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1. Introduction

The asymptotic performance analysis of an estimation algo-

rithm mostly relies on two simplified assumptions: i ) the data are

assumed to be Gaussian distributed and ii ) the data model used to

derive the estimation algorithm is supposed to be correctly speci-

fied , that is the probability density function (pdf) assumed to de-

rive an estimator of the parameters of interest and the true pdf

that statistically characterizes the data are exactly the same. 

Although these assumptions guarantee the possibility to per-

form ”elegant” performance assessment, e.g. by evaluating the

Cramér-Rao Bound (CRB) for the estimation problem at hand

and/or by obtaining a closed form expression for the Mean Square

Error (MSE) of a given estimator, the everyday engineering practice

clearly calls the hypotheses i ) and ii ) into question. Regarding the

Gaussian model assumption, large-scale measurement campaigns

and the subsequent statistical analysis of the data gathered from

a plethora of engineering applications, e.g. outdoor/indoor mobile

communications, radar/sonar systems or magnetic resonance imag-
∗ Corresponding author at: Dipartimento di Ingegneria dell’Informazione, Uni- 

esity of Pisa, 56122, Pisa, Italy.

E-mail address: stefano.fortunati@iet.unipi.it (S. Fortunati).
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ng (MRI), have highlighted the impulsive, heavy-tailed behaviour

f the observations [1] . These experimental evidences have mo-

ivated the need to go beyond the Gaussian model and develop

ew statistical models able to better characterize the data. One of

he more flexible and general non-Gaussian model is represented

y the set of the Complex Elliptically Symmetric (CES) distribu-

ions [2] , also called Multivariate Elliptically Contoured distribu-

ions [3] . CES distributions encompasses the complex Gaussian, the

eneralized Gaussian and all the Compound Gaussian (CG) distri-

utions, such as the complex t -distribution and the K -distribution,

s special cases. The pdf of a CES distributed N -dimensional ran-

om vector x l ∈ C 

N is completely characterized by the mean value

, the scatter (or shape) matrix � and by a real valued function

 (t) : R 

+ → R , called the density generator , i.e. x l ∼ CES N ( γ , �, w )

2,3] . The CES distributions have been used in a variety of applica-

ions, in particular in the radar and array signal processing fields. 

Other experimental evidences reveal recurring violations of the

atched model assumption, that is the claim of a perfect match

etween the assumed and the true data model. The mathemati-

al bases of a formal theory of the parameter estimation under

odel misspecification has been firstly developed by statisticians

s Huber [4] , White [5] and Vuong [6] and recently rediscovered

y the Signal Processing (SP) community [7–9] and applied to a va-
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iety of well-known engineering problems: to Direction-of-Arrival

DoA) estimation in array and MIMO processing [7,10] , to covari-

nce/scatter matrix estimation in CES distributed data [8,11,12] , to

adar-communication systems coexistence [13] and to waveform

arameter estimation in the presence of uncertainty in the prop-

gation model [14] , just to name a few. 

This brief discussion clearly highlights the need to overtake

oth the Gaussian and the matched model assumptions while as-

essing the (asymptotic) performance of an estimator. As exten-

ively discussed in the SP literature, one of the main tool for the

erformance assessment is the CRB that provides a lower bound

o the MSE achievable by any unbiased estimator for a given esti-

ation problem (see e.g. [15] ). Under the matched model assump-

ion, the CRB can be evaluated as the inverse of the Fisher Infor-

ation Matrix (FIM), then having a convenient and easy way to

valuate the FIM would be of great practical utility. To this end,

n array processing applications, the celebrated Slepian-Bangs (SB)

ormula has been introduced. Developed in the seminal works of

lepian [16] and Bangs [17] , the SB formula provides a useful and

ompact expression of the FIM for vector parameter estimation un-

er both Gaussian and matched model assumptions [15, Chapter 3,

ppendix 3C] . Specifically, let θ ∈ � ⊂ R 

d be a d -dimensional, de-

erministic parameter vector and let x = { x l } L l=1 
with x l ∈ C 

N , be

 set of L independent (possibly) complex random vectors, usually

alled snapshots , representing the available observations. If we as-

ume that each snapshot follows a (complex) Gaussian parametric

odel, such that x l ∼ CN (γ(θ) , �(θ)) , then the FIM for the esti-

ation of θ ∈ � can be expressed by means of the SB formula. 

The first generalization of the SB formula to a non-Gaussian, but

till perfectly matched, data model has been proposed by Besson

nd Abramovich in [18] . Specifically, Besson and Abramovich de-

ived a compact expression for the FIM for the estimation of θ ∈ �

hen each snapshot x l is characterized by a parametric CES dis-

ribution, i.e. x l ∼ CES N ( γ l ( θ), �( θ), w ). Note that the functional

orm of the parametrized mean value γ l ( θ) is allowed to vary from

napshot to snapshot, while the covariance matrix is assumed to

e constant. Clearly, since the Gaussian model belongs to the CES

lass, this generalized SB formula collapses to the classical one if

he data are Gaussian distributed. 

The second important step ahead has been made by Rich-

ond and Horowitz in [7] and then by Parker and Richmond

n [14] where the classical, Gaussian-based, SB formula has

een extended to estimation problems under model misspecifi-

ation, i.e. when the assumed parametric Gaussian model, say

N (γ(θ) , �(θ)) , could differ from the true (possibly non para-

etric) one, indicated as CN (μ, �) . In other words, we allow

he assumed parametric mean value γ( θ) and the assumed para-

etric covariance matrix �( θ) to differ from the true μ and

for every possible value of the parameter vector θ ∈ �, i.e.

N (γ(θ) , �(θ)) � = CN (μ, �) , ∀ θ ∈ �. It is worth to underline that

n the estimation framework under model misspecification, the

IM loses its classical statistical sense and it has to be sub-

tituted by the matrices A ( θ) and B ( θ) defined in [8] , Eqs. (1)

nd (7), respectively (see also [6,7] ). Consequently, in this con-

ext, SB-type formulas could be exploited to obtain A ( θ) and

 ( θ) needed to evaluate the counterpart of the CRB in the pres-

nce of model misspecification, i.e. the Misspecified CRB (MCRB)

4,6–8,11] . In particular, in [7] the authors derived SB-type for-

ulas for the ”decoupled” scenario in which the unknown pa-

ameter vector θ ∈ � can be partitioned in two sub-vectors η
nd ν, named ”deterministic” and ”stochastic” parameter sub-

ectors respectively, such that θ = [ ηT , νT ] T and CN (γ(θ) , �(θ)) �
N (γ(η) , �(ν)) � = CN (μ, �) , ∀ θ ∈ �. The findings presented in

7] have been extended in [14] to include the coupling

f deterministic and stochastic parameters. More formally, in

14] , SB-type formulas have been derived for the following
isspecified scenario CN (γ(θ) , �(θ)) � CN (γ(η, ω) , �(ν, ω)) � =
N (μ, �) , ∀ θ ∈ � where the unknown parameter vector θ ∈ � is

artitioned as θ = [ ηT , νT , ω 

T ] T . 

The natural extension of the works of Besson and Abramovich

18] , Richmond and Horowitz [7] and Parker and Richmond

14] would be to derive SB-type formulas for parametric estimation

roblems involving CES distributed data under model misspecifica-

ion. This paper aims exactly at filling this gap and obtaining some

eneral ”misspecified” SB formulas for CES distributed data. 

Remark : Throughout this paper, we consider only the case of

eal parameter vectors. This is not a limitation, since we can always

aps a complex vector in a real one simply by stacking its real and

he imaginary parts. Clearly, the proposed derivation of the SB-type

ormulas could also be developed directly in the complex field by

eans of the Wirtinger calculus as in [7,19] . 

