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Our purpose was to differentiate glioblastoma from metastasis using a single dynamic MR sequence
to assess perfusion and permeability parameters. 24 patients with glioblastoma or cerebral metastasis
with peritumoral oedema were recruited and explored with a 3 T MR unit. Post processing used DPTools
Perfusion
Permeability
Glioblastoma
Metastasis

software. Regions of interest were drawn around contrast enhancement to assess relative cerebral blood
volume and permeability parameters. Around the contrast enhancement Glioblastoma present high rCBV
with modification of the permeability, metastasis present slight modified rCBV without modification of
permeability. In conclusion, peritumoral T2 hypersignal exploration associating morphological MR and
functional MR parameters can help to differentiate cerebral metastasis from glioblastoma.
. Introduction

Differentiate single metastatic brain tumour from glioblastoma
n a patient with a contrast-enhancing brain mass may be diffi-
ult because of their similar morphological aspect on brain imaging
1,2]. It is a challenge because diagnostic and therapeutic decisions
epend on tumour type [3,4].

These 2 tumour types present very different vascular properties.
etastasis vessels present the same characteristics as the vessels of

he primary lesion without blood brain barrier with capillary fenes-
ration [5]. T2 peritumoral hypersignal non enhanced on T1 reflects
asogenic edema due to increased capillary permeability through-

ut the tumour vasculature. Glioblastomas, the most malignant
liomas in adults, are among the most angiogenic of all human
umors. Angiogenesis plays an important role in malignant pri-

ary tumors [6]. Angiogenesis is a complex process regulated by
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multiple stimulatory and inhibitory factors that are able to modu-
late the migration and/or proliferation of microvascular cells with
the objective of formation of neovasculature from preexisting ves-
sels. It involves well-coordinated steps including: production and
release of angiogenic factors, proteolytic degradation of extracel-
lular matrix components to allow formation of capillary sprout,
proliferation and directional migration of microvascular cells, and
the final composition of new vessels [7]. According to classifica-
tion of the World Health Organisation (WHO) [8], the glioblastoma
(grade IV) is the histotype of higher grade. It must show endothelial
hyperplasia, necrosis, or both.

We tried to approach pathophysiology of peritumoral oedema
with perfusion (PWI) and permeability imaging. We speculated
that the vascularisation in the peritumoral oedema was raised in
glioblastoma (infiltrative lesion) due to angiogenesis; basing on
this fact we hypothesized first that perfusion and permeability
parameters were much modified on the oedema around glioblas-

toma than around metastasis. The second hypothesis was these
parameters were less modified far from the lesion (glioblastoma
or metastasis). These data may reflect a “gradient” of angio-
genesis and infiltration and allow a better understanding of the
tumor and indirectly a better differentiation. Our goal was to esti-
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ate angiogenesis on peritumoral tissue often present around
lioblastoma. We explore simultaneously relative Cerebral Blood
olume (rCBV) and endothelial permeability using a single T2*
cho Gradient echo planar imaging perfusion sequence. Our pur-
ose was to differentiate metastasis from glioblastoma using this
equence.

. Materials and methods

It was a prospective study. The local committee agreed this
tudy, patients were orally informed and consent was obtained,
igned consent was not needed because protocol imaging was
lready accepted for tumoral imaging in our institution. Patients
ith glioblastoma or cerebral metastasis with peritumoral oedema
ere recruited. These tumour types were chosen because of their
ifferent vascular properties [2]. 24 patients were included (sex
atio M/F: 2; mean age: 64, 8Y, min: 46 max: 83). 13 presented
lioblastomas and 11 metastasis (with histological proof, biopsy or
umoral resection). Steroids were not used before imaging.

.1. MR imaging data acquisition

All patients were examined with a 3 T clinical MR imaging unit
HDX, General Electric Medical System, Milwaukee, WI) by using
n 8 channels birdcage head coil.

All patients had protocol as followed: Axial Fast SpinEcho
SE) T2, Axial SE T1, Axial FLAIR, during automatic injector bolus
adolinium (volume: 0.1 mmol/kg; injection rate: 10 cm3/s), Axial
cho-Planar Echo Gradient PERFUSION [9]: echo time: 30 ms, repe-
ition time: 1500 ms, matrix: 128 × 128, field of view: 24 × 24 cm2,
lice thickness: 5 mm, intersection gap: 1 mm, NEX: 1, 20 slices, 65
cans, Axial SE T1-weighted post gadolinium with fat saturation.
elta R2* (�R2*) was assessed from perfusion sequence; �R2* was
escribed to reflect contrast leakage [10].

