∂ j(κ)

∂κ
CRB(κ)

[
∂ j(κ)

∂κ

]T
]

1,1

(40)

From (21), (22) and using the relation (27), one notices that 
C̃RB(κ) = CRB(κ)

σ 2 does not depend on σ 2. Denoting C̃RB(dNF) =
CRB(dNF )

σ 2 equation (40) can be written as

C̃RB(dNF) =
[

∂ j(κ)

∂κ
˜CRB(κ)

[
∂ j(κ)

∂κ

]T
]

(41)

1,1



Fig. 2. DRL vs. the ratio of SNRs in the case of a ULA of 6 sensors, 100 snapshots
and SNR1 + SNR2 = 30 dB.

Consequently, one obtains

C̃RB(dNF) =
4∑

i, j=1

[
∂ j(κ)

∂κ

]
1,i

[
∂ j(κ)

∂κ

]
1, j

[C̃RB(κ)]i, j (42)

where[
∂ j(κ)

∂κ

]
1,1

= −
[

∂ j(κ)

∂κ

]
1,3

= − r1r2 sin(θ2 − θ1)

dNF
, (43)

and[
∂ j(κ)

∂κ

]
1,2

= −
[

∂ j(κ)

∂κ

]
1,4

= r1 − r2 cos(θ2 − θ1)

dNF
. (44)

Let us define the SNR as

SNR = ‖α1‖2 + ‖α2‖2

σ 2
. (45)

Furthermore, from (40) and (42), one has C̃RB(dNF) = CRB(dNF )

σ 2 .

Since, C̃RB(dNF) is σ 2 independent and the SNRmin is given by the 
SNR for which the following equation holds

σ 2C̃RB(DRL) = r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1) (46)

Consequently, from (45) and (46), one obtains

SNRmin =
(‖α1‖2 + ‖α2‖2

)
C̃RB(DRL)

r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1)
(47)

Remark. We should precise that using the definition of the total 
SNR in the deterministic case (i.e., SNR = SNR1 + SNR2, in which 
SNR1 = ||α1||2

σ 2 and SNR2 = ||α2||2
σ 2 ) to characterize the SNRmin we 

lose the information related to the ratio of SNRs, i.e., SNR1
SNR2

. Con-
sequently, one has to take a precaution using the SNRmin , since, 
for a given DRL one may require a higher SNRmin if the ratio SNR1

SNR2
is far from 1 as represented in Fig. 2. Indeed, Fig. 2 shows the 
variation of the DRL w.r.t. SNR1

SNR2
subject to a fixed total SNR (i.e., 

SNR1 + SNR2 = constant). Furthermore, we can notice, by simula-
tion, that the smallest SNRmin possible for a given DRL is obtained 
in the case of SNR1

SNR2
= 1.
Fig. 3. Comparison between numerical and analytical CRB(ω1) and CRB(φ1) with
(θ1, r1) = (30◦, 10λ) and (θ2, r2) = (60◦, 20λ). Lines and markers represent the nu-
merical and analytical CRBs, respectively.

5. Numerical investigation: CRB, DRL and geometry design

Numerical results are presented in this section for a NULA with
six sensors (with the following locations: 0, 3 · d, 4 · d, 5 · d, 6 · d, 
9 · d) that receives a signal emitted by two sources in the Fresnel 
region in which their amplitudes and phases are generated from 
a realization of an i.i.d. Gaussian distribution with zero mean and 
unit variance unless specified. The number of snapshots is given 
by T = 100.

5.1. Numerical analysis of the CRB

In this section, we analyze the proposed closed-form expres-
sions given in Section 3 by comparing the analytical results with 
the numerical results to illustrate the validity of our derived CRB 
closed form expressions. More precisely,

• In Fig. 3, we compare the analytical CRBs given in (23) with
the numerical exact CRBs given in (6). This figure shows that
the proposed closed-form expressions are in a good agreement
with the true numerical CRBs, which validates our derived ex-
pressions. Furthermore, we have the same results for CRB(θ)

and CRB(r) with respect to (29) and (30).
• From (24), we notice that ∀i = 1, 2, h(i, 1) is O (N3), however

h(i, 2) is O (N8), which means that the estimation of the so-
called second electrical angle φi is more accurate than estimat-
ing the so-called first electrical angle ωi . This is corroborated
by Fig. 3.