Notation : Throughout this paper, italics indicates scalar quan-

ities ( a, A ), lower case and upper case boldface indicate column

ectors ( a ) and matrices ( A ) respectively. Each entry of a matrix

 is indicated as a i, j � [ A ] i, j . 
∗ indicates the complex conjugation.

he superscripts T and H indicates the transpose and the Her-

itian operators, then A 

H = ( A 

∗) T . Let f ( t ) be a real scalar func-

ion, than f ′ ( t ) � df ( t )/ dt . Let A ( θ) be a matrix (or possibly vector

r even scalar) function of the vector θ, then A 0 � A ( θ0 ) while

 

0 
i 

� 

∂A (θ) 
∂θi 

| θ= θ0 
and A0 

i j 
� 

∂ 2 A (θ) 
∂θi ∂θ j 

| θ= θ0 
, where the vector θ0 will be

lways explicitly defined in the paper. For two matrices A and B,

 ≥ B means that A − B is positive semi-definite. Finally, for ran-

om variables or vectors, the notation = d stands for “has the same

istribution as”. 

. Problem setup

Let x = { x l } L l=1 
, with x l ∈ C 

N , be a set of L independent com-

lex random vectors (or snapshots ) representing the available ob-

ervations. We assume that each snapshot is sampled from a CES

istribution [2,3] , i.e., x l ∼ CES N ( μl , �, g ), then its pdf can be ex-

ressed as: 

p X (x l ) � p X (x l ;μl , �) = c N,g | �| −1 g((x l − μl ) 
H �−1 (x l − μl )) (1)

here c N, g is a normalizing constant, g(t) : R 

+ → R is the density

enerator , μl = E p { x l } is the mean value and � is a positive defi-

ite Hermitian matrix called scatter matrix . In the rest of this pa-

er, we always assume that the scatter matrix � is of full rank,

.e. rank ( �) = N. From the Stochastic Representation Theorem [2] ,

 CES distributed random vector can be expressed as:

 l = d μl + R Tu l , (2)

here: 

• u l ∼ U(C S N ) is a N -dimensional complex random vector uni-

formly distributed on the unit hyper-sphere with N − 1 topo-

logical dimension. As reported in [2] (Lemma 1), E p { u l } = 0 and

E p 
{

u l u 

H 
l 

}
= (1 /N) I where I is the identity matrix of a suitable

dimension. 
• R � 

√ 

Q is a real and non-negative random variable called mod-

ular variate , while Q is called second order modular variate .

Moreover, under the assumption that rank (�) = N, we have

that: 

Q l � (x l − μl ) 
H �−1 (x l − μl ) = d Q , ∀ l ∈ N . (3)

As shown in [2] , the pdf of Q has a one-to-one relation with

density generator: 

p Q (t) = δ−1 
N,g t 

N−1 g(t) , (4)

where δN,g � 

∫ ∞ 

0 t N−1 g(t) dt < ∞ . As a consequence of (3) and

(4) , the expectation of functions of the quadratic form Q , say
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h ( Q l ), can be explicitly derived as: 

E Q { h (Q l ) } �
∫ ∞ 

0

h (t ) p Q (t ) dt =δ−1 
N,g

∫ ∞ 

0

h (t ) t N−1 g(t ) dt , ∀ l ∈N .

(5)

It is clear from (5) that such expectation does not depend on

the index l , since the pdf in (4) of the quadratic form Q l is in-

variant with respect to (w.r.t.) l . For this reason, to avoid con-

fusion, in the rest of the paper we always indicate E Q { h (Q l ) }
simply as E Q { h (Q ) } . 

• T is a complex N × N matrix with rank ( T ) = N, such that � =
TT H . 

• If E Q { Q} < ∞ and rank (�) = N, then the covariance matrix M =
E p { (x l − μl )(x l − μl ) 

H } of x l can be decomposed as M = σ 2 �,

where (see Theorem 4 in [2] ): 

σ 2 � 

E Q { Q} 
N 

, (6)

and σ 2 can be interpreted as the statistical power of the CES-

distributed vector x l . 

From the Stochastic Representation Theorem, it is clear that the

representation of a CES distributed vector x l is not uniquely deter-

mined by (2) . In fact, x l = d μl + R Tu l = d μl + (c −1 R )(cT ) u l , ∀ c >

0 . From a different, yet equivalent, standpoint, this identifiability

problem can be understood as an implicit consequence of the func-

tional expression of a CES distribution. It is immediate to verify

from (1) that CES N ( μl , �, g ( t )) ≡ CES N ( μl , c 2 �, g ( t / c 2 )), ∀ c > 0. As

amply discussed in [2] , this identifiability issue can be solved by

posing a constraint on the modular variate R (and consequently,

through (4) , on the density generator g ( t )), or on the scatter ma-

trix �. For convenience, we choose to put a constraint on R 

2 =
Q . Specifically in the rest of this paper, we always assume that

E Q { Q} = N and consequently, from (6) , M = �, i.e. the scatter ma-

trix equates the covariance matrix. 

Due to the independence assumption, the joint pdf of the set x

is given by the product of the marginal pdfs of each snapshot x l 
given in (1) : 

p X (x ) � p X (x 1 , . . . , x L ;μ1 , . . . , μL , �)

= (c N,g ) 
L | �| −L

L ∏ 

l=1

g((x l − μl ) 
H �−1 (x l − μl )) (7)

As discussed in the Introduction, the pdf in (7) is a general and

powerful model that it is able to statistically characterize the im-

pulsive, heavy-tailed data behaviour in a variety of applications

and allow us to overtake the Gaussianity assumption. Let us now

focus on the clearing of the matched model assumption. Following

the recent developments on this field, in this paper we consider

the following mismatched situation: 

• The acquired dataset x = { x l } L l=1
is characterized by the true but

unknown joint pdf given in (7) . In particular, each data snap-

shot x l follows a CES distribution with mean value μl , scatter

matrix � and density generator g ( t ), i.e. x l ∼ CES N (μl , �, g) , l =
1 , . . . , L . 

• In order to derive an inference algorithm, we assume that each

snapshot of the dataset x is sampled from a CES distribution

with a density generator w ( t ), possibly different from g ( t ) for

all t ∈ R 

+ , and a mean value γ l ( θ) and a scatter matrix �( θ)

parametrized by a deterministic parameter vector θ ∈ � ⊂ R 

d

to be estimated. In particular, we allow the assumed marginal

model CES N ( γ l ( θ), �( θ), w ) to differ from the true one, CES N ( μl ,

�, g ) for every θ ∈ �.

This is a recurring scenario in array processing applications,

where the mean value and/or the scatter matrix of the acquired
napshot vectors are assumed to be parametrized by a determinis-

ic parameter vector whose components represent the Doppler fre-

uency, the Direction of Arrivals (DOAs) of potential sources and so

n. 

The assumed marginal pdf of each snapshot x l can then be ex-

ressed as: 

f X (x l ; θ) � f X (x l ;γl (θ) , �(θ))

= c N,w 

| �(θ) | −1 w ((x l − γl (θ)) H �(θ) 
−1 

(x l − γl (θ))) (8)

nd, by exploiting the independence assumption, the joint pdf of

 = { x l } L l=1 
can be obtained as:

f X 
(
x ; θ

)
� f X 

(
x 1 , . . . , x L ;γl 

(
θ
)
, . . . , γL 

(
θ
)
, �

(
θ
))

= ( c N,w 

) 
L 
∣∣�(

θ
)∣∣−L 

L∏
l=1

w 

((
x l − γl 

(
θ
))H

�
(
θ
)−1 (

x l − γl 

(
θ
)))

(9)

This scenario clearly represents an estimation problem in non-

aussian data and in the presence of model misspecification. Let
ˆ 

f � 

ˆ θ f (x ) be a, possibly mismatched, estimator of the parameter

vector θ ∈ � derived under the assumed model f X ( x ; θ) in (9) while

he data are characterized by the true model p X ( x ) in (7) . Then,

s discussed in [6–8] , under suitable regularity conditions, a lower

ound on the error covariance matrix of any misspecified (MS) -

nbiased (see [6,8] ) mismatched estimator ˆ θ f exists and it is given

y the MCRB defined as: 

 p 

(
ˆ θ f , θ0

)
� E p

{
( ̂  θ f − θ0 )( ̂  θ f − θ0 ) 