To optimize signal to noise ratio and baseline, we used fat satu-

ation on perfusion sequence.

To determined injection parameter we performed in vitro test
o define the good contrast quantity needed. 0.1 ml/kg allow good
ignal to noise ratio without “aliasing” when calculating �R2*. The
njection rate was determines basing on our clinical experience.

ig. 1. ROI positioning. (A) Flair, and (B) T1 gadolinium enhanced with fat saturation (axia
entimeter without including contrast enhancement, 2 ROI (green) are placed in the dist
OI (blue) is placed in the contralateral white matter. Yellow line delineates the first cent
2.2. Signal analysis

Image processing was performed using DPTools (http://www.
fmritools.org). No registration was performed. Basing on FLAIR
images to delineate peritumoral hypersignal and T1-weighted post
gadolinium images to delineate the edges of the tumour, we drew
around the tumour in each patient several circular regions of
interest (ROI), every ROI contained 172 mm2. We drew 2 ROIs
in the T2-hypersignal around the lesion in the first centimeter
without including contrast enhancement and 2 ROI in the distant
T2-hypersignal (more than 1 cm from contrast enhancement) on
axial plane. We also drew a ROI on contralateral brain white mat-
ter to normalize our measures (Fig. 1). Color maps were created
(Figs. 2 and 3).

2.3. Parameters studied

For perfusion parameters, we analysed rCBV, using the indica-
tor dilution theory (central volume theorem of Stewart–Hamilton
[11,12] and the relationship between endovascular gadolinium
concentration and the variation in MR imaging signal intensity
(Fig. 4).

For permeability parameters, we studied: �R2* that was
described to reflect contrast leakage: dynamic contrast-enhanced
MRI methods have been established to characterize changes in
tumor vasculature by elaborate PWI analyses [13–20]. It has been
shown, that fractional blood volume (fBV) values (that can be
calculated by T1 dynamic gadolinium enhancement permeability
sequences), correspond to contrast leakage inside tissues, which
reflects angiogenetic activity in tumors [21,22]. However, perme-
ability can be also estimated by T2* weighted scans [23,24]. It has
been shown that in gliomas, relative cerebral blood volume (rCBV)
obtained with T2* weighted PWI can be underestimated due to
extravasation of contrast [10] with concomitant signal intensity
loss in the extravascular space on T2* weighted sequences [10,25].

In T2* weighted sequences, rCBV values are assessed by integrat-
ing the resulting transverse relaxivity changes that occur over a
dynamic first pass injection [10,25]. However, because contrast
agent also has a T1 relaxation effect, the susceptibility contrast
signal intensity loss can be masked by signal intensity increase in

l plane). 2 ROIs (red) are placed in the T2-hypersignal around the lesion in the first
ant T2-hypersignal (more than one centimeter from contrast enhancement) and 1
imeter around the tumor.
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ig. 2. glioblastoma study (superior part of the tumor). (A) Axial FLAIR: mass effect
ffect with contrast enhancement (arrow), (C) CBV map: moderate increased perfusi
ermeability (red) in the oedema around the contrast enhancement, note the vascu

egions where these T1 effect are significant [10]. In these instances
nd regions, rCBV will be underestimated, and may affect grade
rediction in brain tumor. Therefore “corrected” rCBV (rCBVc) has
een proved to be significantly correlated with glioma tumor grade
10]. To do this correction, the value called �R2* (that is similar to
he above described fBV values) is calculated from the T2* weighted
equence to estimate contrast extravasation. �R2* is described as

robust and time-efficient strategy for approximately removing

he T1 effect that diminishes estimated rCBV [10]. Employing T2*
eighted sequences with this technique, will therefore allow for

stimation of rCBV and permeability (as a marker for angiogenesis)
y a single imaging sequence [26].

able 1
erfusion and permeability mean value.

CBV

Proximal Distal

Metastasis 0.77
Glioblastoma 2.07
p Significant No signific
mportant oedema on the right, (B) axial SE T1 fat sat after contrast injection: mass
the oedema around the contrast enhancement and (D) Permeability map: increased
tefacts (arrow head).

