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1. Introduction

Advanced radio astronomical arrays, such as the existing LOw

Frequency ARray (LOFAR) [1] and the future Square Kilometre Ar-

ray (SKA) [2] , form large sensor arrays, which are constituted of

many small antenna elements. As an example, the LOFAR consists

of 50 stations, mainly located in The Netherlands. Each station is

a closed packed sensor array, composed of at least 96 low-band

antennas (LBA, 30–90 MHz) and 48 high-band antenna (HBA, 109–

240 MHz) tiles, each tile being a 4-by-4 uniform regular array of

HBAs. Such interferometers offer a large aperture size and deliver

large amounts of data in order to reach high performance in terms

of resolution, sensitivity and survey speed [2] . Nevertheless, to
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chieve the theoretical optimal performance bounds, a plethora of

ignal processing challenges must be treated [3,4] . This covers cali-

ration, image synthesis and data reduction. In this paper, we focus

n calibration issues by designing a computationally efficient par-

llel algorithm. Calibration procedures devised for such radio inter-

erometers must estimate: (i) the gain response and noise power

f each antenna [5–8] ; and (ii) the propagation disturbances, espe-

ially the phase delays caused by the ionosphere, which scale with

avelength [9,10] . 

Specifically, in this paper, we focus on the regime where the

ines of sight from each antenna toward a source in the sky cross

he same ionospheric layer and where the thickness of the iono-

phere can be direction dependent [11] , which is represented in

ig. 1 and well adapted for the calibration of a LOFAR station and

he future SKA stations as well as the core of these arrays. Conse-

uently, in this regime, the ionospheric phase delays are added to

he geometric delays and introduce angular-shifts for the source

irections [7,12] , which are direction and wavelength dependent

9,13] . By estimating calibrator shifts (i.e., the difference between

he true calibrator directions, known from tables [14–17] , and their

stimated apparent directions), interpolation methods can be effi-

iently applied in order to obtain a phase screen model that cap-
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Fig. 1. The so-called regime 3, which is considered in this paper, assumes that V � S 

and A � S . This leads to ionospheric perturbations which are direction dependent 

(after [8,11] ).
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ures the ionospheric delays over the entire Field-of-View [12] . We

mphasize that in addition to the phase screen reconstruction step,

he calibration usually involves the estimation of the complex di-

ection independent (DI) gains of the antennas, their direction de-

endent (DD) gains toward each calibrator and their noise powers

6] , for the whole available range of wavelengths.

The characteristics of the calibration sources, i.e., their

rue/nominal directions and their powers without the effects of

he ionosphere or antenna imperfections, are a priori known from

ables which is required to solve such calibration problems [7] .

ased on this knowledge, state-of-the-art calibration algorithms

perate mostly in an iterative manner in a mono-wavelength sce-

ario [5–7,18–22] . For instance, the (Weighted) Alternating Least

quares approach has been adapted for LOFAR station calibration

5,6] , in which closed-form expressions have been obtained for an-

enna gain and sensor noise power parameters. Nevertheless, such

lgorithms present three major limitations: (i) suboptimality due

o the consideration of only one wavelength at a time; (ii) the as-

umption of a centralized processor, i.e., a single compute agent

imultaneous accessing all data; and (iii) the inefficiency with re-

pect to the Direction-of-Arrival (DoA) estimation performances in

he severe radio astronomical contexts. 

Concerning limitation (i), most current approaches calibrate a

ingle wavelength at a time [5–7,18–20] assuming that solutions

an be combined afterwards. This is usually a suboptimal ap-

roach. For the real-time system of the Murchison Widefield Ar-

ay (MWA) [23] several filtering techniques are combined to isolate

he response across frequency such that ionospheric refraction and

nstrumental gains can be fitted across frequency on a per-source

ases [24] . The MWA real-time system is highly optimized for a

pecific case, while we aim to provide a more general framework
hat can be adjusted as needed. A more general approach to multi-

avelength calibration in the context of large radio astronomical

rrays is the procedure presented in [25] . That procedure treats

alibration as a single, mathematically defined optimization prob-

em that is solved using a general solving strategy. Unlike [25] , we

onsider a structured parametric model based on the sample co-

ariance matrix in the array processing framework based on some

 priori knowledge about the physics of the system as described

n the data model section. As a consequence, the problems are dif-

erent, since we do not estimate the element of the Jones matrices

s in [25] , but we aim to estimate the apparent directions of the

alibration sources, the direction dependent and direction indepen-

ent complex gains of the array elements and their noise powers

sing physical constraints given in Section 2 . 