T
}

≥ 1 

L 
A 

−1 (θ0 ) B (θ0 ) A (θ0 ) 
−1

(10)

here θ0 is the so-called pseudo-true parameter vector defined in

4–6] as the parameter vector that minimize the Kullback–Leibler

ivergence (KLD) between the true and the assumed models: 

0 � arg min 

θ∈ �
{ D ( p X ‖ 

f θ ) } = arg min
θ∈ �

{
−E p { ln f X (x l ; θ) }}, (11)

here D ( p X ‖ f θ) � E p {ln ( p X ( x l )/ f X ( x l ; θ))}. The matrices A ( θ0 ) and

 ( θ0 ) are defined as: 

A (θ0 ) 
]

i, j 
� 

[
E p 

{∇ 

T 
θ ∇ θ ln f X (x l ; θ0 )

}]
i, j

=E p 

{
∂ 2 ln f X (x l ; θ) 

∂ θi ∂ θ j 

∣∣∣
θ= θ0 

}
(12)

nd 

B (θ0 ) 
]

i, j
�

[
E p 

{∇ θ ln f X (x l ; θ0 ) ∇ 

T 
θ ln f X (x l ; θ0 ) 

}]
i, j

= E p 

{
∂ ln f X (x l ; θ) 

∂θi 

∣∣∣
θ= θ0 

· ∂ ln f X (x l ; θ) 

∂θ j 

∣∣∣
θ= θ0 

}
. (13)

For a deep theoretical analysis of the existence, the properties

nd the practical applicability of the MCRB, we refer the reader

o [6–9] and to the references therein. The goal of this paper is

o provide a general closed-form expressions of A ( θ0 ) and B ( θ0 )

n the aforementioned context. In other words, we aim at deriving

wo SB-type formulas for the evaluation of the matrices A ( θ0 ) and

 ( θ0 ) that represent a generalization of the classical FIM for esti-

ation problem under model misspecification. It is important to

ote that in the following derivations we always assume the exis-

ence and the uniqueness of the pseudo-true parameter vector θ0 

efined in (11) . As it is clear from (10) and as it is amply discussed

n [6–8] , finding the θ0 that minimizes the KLD between the true

nd the assumed model is a prerequisite for the evaluation of the

CRB since all the derivatives involved in the two matrices A ( θ0 )

nd B ( θ0 ) have to be evaluated at θ0 . Finally, it is worth noticing

hat, under suitable regularity conditions on the true and the as-

umed pdfs, the definition of the pseudo-true parameter vector θ
0 
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n (11) can be expressed in an equivalent form as: 

∂D ( p X ‖ 

f θ ) 

∂θi 

∣∣∣∣
θ= θ0 

= −E p 

{ 

∂ ln f X (x ; θ) 

∂θi 

∣∣∣∣
θ= θ0 

}
= 0 , i = 1 , . . . , d. 

(14) 

As we will see in the next section, this equality will be ex-

loited to evaluate explicitly the matrix B ( θ0 ). We note in passing

he similarity between the definition on θ0 given in (14) and the

ondition in Eq. (9) of [18] . This fact highlights the strong theo-

etical parallelism between the classical matched theory and the

isspecified framework as detailed in [6–8] . 

. Slepian-Bangs formulas under misspecified CES models

This Section focuses on the derivation of the SB formulas for

 ( θ0 ) and B ( θ0 ) defined in (12) and (13) , provided that there exists

 unique pseudo-true parameter vector θ0 satisfying (11) . We start

y evaluating explicit expressions for the following quantities: 

 i j (θ0 ) = 

∂ ln f X (x ; θ) 

∂θi 

∣∣∣∣
θ= θ0 

· ∂ ln f X (x ; θ) 

∂θ j 

∣∣∣∣
θ= θ0 

, i, j = 1 , . . . , d, 

(15) 

nd 

 i j (θ0 ) = 

∂ 2 ln f X (x ; θ) 

∂θi ∂θ j 

∣∣∣∣
θ= θ0 

, i, j = 1 , . . . , d. (16)

he entries of the matrices A ( θ0 ) and B ( θ0 ) can then be ob-

ained by taking the expectation operator, w.r.t. the true distri-

ution p X ( x ), of H ij ( θ0 ) and V ij ( θ0 ), i.e. [ A (θ0 )] i j = E p { H i j (θ0 ) } and

 B (θ0 )] i j = E p { V i j (θ0 ) } . Unfortunately, this expectation can be eval-

ated in closed form only in two particular cases, as we will detail

n Sections 3.2 and 3.3 . In all the other cases, numerical integration

echniques, e.g. the Monte Carlo integration, could be exploited. 

.1. Evaluation of V ij ( θ0 ) and H ij ( θ0 ) and of their expectation w.r.t. 

he true data distribution 

According to the general mismatched estimation problem dis-

ussed in the previous section, we consider here the general case

n which, for each available snapshot x l , a parametric CES model

f X (x l ; θ) = CES N (γl (θ) , �(θ) , w ) is assumed, while actually each

bservation vector is distributed according to a different, possibly

on-parametric CES data model, i.e. x l ∼ p X (x l ) = CES N (μl , �, g) . 

From (9) , it is immediate to verify that: 

∂ ln f X 
(
x ; θ

)
∂θi 

∣∣∣∣∣
θ= θ0 

= − L 
∂ ln | �(θ) | 

∂θi 

∣∣∣∣
θ= θ0 

+ 

L ∑ 

l=1

φ(G l (θ0 )) 
∂G l (θ) 

∂θi 

∣∣∣∣
θ= θ0 

= − L tr (P 

0 
i ) + 

L ∑ 

l=1

φ(G 

0 
l ) 

∂G 

0 
l 

∂θi 

(17) 

here 

∂ ln | �| 
∂θi 

∣∣∣∣
θ= θ0 

= tr 
(
�−1 

0 �0 
i 

)
= tr (P 

0 
i ) , (18)

ith φ(t) = w 

′ (t ) /w (t ) and 

 

0 
i � �−1 / 2 

0 
�0 

i �
−1 / 2 
0 

, (19) 

 

0 � G l (θ0 ) � (x l − γ0 ) H �−1 (x l − γ0 ) , (20)
l l 0 l 
here, for notational simplicity, γ0 
l 

� γl (θ0 ) and �0 � �( θ0 ). Then,

n explicit expression of V ij ( θ0 ) in (15) is given by: 

 i j (θ0 ) = L 2 tr (P 

0 
i ) tr (P 

0 
j ) − L tr (P 

0 
i ) 

L ∑ 

l=1

φ(G 

0 
l ) 

∂G 

0 
l 

∂θ j 

− L tr (P 

0 
j )

L ∑ 

l=1

φ(G 

0 
l ) 

∂G 

0 
l 

∂θi 

+ 

L ∑ 

l=1

L ∑ 

m =1

φ(G 

0 
l ) φ(G 

0 
m 

) 
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

, (21) 

here: 

∂G 

0 
l 

∂θi 

= −2 Re 

[
(x l − γ0 

l ) 
H �−1 

0 

∂γ0 
l 

∂θi 

]
− (x l − γ0 

l ) 
H S 0 i (x l − γ0 

l ) , 

(22) 

nd 

 

0 
i = �−1 

0 �0 
i �

−1 
0 . (23) 

The term H ij ( θ0 ) in (16) can be obtained, through direct calcu-

ation, from (17) as: 

 i j (θ0 ) = L tr (P 

0 
i P 

0 
j − P 

0 
i j ) + 

L ∑ 

l=1

φ′ (G 

0 
l ) 

∂G 

0 
l 

∂θ j 

∂G 

0 
l 

∂θi 

+ 

L ∑ 

l=1

φ(G 

0 
l ) 

∂ 2 G 

0 
l 

∂ θi ∂ θ j 

(24) 

here: 

 