• From (22) and using the inversion lemma matrix, we can
quantify the effect of the estimation accuracy of one source
on the other one by the following relationship

CRBp1 p1 = σ 2

2
ℵ(1) + ℵ(1)�CRBp2 p2�ℵ(1)

= σ 2

2
ℵ(1)(I2×2 + 2

σ 2
�CRBp2 p2�ℵ(1)) (48)

and in the same way we obtain

CRBp2 p2 = σ 2

2
ℵ(2)(I 2×2 + 2

σ 2
�CRBp1 p1�ℵ(2)) (49)

Thus, in the general case, the estimation error of the electrical 
angles of one source affects the electrical angles estimation of 



Fig. 4. Variation of the CRB w.r.t. r1 with fixed r2 = 2 m and for equal source power.

the other source. Whereas, from (48) and (49), we note that 
this is not the case if the sources are orthogonal, meaning that 
the estimation accuracy of one source neither depends on nor 
affects the estimation accuracy of the other source. However, 
it is obvious that CRBpi pi

is affected by the position of both 
sources, more precisely, by the distance between the electric 
angles of both sources (because �(i, k, p) depends on �ω and 
�φ even in the orthogonal case, and thus CRBpi pi

depends on 
the distance between the electrical angles).

• Unlike the case of one source, the CRB for two sources are not
phase-invariant. However, we notice that for two orthogonal
sources the CRB becomes phase-invariant. Numerical simula-
tion shows the improvement due to orthogonality.

• For a sufficient number of sensors, CRBθ iθ i and CRBri ri are
O (1/N3).

• CRBri ri is bearing-invariant and range-invariant.
• For λ, ri ∝ d, the dependence on the range is O (r2

i ), meaning
that nearer the source is, the better the estimation (keeping
in mind the Fresnel constraints). This is corroborated by Fig. 4.
The dependence of the range on the bearing is O (1/cos4(θi)).
For θi close to π/2, we observe that CRBri ri goes to infinity
but faster than CRBθ iθ i (cf. Fig. 5 for CRB(θ1)).

• Fig. 6 shows that, for a different value of bearing and for a
fixed SNR, the higher the frequency is, the lower the CRBri ri .

5.2. Correlation factor

In the following, we investigate the effect of the correlation fac-
tor on the DRL. We define the correlation factor ξ between the two 
sources as [40]

ξ = sH
1 s2

‖s1‖‖s2‖ (50)

in which si = [si(1), . . . , si(T )]T denotes the i-th signal vector. We 
use the same simulation parameters as in Fig. 3, expect the fact 
the signal sources satisfy (50) for a given ξ . From (34) to (37), we 
know that the orthogonality between two sources implies the un-
coupling property. Then, since the sources are decoupled, ξ = 0, 
the estimation will be improved (at least for any efficient algo-
rithm). In Fig. 7, we compare the correlation effect of the real 
amplitude of ξ on the DRL. Note that, for a given SNR, DRL be-
comes greater as the value of the real amplitude of ξ increases. In 
other words, the smaller the correlation between both sources, the 
Fig. 5. CRB(θ1) vs. SNR for r1 = 10λ, (θ2, r2) = (60◦, 20λ) and values of θ1 as shown 
in the legend. Lines and markers represent the analytical and numerical CRBs, re-
spectively.

Fig. 6. CRB(r1) vs. SNR for (θ1, r1) = (30◦, 10λ), (θ2, r2) = (60◦, 20λ) and values of 
f0 as shown in the legend. Lines and markers represent the analytical and numeri-
cal CRBs, respectively.

better the resolution limit performance. Meanwhile, DRL achieves 
its lowest value when ξ = 0, which means that two signals enjoy 
a minimum (best) resolution limit between them if they have the 
orthogonal relationship.

5.3. SNRmin behavior w.r.t. central angle

Let us define the central angle as

θc = θ1 + θ2

2
(51)

In Fig. 8, we have plotted the SNRmin required to resolves two 
closely spaced sources for different values of θc . It should be noted 
that for a given resolution limit, as the central angle θc increases, 
the minimum signal to noise ratio required increases also.