Furthermore, regarding the limitation (ii), the aforementioned

tate-of-the-art methods typically are designed for a centralized

ardware architecture, whereas, taking the LOFAR stations as ex-

mple, processing all 512 frequency bands simultaneously at a sin-

le location, if feasible, is challenging. As a solution, parallel and

onsensus algorithms, mostly based on the Alternating Direction

f Multiple Multipliers (ADMM) [26] , have recently been massively

nvestigated in parametric estimation frameworks [27–34] . These

onsensus schemes can operate in various network topologies. We

ill consider a group of compute agents, where each agent ac-

esses data across a small bandwidth and can only communicates

ith a fusion center through low data rate channels. This archi-

ecture models correctly the situation for radio interferometers,

here data for the full observing bandwidth is typically divided

nto channels and channels are grouped into subbands. 

Finally, regarding the limitation (iii), classical subspace meth-

ds, such as MUSIC [35] , have been commonly applied in radio

stronomical calibration [6] . However, these techniques are inef-

cient in low Signal-to-Noise-Ratio (SNR) scenarios and require

nowledge of the exact number of sources in the scene. As an al-

ernative, recent approaches, based on sparse reconstruction meth-

ds, came into focus of DoA estimation for fully calibrated ar-

ays [36–38] as well as for partially calibrated arrays [39] . These

pproaches exhibit the super-resolution property, robustness and

omputational efficiency, without the aforementioned limitations

f subspace-based methods [36] . However, most methods based

n the compressive sensing framework are designed for a central-

zed hardware architecture and are applied in the signal time do-

ain [20,40] . These methods become computationally impractical

ith huge numbers of observations, making them unsuitable for

alibration in the radio interferometer context for which we com-

only access only the sample covariance matrix rather than the

ime signal itself [7] . This issue was also recognized in recently

n [22,41] , in which the authors propose a technique for, respec-

ively, full calibration and blind calibration of the DI gains for in-

ividual frequency channels by assuming that the observed scene

s sparse. We stress that many works based of compressed sensing

as been developed for image reconstruction in the radio astron-

my community [42–45] as a result of the sparse nature of the in-

erferometric sampling. Such sparse implementations produce bet-

er results on large extended objects with high angular resolu-

ion than other classical deconvolution methods. However, these

orks assume usually an already calibrated array and the problem-

tic of reconstructed an image strongly differ from the calibration.

n image reconstruction, compressed sensing studies are based

n sparse analysis and/or sparse synthesis using, e.g., wavelets,

nion of wavelet bases or synthesis IUWT (Isotropic Undecimated

avelet Transform). In our calibration problem, compressed sens-

ng techniques are used in order to estimate the phase shift due

o the ionosphere using a Distributed Iterative Hard Thresholding

ethod in which the grid is constructed based on array processing

odeling. 



Fig. 2. Operation flow and signaling exchange between a local processor A z and the central processor. The first third arrows are performed repetitively during

Algorithm 2 and the two middle arrows during Algorithm 4 .

Fig. 3. LOFAR’s initial test station antenna locations [73] .
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In this paper, we propose an iterative algorithm, namely the

Parallel Multi-wavelength Calibration Algorithm (PMCA), that per-

forms the calibration of a radio astronomical array using its array

covariance matrix (usually referred to as matrix of visibilities in

radio astronomy), involving disturbances due to individual anten-

nas and propagation effects. We assume that the sensor array has

an arbitrary geometry, identical elements and is simultaneously

excited by inaccurately known calibration sources and unknown

weak non-calibration sources. The proposed PMCA overcomes the

aforementioned limitations, by: (i) reformulating the parametric

model in the multi-wavelength scenario in order to exploit wave-

length diversity; (ii) relying on parallel and consensus algorithms;

and (iii) adapting the sparse reconstruction methods to the cali-

bration of radio astronomical arrays. From the parallel calibration

perspective, the PMCA successively estimates the DI antenna gains

along with the DD and noise parameters for multiple subbands,

where we enforce the coherence over the wavelength of the esti-

mates based on physical and astronomical phenomena [8,9,13,46] . 