0 
i j � �−1 / 2 

0 
�0 

i j �
−1 / 2
0 

(25) 

nd φ′ (t) = w 

′′ (t ) /w (t ) − (w 

′ (t)) 2 /w 

2 (t) . After having obtained

he terms V ij ( θ0 ) and H ij ( θ0 ), we have to evaluate their expecta-

ions w.r.t. the true distribution p X ( x ). Since all the derivatives in

21) and (24) have to be evaluated in the pseudo-true parameter

ector θ0 , we can exploit the equality established in (14) . Specifi-

ally, from (17) , we have that:

∂D ( p X ‖ 

f θ ) 

∂θi 

∣∣∣∣
θ= θ0 

=L tr (P 

0 
i ) −

L ∑ 

l=1

E p 

{
φ(G 

0 
l ) 

∂G 

0 
l 

∂θi 

}
= 0 , i = 1 , . . . , d, 

(26) 

nd consequently, 

L 
 

l=1

E p 

{
φ(G 

0 
l ) 

∂G 

0 
l 

∂θi 

}
= L tr (P 

0 
i ) , i = 1 , . . . , d. (27)

Now, taking the expectation operator w.r.t. p X ( x ) of the term

 ij ( θ0 ) in (21) and by exploiting the equality in (27) , the matrix

 ( θ0 ) can be expressed as: 

 B (θ0 )] i j =− L 2 tr (P 

0 
i ) tr (P 

0 
j ) +

L ∑ 

l=1

L ∑ 

m =1

E p 

{
φ(G 

0 
l ) φ(G 

0 
m 

) 
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
.

(28) 

Similarly, the matrix A ( θ0 ) can be obtained by taking the ex-

ectation operator w.r.t. p X ( x ) of the term H ij ( θ0 ) in (24) as: 

 A (θ0 )] i j = L tr (P 

0 
i P 

0 
j − P 

0 
i j ) + 

L ∑ 

l=1

E p 

{
φ′ (G 

0 
l ) 

∂G 

0 
l 

∂θ j 

∂G 

0 
l 

∂θi 

}

+ 

L ∑ 

l=1

E p 

{
φ(G 

0 
l ) 

∂ 2 G 

0 
l 

∂ θi ∂ θ j 

}
. (29)
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As we can see from (21) and (24) , the expressions of V ij ( θ0 ) and

H ij ( θ0 ) are highly involved from an analytical standpoint, and con-

sequently it is impossible to derive in closed form their expecta-

tions in the general case. As discussed in Appendix A , closed form

expressions can be obtained when the random terms in (21) and

(24) satisfy certain independence conditions. Fortunately, there are

two scenarios of great practical interest in which such conditions

are met and consequently a closed form expression for A ( θ0 ) and

B ( θ0 ) can be obtained. These special cases are:

Scenario 1: The true marginal pdf is an unspecified CES

model, i.e. p X (x l ) = CES N (μl , �, g) , while the assumed pdf

is a parametric complex Gaussian model, i.e. f X (x l ; θ) =
CN (γl (θ) , �(θ)) . 

Scenario 2: The Scenario 2 is characterized by two assumptions:

A1: The true and the assumed pdfs share the same paramet-

ric mean value γ l ( θ) and the same parametric scatter ma-

trix �( θ) while the misspecification is caused by a wrong

assumption on the density generator w ( t ). More formally,

posit that the true marginal pdf of each snapshot is

given by a parametric CES distribution such that p X (x l ) �
p X (x l ; θ̄) = CES N (μl , �, g) , where μl = γl ( ̄θ) and � =
�( ̄θ) for a given θ̄ ∈ �. The assumed model is instead

another parametric CES distribution that share the same

parameterization of the true one but may have a different

density generator, i.e. f X (x l ; θ) = CES N (γl (θ) , �(θ) , w ) ,

θ ∈ �, and g(t) � = w (t) , ∀ t ∈ R 

+ . Note that this scenario is

a particular case of the more general class of misspecified

problems discussed in [8] , Section II.D. 

A2: The true parameter vector θ̄ and the pseudo-true param-

eter vector θ0 are equals. In particular, θ̄ is the solution of

the optimization problem in (11) . 

Note that these two assumption are verified for the scatter

matrix estimation problem discussed in [8] . 

The Scenario 1 describes a common practice in array process-

ing applications. In fact, when the true data model is unknown, a

prevalent choice is to assume a simple Gaussian model that guar-

antees an easy derivation and a consequent real-time implementa-

tion of the estimation algorithm. 

The Scenario 2 is a bit different, since it imply the a-priori

knowledge of the functional form of the true parametric mean

value γ l ( θ) and of the parametric scatter matrix �( θ). There are,

however, a variety of practical applications in which this a-priori

information is indeed available to the user. As an example, one

can think of array signal processing applications in which the a-

priori knowledge of the array geometry leads to a correct specifica-

tion of the parametrized mean value and covariance matrix of the

collected snapshots, while the uncertainty on the statistical distur-

bance model could cause a wrong choice of the density generator.

Of course, there are cases in which also the knowledge of the ar-

ray geometry could be incorrect or partial, and consequently the

assumed mean value and scatter matrix differ from the true ones

(see [7] for more details). 

3.2. Scenario 1 

In this subsection we provide the SB formulas, i.e. the closed

form expressions of the matrices A ( θ0 ) in (12) and B ( θ0 ) in (13) ,

for the Scenario 1. We start by noticing that the assumed com-

plex Gaussian model belongs to the CES class, i.e. f X (x l ; θ) =
ES N (γl (θ) , �(θ) , w ) , where w (t) = exp (−t) . Consequently, it is

immediate to verify that φ(t) = −1 and φ′ (t) = 0 . The matrix

B ( θ0 ) can be evaluated from (28) by using the fact that φ(G l ) =
−1 : 
 B (θ0 )] i, j = −L 2 tr (P 

0 
i ) tr (P 

0 
j ) +

L ∑ 

l=1

L ∑ 

m =1

E p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
. (30)

Following the procedure discussed in Appendix B , the matrix

 ( θ0 ) can be expressed as: 

 B (θ0 )] i, j = 2 

L ∑ 

l=1

Re 

[ (
�0 

i �
−1 
0 r 0 l + 

∂γ0 
l 

∂θi 

)H

�−1 
0 ��−1 

0 

×
(

�0 
j �

−1 
0 r 0 l + 

∂γ0 
l 

∂θ j 

)]
+ L

(
E Q { Q 

2 } 
N(N + 1) 

− 1 

)
tr (S 0 i �) tr (S 0 j �)

+ L 
E Q { Q 

2 } 
N(N + 1) 

tr (S 0 i �S 0 j �) , (31)

here: 

 

0 
l � μl − γ0 

l . (32)

ote that all the derivatives have to be evaluated in the pseudo-

rue parameter vector θ0 defined in (11) . 

Let us evaluate the matrix A ( θ0 ). From (24) and φ(G l ) = −1 ,

nd φ′ (G l ) = 0 , through direct calculation (see also Appendix B ) we

obtain: 

i j 

l 
(θ0 ) � E p

{
∂ 2 G 

0 
l 

∂ θi ∂ θ j 

}
= 2 Re 

[
∂γ0 

l 

∂θi 

H

�−1 
0 

∂γ0 
l 

∂θ j 

]

+ 2 Re

[
r 0 l 

H

(
S 0 j 

∂γ0 
l 

∂θi 

+ S 0 i 

∂γ0 
l 

∂θ j 

− �−1 
0 

∂ 2 γ0 
l 

∂ θi ∂ θ j 

)]
+ r 0 l 

H 
�−1 / 2 

0 
(P 

0 
i P 

0 
j + P 

0 
j P 

0 
i − P 

0 
i j ) �

−1 / 2 
0

r 0 l 

+ tr 
[
(P 

0 
i P 

0 
j + P 

0 
j P 

0 
i − P 

0 
i j ) �

−1 / 2 
0 

��−1 / 2 
0 

]
. (33)

oreover, as in (31) , we used constraint on Q l . Finally, by inserting

33) in (24) , we obtain:

 A (θ0 )] i, j = L tr (P 

0 
i P 

0 
j − P 

0 
i j ) −

L ∑ 

l=1

αi j 

l 
(θ0 ) . (34)

The expressions (31) and (34) represent the SB formulas for the

ismatched Scenario 1. 