5.4. Minimum resolution limit boundary

In practical applications, one may need the knowledge of the 
physical boundary, which delimits the resolvability region (mean-



Fig. 7. The effect of the amplitude of the correlation factor on the DRL.
Fig. 8. The SNRmin versus the distance curves from a non-uniform array for various
central angles.

ing the region for which two near field sources are resolvable). 
Although this question is worth consideration, to the best of our 
knowledge, no work has been done on it in the literature. In 
this subsection, the minimum resolution limit boundary for two 
sources is investigated and discussed for different SNRs.

Following similar steps as those employed in Section 4, we ob-
tain the minimum resolution limit boundary of two sources for dif-
ferent SNR value. Such boundary is represented in Fig. 9, in which 
the star symbol represents the coordinates of the first source w.r.t. 
the reference sensor (xo, yo) = (0, 0), in which (θ1, r1) = (45◦, 6λ), 
‖α1‖2 = 1 and ‖α2‖2 = 1. For different SNR, the second source
must be outside this boundary to ensure a correct resolvability
given by Smith’s criterion. As expected, one notices that for higher
SNR, one obtains a small boundary. Furthermore, we can notice
that this boundary is more bearing sensitive than range sensitive.
As said before, this boundary is a physical limitation. Nevertheless,
this latter can be compensated by a proper array geometry design
which is the aim of the next section.

5.5. Effect of sensors’ position

The remaining part of this section is devoted to the numerical 
analysis of the effect of sensor array geometry on the DRL. Assume 
(θ1, r1) = (30◦, 6λ), (θ2, r2) = (60◦, 10λ) and ‖α1‖2 = ‖α2‖2 = 1. 
Fig. 9. DRL boundary for 6-sensors.

Table 1
Different array geometric configurations.

Array type Geometric configuration
Type 1 • • • • • ◦ ◦ ◦ ◦ •
Type 2 • ◦ • ◦ • ◦ • ◦ • •
Type 3 • ◦ ◦ ◦ ◦ • • • • •
Type 4 • ◦ ◦ • • • • ◦ ◦ •
Type 5 • • • • • • • • • •

Keep the array aperture A = 9 (in unit of d = λ/2) fixed and N = 6, 
there are 10 positions available for six sensors.

In Fig. 10, we plot the DRL which compares the impact of the 
different sensor array geometry w.r.t. SNRmin . Five types of array 
configurations are considered, as shown in Table 1. Type 1 to type 
4 are listed in Table 1 with N = 6 sensors, Type 5 is an ULA con-
figuration with N = 10 sensors.

From comparison of simulation results, one can further notice 
that

• For the same array aperture, same SNR and same number of
sensors, the DRL is greatly affected by the array geometric con-
figuration.

• By comparing the results given from Type 1 to Type 4, the
configuration that puts two sensors at the extremity and the
rest in the middle seems to be the best geometry configuration
(at least, it is the case for A = 9 and N = 6 sensors).



Fig. 10. The required SNRmin to resolve two unknown closely sources for different
array geometries.

Fig. 11. The required SNRmin to resolve two unknown closely sources for the best &
worst performance of different sensors.

Table 2
The best and worst array geometric configurations for different number of sensors.

Array type Geometric configuration SNRmin

Type 6 • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • lowest SNRmin

Type 7 • ◦ ◦ ◦ • • ◦ ◦ ◦ • lowest SNRmin

Type 8 • • ◦ ◦ ◦ ◦ ◦ ◦ • • highest SNRmin

Type 9 • ◦ ◦ ◦ • • • ◦ ◦ • lowest SNRmin

Type 10 • • • ◦ ◦ ◦ ◦ ◦ • • highest SNRmin

Type 11 • ◦ ◦ • • • • ◦ ◦ • lowest SNRmin

Type 12 • • • ◦ ◦ ◦ ◦ • • • highest SNRmin

Type 13 • • • • ◦ ◦ ◦ • • • highest SNRmin

• Type 4, with six sensors, is slightly worse than the ULA con-
figuration with 10 sensors.

Furthermore, to better comprehend the resolvability perfor-
mance as a function of array geometric configuration, consider 
Fig. 11, where we compare the minimum signal to noise ratio with 
respect to the best and worst performance of different number of 
sensors. The considered type of sensor geometry configuration is 
list in Table 2.
From this figure, we can see that the Type 11 represents the 
best achievable performance, and Type 8 has the worst perfor-
mance. Furthermore, on one hand, we can notice that with the 
same array aperture, Type 6 (with 3 sensors) and Type 13 (with 
7 sensors) have, approximately, the same performance (Type 6 is 
only 0.2 dB worse than the Type 13); and, on the other hand, 
one can notice that Type 6 (with 3 sensors) has a better perfor-
mance in regard to Type 12 (which has 6 sensors) by 1.5 dB. This 
means that depending on the array geometry, one can have better 
performance using a less number of sensors. The relatively poor 
performance of the type 8, 10, 12 and 13 is due to the sensor ge-
ometry configuration. Consequently, with the same aperture, one 
can optimally design the array using the proposed method below, 
in order to obtain better performance even with less sensors.