The rest of the paper is organized as follows: in Section 2 ,

we formulate the data model and its associated parallel multi-

wavelength calibration problem. In Section 3 , we present the

overview of the proposed scheme and then describe its two main

alternating steps. The constrained Cramér–Rao bound of the data

model is derived in Section 4 . Numerical simulations and real data

tests, in Section 5 , show the feasibility and superiority of the pro-

posed scheme compared to mono-wavelength calibration. Finally,

we give our conclusions in Section 6 . 

In the following, (.) ∗, (. ) T , (. ) H , (.) † , (.) �α , � (.), � (.) and [.] n de-

note, respectively, conjugation, transposition, Hermitian transposi-
ion, pseudo-inverse, element-wise raising to α, real part, imagi-

ary part and the n th element of a vector. The expectation oper-

tor is E{ . } , � denotes the Kronecker product, exp (.) and � rep-

esent the element-wise exponential function and multiplication

Hadamard product), respectively. The operator diag (. ) converts a

ector to a diagonal matrix with the vector aligned on the main

iagonal, blkdiag (. ) is the block-diagonal operator for matrices,

hereas vecdiag (. ) produces a vector from the main diagonal of

ts matrix argument and vec (. ) converts a matrix to a vector by

tacking the columns of its entry. The operators ‖ . ‖ 0 , ‖ . ‖ 2 and ‖ . ‖ F
efer to the l 0 norm, i.e., the number of non-zero elements of its

ntry, the l 2 and Frobenius norms, respectively. x �0 means that

ach element in x is non-negative. 

. Data model and problem statement

.1. Covariance matrix model 

Consider an array comprised of P elements, with known loca-

ions, each referred by its Cartesian coordinates ξp = [ x p , y p , z p ] 
T 

or p = 1 , . . . , P, that we stack in � = 

[
ξ1 , . . . , ξP 

]T ∈ R 

P×3 . This ar-

ay is exposed to Q known strong calibration sources and Q 

U un-

nown weak non-calibration sources. Let D 

K = 

[
d 

K 
1 
, . . . , d 

K 
Q 

]
∈ R 

3 ×Q 

nd D 

U = 

[
d 

U 
1 
, . . . , d 

U 
Q U

]
∈ R 

3 ×Q U denote the known ( true/nominal )

alibrator direction cosines and unknown non-calibrator direc-

ion cosines, respectively, in which each source direction d =
 

d l , d m 

, d n ] 
T 

can be uniquely described by a couple ( d l , d m 

), since

 n = 

√ 

1 − d 2 
l 

− d 2 m 

[6,9] . The ionosphere introduces an unknown

ngular-shift for each source direction [3,12,13] , depending on the

avelength λ, which is related to the frequency f = c /λ, with c

enoting the speed of light. Consequently, we distinguish between

he unknown apparent directions w.r.t. the calibrators, denoted by

 λ = 

[
d λ, 1 , . . . , d λ,Q 

]
, that depend on λ since the shift is wave-

ength dependent, and their true/nominal known directions D 

K , i.e.,

ithout the propagation disturbances. 

In the following, we describe the signal for one wavelength bin

. Under the narrowband assumption, the steering vector a ( d ) to-
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ard the direction d (at wavelength λ) is given by 

 λ(d l , d m 

) = 

1 √ 

P 
exp 

(
−j 

2 π

λ
�d 

)
, (1)

hat we gather for multiple directions in the steering matrix 

 D λ = 

1√
P 

exp 

(
−j 

2 π

λ
�D λ

)
. (2) 

As in [6] , we assume that all antennas have identical directional

esponses. Their DD gain responses (and propagation losses) are

odeled by two diagonal matrices, �λ ∈ C 

Q×Q and �U 
λ ∈ C 

Q U ×Q U 

oward the calibration and non-calibration sources, respectively. 

The received signals from each antenna are partitioned into nar-

ow subbands. The measurement of the sensor array collected in

he subband with wavelength λ are stacked to the received signal

ector 

 λ(n ) = G λ

[
A D λ�λs λ(n ) + A D U 

λ
�U

λs U λ(n ) 
]

+ n λ(n ) , (3)

or the n th observation, where we stress that each element of the

ight part of (3) depend on λ and A 

U 
λ

is the steering matrix for

nknown sources, with [ x λ( n )] p denoting the signal corresponding

o the p th antenna, where G λ = diag (g λ) ∈ C 

P×P models the DI an-

enna gains, with [ g λ] p the DI antenna gain for the p th antenna.