.3. Scenario 2 

This Subsection focuses on the Scenario 2, i.e. the case in which

he true and the assumed pdfs are CES distributions that share the

ame parametrized mean value and scatter matrix but are charac-

erized by different density generators. From the proof provided in

ppendix C , the matrices B ( θ0 ) and A ( θ0 ) can be expressed respec-

ively as: 

 B (θ0 )] i, j = [ B ( θ̄) ] i, j = 

2

N 

E Q { Qφ2 (Q ) }
L ∑ 

l=1

Re 

[ (
∂ γ0 

l 

∂θi 

)H

�−1 
0 

∂γ0 
l 

∂θ j 

]

+ L

(
E Q { Q 

2 φ2 (Q ) } 
N(N + 1) 

−1 

)
tr (P i ) tr (P j ) + L 

E Q { Q 

2 φ2 (Q ) }
N(N + 1) 

tr (P i P j ) , 

(35)

 A (θ0 )] i, j = [ A ( θ̄) ] i, j = 

2

N 

(
E Q { Qφ′ (Q ) } + NE Q { φ(Q ) }) L ∑

l=1

Re 

×
[ (

∂ γ0 
l 

∂θi 

)H

�−1 
0 

∂γ0 
l 

∂θ j 

]
+ L

(
E Q { Q 

2 φ′ (Q ) } 
N(N + 1) 

− 1 

)
tr (P 

0 
i P 

0 
j )

+ L
E Q { Q 

2 φ′ (Q ) } 
N(N + 1) 

tr (P 

0 
i ) tr (P 

0 
j ) . (36)
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The expressions (35) and (36) represent the SB formulas for the

ismatched Scenario 2. It is worth to recall that the previous two

ormulas can be applied only if, in the particular estimation prob-

em an hand, the pseudo-true parameter vector equates the true

arameter vector, i.e. when θ0 = θ̄. The reason for this restriction

ill be clarified in Appendix C . 

. Relationship to previous results

The aim of this Section is to show that the SB formulas de-

ived for the Scenarios 1 and 2 encompass all the previously de-

ived SB formulas as special cases. In particular, both the SB for-

ula for CES distributions under perfect model specification, pro-

osed in [18] , and the SB formulas for the scatter/covariance ma-

rix estimation of CES distributed vectors under misspecification of

he density generator, proposed in [8,11] , can be obtained as spe-

ial cases of the SB formulas shown here for the Scenario 2. In

ddition, the SB formulas for misspecified Gaussian models, pro-

osed in [7] , are special cases of the SB formulas discussed here

or the Scenario 1. We note, in passing, that the SB-type formulas

erived in [14] can also be obtained as a particular case of the ones

roposed in this paper in (31) and (34) . This can be easily done

y partitioning the unknown parameter vector as θ = [ ηT , νT , ω 

T ] T 

nd by taking into account the particular parameterization of the

ssumed mean value and of the assumed scatter matrix supposed

n [14] , i.e. γ(θ) = γ(η, ω) and �(θ) = �(ν, ω) . 

.1. The SB formula under correctly specified CES models [18] 

The SB formula for correctly specified CES model has been de-

ived in [18] . Using the formalism introduced in this paper, two

arametric CES models are said to be correctly specified if there

xists a vector θ̄ ∈ �, such that the assumed CES distribution in

9) equates the true CES distribution in (7) . More formally, the CES

odel f X ( x ; θ) is said to be correctly specified if there exists θ̄ ∈ �,

uch that f X (x ; θ̄) = p X (x ) and, in particular, γl ( ̄θ) = μl , �( θ̄) = �
nd g ( t ) ≡ w ( t ). As proved in [6] , under correctly specified model,

e have that θ̄ = θ0 and B ( ̄θ) = −A ( ̄θ) , where B ( ̄θ) is the classical

IM evaluated at the true parameter vector θ̄. 

In the following, we will show that the SB formula derived

n [18] can be considered as a special case of the one ob-

ained in Section 3.3 . In fact, according to the matched model as-

umption, we can define the true model as p X (x ) = f X (x ; θ̄) =
ES N (γl ( ̄θ) , �( ̄θ) , w ) , while the assumed parametric model is

f X (x ; θ) = CES N (γl (θ) , �(θ) , w ) with θ ∈ �. With this in mind, we

an exploit the result in Eq. (11) of [18] , that is E Q { Q l φ̄(Q l ) } = −N,

here φ̄(t) � g ′ (t ) /g(t ) . Finally, as shown in [6] , we have that

 (θ0 ) = B ( ̄θ) = −A ( ̄θ) = FIM ( ̄θ) . Then by exploiting (35) , we ob-

ain: 

 B ( ̄θ)] i, j = [ FIM ( ̄θ)] i, j = 

2

N 

E Q { Q φ̄2 (Q ) }
L ∑ 

l=1

Re 

[ (
∂ ̄γl 

∂θi 

)H

�̄−1 ∂ ̄γl 

∂θ j 

]

+ L

(
E Q { Q 

2 φ̄2 (Q ) } 
N(N + 1) 

− 1 

)
tr ( �̄−1 �̄i ) tr ( �̄

−1 �̄ j ) 

+ L
E Q { Q 

2 φ̄2 (Q ) }
N(N + 1) 

tr ( �̄−1 �̄i �̄
−1 �̄ j ) , (37) 

here �̄ � �( ̄θ) and �̄i � 

∂�(θ) 
∂θi 

| 
θ= ̄θ . It is immediate to verify that

he matrix defined in (37) is exactly the same as the FIM given in

q. (20) of [18] . 
.2. The SB formulas for scatter matrix estimation under 

isspecification of the density generator [8,11] 

In [8,11] , SB formulas for the scatter matrix estimation in CES

istributed vectors under misspecification of the density gener-

tor have been proposed. It is easy to verify that this scenario

s a special case of the more general Scenario 2 discussed in

ection 3.3 . In particular, according to [8,11] , the dataset x is con-

idered to be composed of L independent, zero mean snapshots

istributed as x l ∼ CES N ( μ, �, g ) where μ≡ 0 and � = �( ̄θ) , for

 given θ̄ ∈ � that is the true parameter vector. For each snap-

hot, we assume a marginal pdf f X (x l ; θ) = CES N (0 , �(θ) , w ) , i.e.

e misspecified the density generator. Since we aim at finding SB

ormulas for the estimation of the scatter matrix itself, we have

hat θ� vecs( �( θ)) ≡ vecs( �), where vecs is the operator that maps

 symmetric N × N matrix � in a N(N + 1) / 2 -dimensional vec-

or whose entries are the elements of the upper (or lower) sub-

atrix of �. A similar notation holds for the true parameter vec-

or, and in particular θ̄ = vecs ( ̄�) . Note that, in the following, we

ssume that the entries of θ (and then of the scatter matrix) are

eal numbers. Finally, the results in [8,11] can be readily derived by

35) and (36) by posing L = 1 , 
∂ γ0 

l 
∂θi 

≡ 0 and E Q { Q φ(Q ) } = −N (see

ppendix B ): 

 B (θ0 )] i, j = 

E Q { Q 

2 φ2 (Q ) } 
N(N + 1) 

[
tr (P 

0 
i ) tr (P 

0 
j ) + tr (P 

0 
i P 

0 
j ) 

]
−tr ( P 

0 
i ) tr ( P 

0 
j ) ,

(38) 

 A (θ0 )] i, j = 

E Q { Q 

2 φ′ (Q ) } 
N(N + 1) 

[
tr (P 

0 
i P 

0 
j ) + tr (P 

0 
i ) tr (P 

0 
j )

]
− tr (P 

0 
i P 

0 
j ) ,

(39) 

here, in this case, the matrix P 

0 
i 

(or P 

0 
j 
) can be expressed as P0 

i
=

−1 
0 

A i = �̄−1 A i where �0 is the matrix that minimizes the KLD

etween the true and the assumed distributions, and then, due to

he Assumption A2, it is equal to the true covariance matrix, i.e.