5.6. Sensors array geometry design

As discussed above, the resolvability is not only constrained by 
the number of sensors, but also by the array geometry, which af-
fects the optimal resolution capability.

In the following, we give a solution to design an optimal ar-
ray in order to enhance the resolvability and/or to compensate the 
performance loss due to the reduction or failure of certain sensors.

The optimal method is given by minimizing SNRmin over sen-
sors’ position among all possibilities using the derived expression 
(47). However, this scheme is not feasible for a model with large 
aperture and small number of sensors. More precisely, for aperture 
of size A and N sensors, one has C N

A+1 possibilities. To overcome 
this drawback we propose a sub-optimal fast procedure as follows.

Step 1: We place two sensors at each extremity to obtain the 
largest aperture that leads to the best resolution.

Step 2: We place only one sensor by minimizing SNRmin with 
respect to the A − 2 remaining positions.

Step 3: We iterate the second step by placing the (n + 1)-th 
sensor at once by minimizing sequentially the SNRmin with respect 
to the A − n + 1 remaining positions.

In the following part, we show that the proposed sub-optimal 
method produces a nearly optimal result with low complexity. 
More precisely, the complexity cost ratio of the optimal method 
over the proposed sub-optimal method is given by

f (N, A) = Nopt

Nprop

= 2(A + 1)!
N!(A − N + 1)!(A(A − 1) − (A − N + 1)(A − N + 2))

(52)

where Nopt means the number of required iterations by using the 
optimal method and Nprop means that by using the proposed sub-
optimal method.

In the examples studied in this section, we consider several 
cases: Case 1) N = 4, A = 7; Case 2) N = 5, A = 8, so that we 
may compare the results of the two methods, as shown in Fig. 12. 
One notes that our proposed method is nearly identical to the 
optimal method. In addition, from (52), we have f (4, 7) = 6 and 
f (5, 8) = 7, which means that the proposed method is six to seven 
times faster than the optimal one. If we consider a more impor-
tant aperture, e.g., for N = 6, A = 25, we notice that the proposed 
method decreases significantly the complexity cost by f (6, 25) =
2558 times compared with the optimal one with the same per-
formance. Consequently, we notice that the proposed method is of 
low complexity, especially for the design of sparse arrays.

One should note that for the above discussion, we assume that 
derived closed form expression of SNRmin is given. If no expres-
sion of the SNRmin is given, one has, first, to numerically inverse 



Fig. 12. Comparison between two methods of searching the optimal array geometry
configuration.

the FIM (of size 4(T + 1) × 4(T + 1)) which is costly and which in-
creases dramatically with the number of snapshots and then apply 
the Smith’s criterion.

6. Conclusion

In this paper, we derived an explicit closed-form expression of
the deterministic Cramér–Rao bound for two closely spaced near-
field sources for non-uniform linear array. Taking advantage of 
these expressions, we deduced the theoretical statistical resolution 
limit and the minimum signal to noise ratio required to resolve 
two closely spaced near-field sources. These expressions present 
two advantages. i) First, they avoid computationally costly numer-
ical inversion of the Fisher information matrix, which increases 
dramatically with the number of snapshots. ii) Second, we pro-
vide a detailed discussion on several enlightening properties of 
the statistical resolution limit revealed by our expressions, with 
an emphasis on the effect of the given scenario (e.g., the num-
ber of sensors, the correlation factor, the minimum resolution limit 
boundary, the array geometry, etc.) on the resolvability. Further-
more, we present numerical analysis to corroborate the proposed 
theoretical expressions. Finally, based on the statistical resolution 
limit, we proposed a novel, fast method, which is nearly optimal, 
to find the best sensor arrangement leading to the best achievable 
resolution.
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Appendix A

In this appendix, we present the main steps leading to (16). 
Consider the (i, k)-th element of the FIM for the unknown real 
parameter vector (10). We first obtain the following derivatives (for 
i = 1, 2)

∂μ

∂ωi
= jsi ⊗ d � a(ωi, φi) (53)

∂μ = jsi ⊗ d � d � a(ωi, φi) (54)

∂φi
∂μ

∂ψi
= jsi ⊗ a(ωi, φi) (55)

∂μ

∂αi
= s̃i ⊗ a(ωi, φi) (56)

in which μ = [sT (1)AT (ω, φ), · · · , sT (T )AT (ω, φ)]T , [si]t = si(t)
and [s̃i]t = e j(2π f0t+ψi(t)) for t = 1, . . . , T .