 λ(n ) ∈ C 

Q and s U 
λ
(n ) ∈ C 

Q U represent, respectively, the i.i.d. cali-

rator and non-calibrator signals, with [ s λ( n )] q and [ s U 
λ
(n )] q ′ , re-

pectively, the signal corresponding to the q th calibrator and q ′ th
on-calibrator, whereas n λ(n ) ∼ CN (0 , �n 

λ) denotes the i.i.d. noise

ector, with [ n λ( n )] p the thermal noise for the p th antenna [7] .

et �λ = diag ( σλ) ∈ R 

Q×Q , �U 
λ = diag 

(
σU

λ

)
and �n 

λ = diag 
(
σn 

λ

)
∈

 

P×P be the diagonal covariance matrices for the calibrators, non-

alibration sources and sensor noises, respectively, and assume

hat the sources are statistically independent from each other. Con-

equently, s λ(n ) ∼ CN (0 , �λ) , s U 
λ
(n ) ∼ CN (0 , �U 

λ ) and the covari-

nce matrix R λ = E 
{

x λx H
λ

}
of the observations corresponding to

odel (3) is given by 

R λ = E D λ M λE 

H 
D λ

+ R 

U
λ + �n 

λ, (4) 

n which 

 D λ = G λA D λ�
1
2 

λ
, (5) 

 λ = �λ�
H 
λ = diag ( m λ) , (6) 

nd where we have defined the unknown covariance matrix for the

on-calibration sources as 

 

U 
λ = G λA D U 

λ
�U 

λ�U 
λ

(
G λA D U 

λ
�U 

λ

)H
. (7)

n radio astronomy, sources (including the calibration sources), are

ypically much weaker than the antenna noise [18] , so the covari-

nce matrix is usually approximated by R λ ≈ �n 
λ. Since the array

onsists of identical elements and mutual coupling can usually be

gnored, it is commonly assumed that 

n 
λ = diag 

(
σn 

λ

)
≈ σ n 

λ I . (8) 

uch no mutual coupling is currently assumed due to antenna sep-

ration (though this may not exactly be true in a station array) and

areful hardware implementations as in LOFAR [1] . 

In order to overcome the scaling ambiguities in the observation

odel (4) , we consider the following commonly used assumptions

n radio astronomy [6–8] : (i) to resolve the phase ambiguity of g λ,

e take its first element as the phase reference [47,48] ; (ii) the

hase information of �λ drops, consequently, we only estimate M λ,

.e., its absolute part; (iii) m λ shares a common scalar factor with

 λ and consequently, we assume that the directional gain towards

he first calibration source is known/fixed; and (iv) when solving
or the calibrator directions, a common rotation of all steering vec-

ors can be compensated by the undirectional gain phase solution.

e therefore fix the direction of the first calibration source at its

nown position [5] . 

.2. Model effects of the wavelength on antenna gains, source 

irection shifts and source powers 

In the radio astronomical context, the antenna and source pa-

ameters of the covariance matrix are commonly assumed as wave-

ength dependent [7,8] . Consequently, we assume smooth and/or

nown variations of the parameters g λ, �λ, �λ, �U 
λ and �n 

λ in

4) over λ, as commonly used in recent works on array calibration

n radio astronomy [25,49] . We summarize the particular behavior

f the underlying parameters as follows:

• The DI gains, g λ, vary smoothly over λ. Hence, in order to im-

pose coherence along subbands (not along different sensors),

we define a set of smooth basis functions b k, λ as a function

of the wavelength λ, for k = 1 , . . . , K. These basis functions de-

fine our coherence model, in which, for the p th sensor, its gain

[ g λ] p is a function of wavelength λ and represented as a linear

combination of basis functions, hence:

[ g λ] p = 

K ∑ 

k =1

b k,λαk,p , ∀ λ ∈ �, p = 1 , . . . , P , (9)

where αk, p represents the linear coefficient corresponding to

the k th basis function for the p th sensor. Common models for

characterizing this behavior consist of classical polynomials of

power law over λ [8,25] , e.g., we can consider the set of K th

order basis functions centered around a reference wavelength

λ0 = c / f 0 that is defined by b k,λ = 

(
λ−λ0
λ0

)1 −k

[25] that impose

smoothness w.r.t. frequency (keeping in mind that b k,λ0 
= 1 ).