0 = �̄ = �( ̄θ) = �. A i is a matrix defined as A i � 

∂�(θ) 
∂θi 

≡ ∂�
∂θi 

. 

.3. The SB formulas for misspecified Gaussian models [7] 

In this subsection, we briefly show how to obtain the SB

ormulas provided in [7] by using the general results dis-

ussed here for the Scenario 1. The SB formulas for mis-

pecified Gaussian models can, in fact, be derived as a spe-

ial case of the ones given in (31) and (34) by posit-

ng as true distribution the parametric complex Gaussian

odel, i.e. p X (x l ) = CES N (μl , �, exp (−t)) = CN (μl , �) , while the

ssumed marginal distribution is still given by f X (x l ; θ) =
ES N (γl (θ) , �(θ) , exp (−t)) = CN (γl (θ) , �(θ)) . Note that the true

nd the assumed density generators are equal and it is simply

iven by g(t) = w (t) = exp (−t) . This fact can be used to evaluate

he term E Q { Q 

2 } as: 

 Q { Q 

2 } = 

∫ ∞ 

0

exp (−t ) t N+1 δ−1 
N,g = −[ exp (−t ) t N+1 δ−1 

N,g ] 
∞ 

0 

+ (N + 1)

∫ ∞ 

0

t N exp (−t ) δ−1 
N,g dt . (40) 

ince, [ exp (−t ) t N+1 δ−1 
N,g 

] ∞ 

0 
= 0 , we have that 

 Q { Q 

2 } = (N + 1)

∫ ∞ 

0

t N exp (−t) δ−1 
N,g dt 

= − [ exp (−t ) t N δ−1 
N,g ] 

∞ 

0 

+ N(N + 1)

∫ ∞ 

0

t N−1 exp (−t) δ−1 
N,g dt = N(N + 1) , (41)
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in which we used the fact that 
∫ ∞ 

0 t N−1 exp (−t) δ−1 
N,g 

dt = 1 . Conse-

quently, the entries of the matrix B ( θ0 ) in (31) can be readily ex-

pressed as: 

[ B (θ0 )] i, j = 2 

L ∑ 

l=1

Re 

[ (
�0 

i �
−1 
0 r 0 l + 

∂γ0 
l 

∂θi 

)H

�−1 
0 ��−1 

0 

×
(

�0 
j �

−1 
0 r 0 l + 

∂γ0 
l 

∂θ j 

)]
+ L tr (S 0 i �S 0 j �) , (42)

where r 0 
l

� μl − γl (θ0 ) .

4.3.1. The so-called Generalized Slepian formulas [7] : � is constant 

w.r.t. θ
In this particular case, we have that all the derivatives of �

w.r.t. θ are zero. In particular, S i = S j = P i = P j = P i j = 0 . Then, by

posing L = 1 as in [7] , the entries of the matrices B ( θ0 ) and A ( θ0 )

can be obtained from (42) and (34) respectively, as: 

[ B (θ0 )] i, j = 2 Re 

[ (
∂γ0 

∂θi 

)H

�−1 
0 ��−1 

0 

∂γ0 

∂θ j 

]
(43)

and 

[ A (θ0 )] i, j =− 2 Re 

[ (
∂γ0 

∂θi 

)H

�−1 
0 

∂γ0 

∂θ j 

]
−2 Re 

[
( r 0 ) H �−1 

0 

∂ 2 γ0 

∂ θi ∂ θ j 

]
,

(44)

where r 0 � μ − γ(θ0 ) . It is immediate to verify that these two ex-

pression are exactly the same of Eqs. (38) and (40) derived in [7] . 

4.3.2. The so-called Generalized Bangs formulas [7] : γ is constant 

w.r.t. θ
Here we suppose that the mean value γ is independent of

the parameter vector θ, consequently we have that 
∂γ
∂θi 

= 0 and

∂ 2 γ
∂ θi ∂ θ j 

= 0 . Then, if L = 1 , the entries of the matrix B ( θ0 ) in (42) can

be readily expressed as: 

[ B (θ0 )] i, j = 2 Re 

[ (
�0 

i �
−1 
0 r 0 

)H 
�−1 

0 ��−1 
0 

(
�0 

j �
−1 
0 r 0 l 

)]
+ tr (S 0 i �S 0 j �) , (45)

from which one deduces straightforwardly Eq. (44) of [7] with

r 0 � μ − γ(θ0 ) . Finally, let us now derive the matrix A ( θ0 ) for the

particular scenario at hand. From (34) , we get: 

[ A (θ0 )] i, j = tr (P 

0 
i P 

0 
j −P 

0 
i j ) −r 0 l 

H 
�−1 / 2 

0 
(P 

0 
i P 

0 
j + P 

0 
j P 

0 
i −P 

0 
i j ) �

−1 / 2 
0 

r 0 l 

+ tr 
[
(P 

0 
i P 

0 
j + P 

0 
j P 

0 
i − P 

0 
i j ) �

−1 / 2 
0 

��−1 / 2 
0 

]
. (46)

which is the same as that given in Eq. (46) of [7] . 

5. Conclusion

The aim of this paper was to provide SB formulas for CES dis-

tributed data under model misspecification and thus to fill a the-

oretical and practical gap in the Signal Processing literature. Fur-

thermore, we have shown that the proposed SB formulas encom-

pass all the previously derived expressions as special cases. More-

over, these new SB formulas involved relatively slight modifica-

tions with respects to the classical counterpart obtained for Gaus-

sian and correctly specified data models with only an expectation

of some scalar functions to derive or to evaluate numerically. The

practical importance of the proposed expressions is in the fact that

allow us to easily evaluate Misspecified Cramér-Rao Bounds for a
ot of applications that are characterized by a non-Gaussian and

eavy-tailed data behaviour along with a model misspecification. 

Future works will focus exactly on the application of the de-

ived SB formulas to a plethora of engineering problems such as

he Direction of Arrivals (DOA) estimation in array processing and

he structured (i.e. Toeplitz) covariance/scatter matrix estimation

or adaptive detection algorithm in non-Gaussian scenarios. 
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ppendix A. Some considerations on the expectation of the 

erms V ij ( θ0 ) and H ij ( θ0 ) 

The aim of this appendix is to show under which conditions

he expectations E p { V ij ( θ0 )} and E p { H ij ( θ0 )} could be evaluated in

losed form. 

Keeping in mind the Stochastic Representation of a CES dis-

ributed random vector x l given in (2) , let us define the vector

 l = Tu l . Then, by recalling that r 0 
l 

� μl − γ0 
l 

(see (32) ), the term

∂G 0
l

∂θi 
in (22) can be rewritten as: 

∂G 

0 
l 

∂θi 

= −
(

∂γ0 
l 

∂θi 

)H

�−1 
0 (Q 

1 / 2 

l 
z l + r 0 l ) − (Q 

1 / 2 

l 
z l + r 0 l ) 

H �−1 
0 

∂γ0 
l 

∂θi 

− (Q 

1 / 2 

l 
z l + r 0 l ) 

H S 0 i (Q 

1 / 2 

l 
z l + r 0 l ) , (A.1)

here S 0 
i 

is defined in (23) . Let us define the following vector and

calar quantities: 

 il = S 0 i r 
0 
l + �−1 

0 

∂γ0 
l 

∂θi 

(A.2)

nd 

 il = (r 0 l ) 
H S 0 i r 

0 
l + (r 0 l ) 