Let us denote

f (m,�ω,�φ) =
N−1∑
n=0

dm
n e j(�ωdn+�φd2

n)

in which for sake of simplicity f (i) will be used instead of 
f (i, 0, 0), �ω = ω1 − ω2 and �φ = φ1 − φ2. Thus, replacing the 
above expressions, one has

∂μH

∂ω1

∂μ

∂ω1
=

N−1∑
n=0

d2
n

T∑
t=1

a2
1(t) = ‖α1‖2 f (2), (57)

∂μH

∂φ1

∂μ

∂φ1
=

N−1∑
n=0

d4
n

T∑
t=1

a2
1(t) = ‖α1‖2 f (4), (58)

∂μH

∂ω1

∂μ

∂φ1
= ∂μH

∂φ1

∂μ

∂ω1
=

N−1∑
n=0

d3
n

T∑
t=1

a2
1(t) = ‖α1‖2 f (3), (59)

and

F p1 p1 = ‖α1‖ ⊗
[

f (2) f (3)

f (3) f (4)

]
. (60)

Hence, one obtains

∂μH

∂ω1

∂μ

∂ω2
= ∂μH

∂ω2

∂μ

∂ω1

= �
{

N−1∑
n=0

d2
ne− j(�ωdn+�φd2

n)
T∑

t=1

sH
1 (t)s2(t)

}
= �{〈s2, s1〉 f (2,�ω,�φ)} (61)

∂μH

∂ω1

∂μ

∂φ2
= ∂μH

∂φ1

∂μ

∂ω2

= �
{

N−1∑
n=0

d3
ne− j(�ωdn+�φd2

n)

T∑
t=1

sH
1 (t)s2(t)

}
= �{〈s2, s1〉 f (3,�ω,�φ)} (62)

∂μH

∂ω2

∂μ

∂φ1
= ∂μH

∂φ2

∂μ

∂ω1

= �
{

N−1∑
n=0

d3
ne j(�ωdn+�φd2

n)

T∑
t=1

sH
2 (t)s1(t)

}
= �{〈s2, s1〉 f (3,�ω,�φ)} (63)

∂μH

∂φ1

∂μ

∂φ2
= ∂μH

∂φ2

∂μ

∂φ1

= �
{

N−1∑
n=0

d4
ne− j(�ωdn+�φd2

n)
T∑

t=1

sH
1 (t)s2(t)

}
= �{〈s2, s1〉 f (4,�ω,�φ)} (64)

After some rearrangement and calculation, one obtains the fol-
lowing 2 × 2 matrices

F p1 p2 = F p2 p1

= �
{
(s1 � sH

2 ) ⊗
[

f (2,�ω,�φ) f (3,�ω,�φ)

f (3,�ω,�φ) f (4,�ω,�φ)

]}
(65)



∂μH

∂ω2

∂μ

∂ω2
=

N−1∑
n=0

d2
n

T∑
t=1

α2
1(t), (66)

∂μH

∂φ2

∂μ

∂φ2
=

N−1∑
n=0

d4
n

T∑
t=1

α2
1(t), (67)

∂μH

∂ω2

∂μ

∂φ2
= ∂μH

∂φ2

∂μ

∂ω2
=

N−1∑
n=0

d3
n

T∑
t=1

α2
1(t), (68)

and

F p2 p2 = ‖α2‖2 ⊗
[

f (2) f (3)

f (3) f (4)

]
, (69)

and the 2 × T matrices are given by (for i = 1, 2)

F piψ i
= F T

ψ i pi

= (αi � αi)
T ⊗
[

f (1)

f (2)

]
=
[

α2
i (1) f (1) · · · α2

i (T ) f (1)

α2
i (1) f (2) · · · α2

i (T ) f (2)