2.4. Statistical analysis

Means and T test were performed.

3. Results (Table 1)

3.1. Perfusion
rCBVmean values were 0.77 ± 0.51 for metastasis and
2.07 ± 3.59 for glioblastoma in proximal oedema. In distal oedema
rCBVmean values were: 2.72 ± 1.58 for metastasis and 3.21 ± 2.24
for glioblastoma. There was statistical difference between glioblas-

Permeability (fBV)

Proximal Distal

2.72 1.86 0.54
3.21 8.96 0.15
ant Significant No significant

dx.doi.org/10.1016/j.ejrad.2011.01.076


Fig. 3. Metastasis study. (A) axial FLAIR: mass effect and oedema on the left frontal lobe, (B) axial SE T1 fat sat after contrast injection: metastasis with contrast enhancement
and central necrosis (arrow), (C) CBV map: no increased perfusion in the oedema around the contrast enhancement, and (D) Permeability map: permeability raised in the
tumor, no increased permeability in the oedema around the contrast enhancement, note the vascular artefacts (arrow head).

Fig. 4. Visual comparison of the permeability change extends. Mixed images of axial SE T1 fat sat after contrast injection and permeability map (white plots delineate contrast
enhancement). (A) Glioblastoma study and (B) metastasis study. Permeability change extends is higher around glioblastoma than metastasis.

dx.doi.org/10.1016/j.ejrad.2011.01.076
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oma and metastasis in proximal oedema (p = 0.0003) but not in
istal oedema (p = 0.05).

.2. Permeability

In proximal oedema: 156 ROI were drawn around glioblastoma,
5% were positive (meaning there was permeability modification)
nd fBV mean value was 8.96. 118 ROI were drawn around metas-
asis, 11% were positive and fBV mean value was 1.86. Difference
as statistically significant.

In distal oedema: 112 ROI were drawn around glioblastoma, 4%
ere positive and fBV mean value was 0.54.128 ROI were drawn

round metastasis, 1% was positive and fBV mean value was 0.15.
ifference was not statistically different.

. Discussion

.1. Sequence

Permeability and rCBV estimation needs acquisitions without
ontrast agent to obtain a good baseline and dynamic acquisitions
uring and after the injection to estimate contrast leakage and
olume. We explore simultaneously relative Cerebral Blood Vol-
me (rCBV) and endothelial permeability using a single T2* Echo
radient echo planar imaging perfusion sequence. Perfusion and
ermeability parameters obtained simultaneously avoid two con-
rast injections, is less time consuming and is easier to calculate
ith this kind of software.

.2. Perfusion (rCBV)

Our results are similar to literature values [27–30] and reflect
hysiopathology of this tumour type. In proximal oedema, glioblas-
oma (infiltrative tumours) present the higher rCBV. T2 hypersignal
round metastasis seems to be linked to vasogenic phenomena’s.

In distal oedema, the 2 tumour types present the similar rCBV
alues which reflect the lack of tumoral infiltration and angiogen-
sis. T2 hypersignal is induced by the tumour (vasogenic oedema,
ass effect or venous drainage default) [31].

.3. Permeability

Permeability reflects interstitial microvascular contrast leakage
ue to abnormal vessels.

The data obtained on glioblastomas study show permeability
odification around glioblastoma with multiple positive ROI (45%)

n proximal oedema. In distal oedema only 4% of ROI were positive
orresponding to less tumoral infiltration.

On metastasis study, less than 11% of the ROI were positive
round the tumors which correspond to the lack of tumoral infil-
ration and angiogenesis. We attribute the positivity of these ROI
o partial volume effect due to a vessel or a tumoral part. Distal ROI
re similar to distal ROI around gliobastoma that correspond to the
bsence of tumoral infiltration or angiogenesis.

. Conclusion

In our study, the association of morphological MR and func-
ional MR parameters to explore peritumoral T2 hypersignal can
elp to differentiate brain masses. A single sequence is needed to

btain perfusion and permeability (functional data’s). Glioblastoma
resent high rCBV with modification of the permeability around
he contrast enhancement. Metastasis present slight modified rCBV
ithout modification of permeability around the contrast enhance-
ent. These results correspond to a perilesional oedema around
etastasis and infiltrative lesional oedema around glioblastoma.
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