H �−1 
0 

∂γ0 
l 

∂θi 

+ 

(
∂γ0 

l 

∂θi 

)H

�−1 r 0 l . (A.3)

hen (A.1) becomes 

∂G 

0 
l 

∂θi 

= −Q l z 
H 
l S 

0 
i z l − Q 

1 / 2 

l 
z H l h il − Q 

1 / 2 

l 
h 

H 
il z l − A il . (A.4)

ote that, according to the Stochastic Representation Theorem [2] ,

e have that Q 

1 / 2 
l

= d R and Q l = d Q . Consider now the term

 p { φ(G 

0 
l 
) 
∂G 0 

l 
∂θi 

} . By exploiting the expression in (A.4) , we have

hat: 

 p 

{
φ(G 

0 
l ) 

∂G 

0 
l 

∂θi 

}
= − E p { φ(G 

0 
l ) Q l z 

H 
l S 

0 
i z l }

− E p { φ(G 

0 
l ) Q 

1 / 2 

l 
z H l h il } − E p { φ(G 

0 
l ) Q 

1 / 2 

l 
h 

H 
il z l }

− A il E p { φ(G0 
l ) } . (A.5)

t must be noted now that, since G 

0 
l

has been defined in (20) as, 

 

0 
l � (x l − γ0 

l ) 
H �−1 

0 (x l − γ0 
l ) = (Q 

1 / 2 

l 
z l + r 0 l ) 

H �−1 
0 (Q 

1 / 2 

l 
z l + r 0 l ) 

(A.6)

he random variable φ(G 

0 
l 
) and the other random quantities Q 

1 / 2 
l 

nd z l are mutually dependent and consequently the closed form

valuation of the expectation operator in (A.5) is not feasible.

imilar considerations hold true for all the other terms involv-

ng the expectation operator w.r.t. the true pdf p X ( x ), that are

 p 

{ 

φ(G 

0 
l 
) φ(G 

0 
m 

) 
∂G 0 

l 
∂θi 

∂G 0 m 
∂θ j 

} 

for E p { V ij ( θ0 )} in (21) , E p 

{ 

φ′ (G 

0 
l 
) 
∂G 0 

l
∂θ j 

∂G 0 
l

∂θi 

}
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nd E p { φ(G 

0 
l 
) 

∂ 2 G 0
l

∂ θi ∂ θ j 
} for E p { H ij ( θ0 )} in (24) . There are, however, two

mportant cases in which φ(G 

0 
l 
) is statistically independent of Q 

1 / 2 
l 

and consequently of Q l ) and z l : these are the Scenario 1 and the

cenario 2 which are discussed in the following Appendices. 

ppendix B. Proof of the SB formulas for the Scenario 1 

As discussed in Section 3.2 , in the Scenario 1, the true marginal
df is an unspecified CES pdf p X (x l ) = CES N (μl , �, g) , while the
ssumed one is a parametric complex Gaussian pdf f X (x l ; θ) =
N (γl (θ) , �(θ)) . As a consequence, φ(G l (θ)) ≡ −1 , ∀ θ ∈ � and
hen it trivially satisfy the independence condition discussed in
ppendix A . In order to obtain a closed form expression of the ma-

rix B ( θ0 ), the second term in (30) can be rewritten as: 

L 
 

l=1

L ∑ 

m =1

E p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
=

L ∑ 

l=1

E p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
l 

∂θ j 

}
+

L ∑ 

l=1

L ∑ 

m =1 ,
m � =l

E p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
.

(B.1) 

By using (A.4) and the Stochastic Representation Theorem, when 

 � = m we have that: 

 p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
= E 2 Q { Q} E p 

{
z H l S 

0 
i z l 

}
E p 

{
z H m 

S 0 j z m
}

+ E Q { Q} (A jm 

E p 
{

z H l S 
0 
i z l 

}
+ A il E p 

{
z H m 

S 0 j z m 

})
+ A il A jm 

, (B.2) 

here A il is defined in (A.3) and where we used the facts that z l 
nd z m 

are independent and E p { z l } = E p { z m 

} = 0 . When l = m, the

erm in (B.2) has to be recast as: 

 p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
l 

∂θ j 

}
= E Q { Q 

2 } E p 
{

z H l S 
0 
i z l z 

H 
l S 

0 
j z l

}
+ E Q { Q} (A jl E p 

{
z H l S 

0 
i z l 

}
+ A il E p 

{
z H l S 

0 
j z l

}
+ E p 

{
z H l h il h 

H 
jl z l 

}
+ E p 

{
h 

H 
il z l z l h jl 

})
+ A il A jl , 

(B.3) 

here h il is defined in (A.2) and where we used the fact that the

hird-order moments of u l (and then of z l ) vanish (see Lemma 1

n [2] ). Moreover, as a consequence of the circularity property of z l 
2] , the following equalities hold:

 p { z l z T l } = E p { z ∗l z H l } = 0 , (B.4)

 p { z H l h il z 
H 
l h jl } = E p { h 

T 
il z 

∗
l z 

H 
l h jl } = 0 , (B.5)

 p { h 

H 
il z l h 

H 
jl z l } = E p { h 

H 
il z l z 

T 
l h 

∗
jl } = 0 . (B.6)

rom the properties of the trace operator, we have that: 

 p 

{
z H l S 

0 
i z l 

}
= N 

−1 tr (S 0 i �) , (B.7)

 p 

{
z H l h il h 

H 
jl z l 

}
= N 

−1 tr (h il h 

H 
jl �) , (B.8)

 p 

{
h 

H 
il z l z l h jl 

}
= N 

−1 tr (h jl h 

H 
il �) , (B.9)

hile, by exploiting exactly the same procedure used in [11,20] , it

an be shown that: 

 p 

{
z H l S 

0 
i z l z 

H 
l S 

0 
j z l

}
= 

tr (S 0 
i 
�) tr (S 0 

j 
�) + tr (S 0 

i
�S 0 

j 
�)

N(N + 1) 
. (B.10) 

Another useful relation can be obtained by exploiting the equal-

ty in (27) . In fact, by combining (A.5) with (27) , we have that: 

 Q { Q} E p { z H S 0 z l } = −tr (P 

0 ) − A il , i = 1 , . . . , d, (B.11)
l i i 
nd then, from (B.7) and from the identifiablity condition for CES

istribution assumed in this paper, i.e. E Q { Q} = N, we obtain: 

 il = −tr (P 

0 
i ) − tr (S 0 i �) , i = 1 , . . . , d. (B.12)

sing (B.11) and the condition E Q { Q} = N (and consequently

 

2 
Q { Q} = N 

2 ), the term in (B.2) can be easily evaluated as:

 p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
= tr (P 

0 
i ) tr (P 

0 
j ) . (B.13)

imilarly, using (B.12), (B.8), (B.9), (B.10) and the condition E Q { Q} =
, the term in (B.3) can be expressed as: 

 p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
l 

∂θ j 

}
= tr (P 

0 
i ) tr (P 

0 
j ) + tr (h il h 

H 
jl �) + tr (h jl h 

H 
il �) 

+ 

(
E Q { Q 

2 } 
N(N + 1) 

− 1 

)
tr (S 0 i �) tr (S 0 j �)

+ tr (S 0 i �S 0 j �) (B.14) 

inally, by combining all the previous results, we have that: 

L 
 

l=1

L ∑ 

m =1

E p 

{
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
= L 2 tr (P 

0 
i ) tr (P 

0 
j )

+ 

L ∑ 

l=1

[
tr (h il h 

H 
jl �) + tr (h jl h 

H 
il �) 

]
+ L

(
E Q { Q 

2 } 
N(N + 1) 

− 1 

)
tr (S 0 i �) tr (S 0 j �)

+ L 
E Q { Q 

2 } 
N(N + 1) 

tr (S 0 i �S 0 j �) , (B.15) 

rom which (31) follows immediately. Regarding the calculation of

he matrix A ( θ0 ) in (34) , no particular simplification can be made.

pecifically, the term E p 

{ 

∂ 2 G 0 
l

∂ θi ∂ θ j 

} 

in (33) has to be obtained through

irect calculation from (A.1) . Since the derivation is long, tedious

nd does not add any insightful considerations about the problem

t hand, we decided to not report it here. 