]
(70)

F p1ψ2
= F p2ψ1

= F T
ψ2 p1

= F T
ψ1 p2

= �
{
(s1 � sH

2 ) ⊗
[

f (1,�ω,�φ)

f (2,�ω,�φ)

]}
=
[

α1(1)α2(1)β(0,1,1,1) · · · α1(T )α2(T )β(0,1,1, T )

α1(1)α2(1)β(0,1,2,1) · · · α1(T )α2(T )β(0,1,2, T )

]
(71)

F piαi = F αi pi
= F ψ iαi = F αiψ i

= 0, i = 1,2 (72)

F p1α2 = F T
α2 p1

= �
{

j(s1 � sH
2 � α2) ⊗

[
f (1,�ω,�φ)

f (2,�ω,�φ)

]}
=
[

α1(1)β(1,1,1,1) · · · α1(T )β(1,1,1, T )

α1(1)β(1,1,2,1) · · · α1(T )β(1,1,2, T )

]
(73)

F p2α1 = F T
α1 p2

= �
{
− j(s1 � sH

2 � α1) ⊗
[

f (1,�ω,�φ)

f (2,�ω,�φ)

]}
=
[−α2(1)β(1,1,1,1) · · · −α2(T )β(1,1,1, T )

−α2(1)β(1,1,2,1) · · · −α2(T )β(1,1,2, T )

]
(74)

and the T × T diagonal matrices (for i = 1, 2)

F αiαi = f (0)I T (75)

F α1α2 = F α2α1

= �
{

diag(s1 � sH
2 � α2 � α1) f (0,�ω,�φ)

}
(76)

F ψ iψ i
= diag(α1 � α2) f (0), i = 1,2 (77)

F ψ1ψ2
= F ψ2ψ1

= �
{

diag(s1 � sH
2 ) f (0,�ω,�φ)

}
(78)

F ψ1α2 = F α2ψ1
= �
{

jdiag(s1 � sH
2 � α2) f (0,�ω,�φ)

}
(79)

F ψ2α1 = F α1ψ2
= �
{
− jdiag(s1 � sH

2 � α1) f (0,�ω,�φ)
}

(80)

Appendix B

In this appendix we give the expression of functions �, 
, �
and �:
�(i,k, p) = ‖αi‖2 f (p)

−
T∑

t=1

a2
i (t)
(

f (0) f 2(k) − 2 f (k)υ(1,k + 1, t) + f (0)‖ f (k,�ω,�φ)‖2
)

γ
,

(81)


(i) = ‖αi‖2 f (3)

−
T∑

t=1

a2
i (t) ( f (0) f (1) f (2) + f (0)υ(2, 3, t) − f (1)υ(1, 3, t) − f (2)υ(1, 2, t))

γ
,

(82)

�(i) = �{〈s2, s1〉 f (2i,�ω,�φ)}

−
T∑

t=1

{
α1(t)α2(t)

(
2 f (0) f (i)β(0,1, i, t)

− β(0,1,0, t)
(
β2(0,1, i, t) − β2(1,1, i, t)

)
− f 2(1)β(0,1,0, t) − 2β(0,1, i, t)β(1,1, i, t)

)}
/γ ,

(83)

and

� = �{〈s2, s1〉 f (3,�ω,�φ)}

−
T∑

t=1

{
α1(t)α2(t)

(
f (0) f (1)β(0,1,2, t)

− β(0,1,2, t)υ(1,2, t) + f (0) f (2)β(0,1,1, t)

− f (1) f (2)β(0,1,0, t) + β(1,1,2, t)ι(2,1, t)
)}

/γ . (84)

where f (m, �ω, �φ) =∑N−1
n=0 dm

n e j(�ωdn+�φd2
n) (for sake of clarity

f (i) was used instead of f (i, 0, 0)) in which

β(q,k, l, t) = �
{

jqe jk�ψ(t) f (l,�ω,�φ)
}

, (85)

ι(i1, i2, t) = β(1,1, i1, t)β(0,1, i2, t) − β(1,1, i2, t)β(0,1, i1, t),
(86)

υ(i1, i2, t) = β(0,1, i1, t)β(0,1, i2, t) + β(1,1, i1, t)β(1,1, i2, t),
(87)

and

γ = f 2(0) − ‖ f (0,�ω,�φ)‖2. (88)
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