ppendix C. Proof of the SB formulas for the Scenario 2 

As previously discussed in the paper, in the Scenario 2 we

uppose that the true marginal pdf is given by a parametric CES

istribution such that p X (x l ) � p X (x l ; θ̄) = CES N (μl , �, g) , where

l = γl ( ̄θ) and � = �( ̄θ) for a given θ̄ ∈ �. The assumed pdf is it-

elf a parametric CES distribution that share the same parametriza-

ion of the true one but may have a different density genera-

or, i.e. f X (x l ; θ) = CES N (γl (θ) , �(θ) , w ) , θ ∈ �, and possibly g(t) � =
 (t) , ∀ t ∈ R 

+ . In order to guarantee the correct identifiability of

he true and the assumed CES distributions, as before, we may im-

ose a constraint of both the modular variate, that is: 

 p { (x l − μl ) 
H �−1 (x l − μl ) } � E p { (x l − γl ( θ̄) ) H �( ̄θ) −1

×(x l − γl ( ̄θ)) } = E Q { Q l } = N, (C.1) 

 f θ
{ (x l − γl (θ)) H �(θ) −1 (x l − γl (θ)) } = N, ∀ θ ∈ �. (C.2)

Let us suppose now that, for a given true pdf p X (x l ) � p X (x l ; θ̄)

nd for a given assumed pdf f X ( x l ; θ), the pseudo-true parameter

ector θ0 equates the true parameter vector θ̄, and consequently,

rom (14) : 

∂D ( p X ‖ 

f θ ) 

∂θi 

∣∣∣∣
θ= ̄θ

= −E p 

{
∂ ln f X (x ; θ) 

∂θi 

∣∣∣∣
θ= ̄θ

}
= 0 , i = 1 , . . . , d. 

(C.3) 
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Under this assumption, we have that: 

G 

0 
l � (x l − γ0 

l ) 
H �−1 

0 (x l − γ0 
l ) 

= (x l − γl ( ̄θ)) H �( ̄θ) −1 (x l − γl ( ̄θ))

= (x l − μl ) 
H �−1 (x l − μl ) � Q l = d Q = R 

2 , (C.4)

and consequently, the Stochastic Representation Theorem allows us

to write the following equality: 

x l − γ0 
l = x l − μl = d R Tu l = d R �1 / 2 

0 
u l . (C.5)

where γ0 
l 

� γl (θ0 ) and �0 � �( θ0 ). It is worth to highlight that the

equality chains in (C.4) and (C.5) hold true if and only if θ0 = θ̄ . We

are quite confident that, in the context of Scenario 2 (i.e. when the

misspecification is only due to a wrong assumption on the density

generator), the equality θ0 = θ̄ always holds true. Since we have

not a proof of this fact yet, we considered it as an assumption (As-

sumption A2 in Section 3.1 ). 

As a consequence of (C.4) , the expectation of functions of G 

0 
l
,

say h (G 

0 
l 
) , can be explicitly derived as: 

E Q { h (G0 
l ) } �

∫ ∞ 

0

h (t) p Q (t) dt = δ−1 
N,g 

∫ ∞ 

0

h (t) t N−1 g(t) dt 

= E Q { h (Q ) } , ∀ l ∈ N . (C.6)

Since such expectation does not depend on the index l and on the

unknown parameter vector θ, in the rest of this Appendix we al-

ways indicate E Q { h (G 

0 
l 
) } simply as E Q { h (Q ) } . 

As in Appendix B for the Scenario 1, in order to obtain a closed

form expression of the matrix B ( θ0 ), the second term in (28) can

be rewritten as: 

L ∑ 

l=1

L ∑ 

m =1

E p 

{
φ(G 

0 
l ) φ(G 

0 
m 

) 
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}

= 

L ∑ 

l=1

E p 

{
φ2 (G 

0 
l ) 

∂G 

0 
l 

∂θi 

∂G 

0 
l 

∂θ j 

}

+ 

L ∑ 

l=1

L ∑ 

m =1 ,
m � = l

E p 

{
φ(G 

0 
l ) φ(G 

0 
m 

) 
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}
. (C.7)

The term 

∂G 0
l

∂θi 
can be easily obtained by firstly taking the deriva-

tive of the terms in (22) and then by substituting in the obtained

expression the Stochastic Representation of the difference vector

x l − γ0 
l 

in (C.5) , we have that: 

∂G 

0 
l 

∂θi 

= −Q 

1 / 2 

l 

( (
∂γ0 

l 

∂θi 

)H

�−1 / 2 
0 

u l + u 

H 
l �

−1 / 2 
0 

∂γ0 
l 

∂θi 

)
− Q l u 

H 
l P 

0 
i u l . 

(C.8)

Let us now recall from [18] the following three equalities: 

E p { u 

H 
l P i u l u 

H 
l P j u l } = tr (P i ) tr (P j ) + tr (P i P j ) 

N(N + 1) 
(C.9)

and 

E p { u 

H 
l P i u l } = E p { tr (P i u l u 

H 
l ) } = N 

−1 tr (P i ) (C.10)

and 

E p { (u 

H 
l a )(u 

H 
l Du l ) } = 0 (C.11)

for some vector a and hermitian matrix D . 

By substituting (C.8) in (C.7) and by exploiting the equali-

ties (C.9) –(C.11) , and remembering that E p 
{

u l u 

H 
l 

}
= (1 /N) I (see

Section 2 ), we get: 

L ∑ 

l=1

L ∑ 

m =1

E p 

{
φ(G 

0 
l ) φ(G 

0 
m 

) 
∂G 

0 
l 

∂θi 

∂G 

0 
m 

∂θ j 

}

= 

2 E Q { Q φ2 (Q ) } 
N 

L ∑ 

l=1

Re 

[ (
∂γ0 

l 

∂θi 

)H

�−1 
0 

∂γ0 
l 

∂θ j 

]

+ L
E Q { Q 

2 φ2 (Q ) } 
N(N + 1) 

(
tr (P i ) tr (P j ) + tr (P i P j ) 

)
+ L (L − 1)

E 2 Q { Q φ(Q ) }
N 

2 
tr (P i ) tr (P j ) . (C.12)

Let us now impose the equality in (27) . In particular, we have

hat: 

L 
 

l=1 

E p 

{
φ(G 

0 
l ) 

∂G 

0 
l 

∂θi 

}
= −E Q { Q φ(Q ) }

L ∑ 

l=1 

E p 

×
{ (

∂γ0 
l 

∂θi 

)H

�−1 / 2 
0 

u l + u 

H 
l �

−1 / 2 
0 

∂γ0 
l 

∂θi 

}

−E Q { Q φ(Q ) }
L ∑ 

l=1

E p 
{

u 

H 
l P 

0 
i u l 

}
= −LN 

−1 E Q { Q φ(Q ) } tr (P i ) , (C.13)

here we used the fact that the fact that E p { u l } = 0 while the last

equality follows from (C.10) . Then, by exploiting the equality (27) ,

e obtain the following relation: 

 Q { Q φ(Q ) } = −N, (C.14)

here φ(t) = w 

′ (t ) /w (t ) and w ( t ) is the density generator of the

assumed CES distribution f X ( x l ; θ). Finally, by substituting (C.14) in

C.12) , and then replacing the obtained term in (28) , we get the

losed form expression of the matrix B ( θ0 ) given in (35) . The eval-

ation of the matrix A ( θ0 ) in (36) follows directly from the direct

alculation of the terms E p 

{ 

φ′ (G 

0 
l 
) 
∂G 0 

l
∂θ j 

∂G 0 
l

∂θi 

} 

and E p 

{ 

φ(G 

0 
l 
) 

∂ 2 G 0 
l

∂ θi ∂ θ j 

} 

.

n particular, all the derivatives have to be evaluated from (22) ,

hile, to evaluate the expectation operator w.r.t. the true distribu-

ion p X ( x ), one has to use the Stochastic Representation in (C.5) by

eeping in mind that θ̄ = θ0 . Since this calculation is tedious and

ot informative, we decided to not report it here. 
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