Let us denote 

b λ = 

[
b 1 ,λ, . . . , b K,λ

]T ∈ R 

K , (10) 

representing all polynomial terms and rewrite (9) as 

g λ = 

(
b 

T 
λ � I 

)
α = B λα, ∀ λ ∈ �, (11)

where B λ = 

(
b 

T 
λ

� I 
)

∈ R 

P ×P K and α is thus the augmented vec-

tor of hidden variables defined by 

α = [ α1 , 1 , . . . , α1 ,P , α2 , 1 , . . . , αK,P ] 
T ∈ C 

PK . (12) 

• The DD gains, �λ, are inversely proportional to λ, i.e., �λ ∝ λ−1 ,

as observed in practice [46] . Note that the proposed algorithm

can be straightforwardly adapted with another given behavior

(including the simplest case of a constant behavior across the

wavelength range). 

• As a consequence of the ionospheric delays, the directional

shifts are proportional to λ2 [9,13,46] . Furthermore, we assume

that the calibration sources are well separated, which is com-

mon in radio astronomy [6,7] , and consider in the remainder of

this paper that for every wavelength:

(A1) Each apparent calibration source lies in an uncertainty sec-

tor with a predefined angular spread around its nominal lo-

cation. 

(A2) The displacement sectors of different calibration sources

are not overlapping. 

• The source powers, �λ and �U 
λ, vary commonly with a power

law with different spectral indexes. We consider the calibrator

powers, �λ, to be known from tables, e.g., [14–17] .

• The antenna noise covariance matrices, �n 
λ, do not exhibit a

smooth behavior w.r.t. λ and noise is assumed to be indepen-

dent over wavelength. Nevertheless, if any particular coherence
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model for the noise covariances is available, this knowledge can

be incorporated in the proposed algorithm in a straightforward

manner. 

2.3. Joint parameter estimation problem 

In this section, we formulate the calibration problem as the es-

timation of the parameter vector of interest, p , defined as 

p = 

[
p 

T 
λ1 

, . . . , p 

T
λJ

] T
, (13)

under the constraints given in Section 2.2 , in which p λ =[
g T 
λ
, d 

T 
λ, 1

, . . . , d 

T 
λ,Q

, m 

T 
λ
, σn T 

λ

]T
, from J sample covariance matrices 

{ 
ˆ R λ = 

1 

N 

N ∑ 

n =1 

x λ(n ) x 

H 
λ (n ) 

}
λ∈ �

, (14)

where � = 

{
λ1 , . . . , λJ 

}
represents the set of the J available wave-

lengths for the whole network and assume that J ≥ K , i.e., accessing

to data for at least K wavelengths, which is assumed to be satis-

fied since, e.g., for the LOFAR, the signal is typically divided into

512 subbands while usually a low polynomial order is sufficient to

represent the variations across wavelength (3–5 in our numerical

simulations). 

Data parallelism across wavelength is a recent field of research

in radio astronomical observations, in which data are recorded as

multiple channels at different wavelengths [1] , thus, leading to a

data which is not centralized but paralleled across the network.

This network consists of: (i) one fusion center, that does not access

data; and (ii) Z compute agents. The z th agent, A z , can only access

data for a subset �z ⊂� of J z ≤ J subbands, and for each available

wavelength, its associated sample covariance matrix is accessible

for exactly one agent. Moreover, the agents cannot exchange infor-

mation among themselves. Operation flow and signaling exchange

between local processors and the central processor is given in the

end of the algorithm description (c.f. Fig. 2 ). 

Note that the estimation of the unknown matrices R 

U 
λ

repre-

sents the imaging step which is beyond the scope of the paper

[6,7,9,50] . Image synthesis [51–55] is usually performed as a sepa-

rate procedure after the calibration and can be complemented by

the proposed calibration approach. The main reason for this two-

step procedure is that the calibration step is usually carried out

based on a point source model (unlike the imaging step) with a

known number of strong calibrators, whereas, the effect of an un-

known number of the weakest (non-calibration) sources can be as-

sumed absorbed by the strongest calibration sources. This causes a

bias in the DI gain solutions that results in imaging artefacts know

as ghosts [56,57] . This effect can be mitigated by improving the sky

model. Consequently, in the LOFAR pipeline, an alternating scheme

between calibration and imaging is performed [1,3] . 

3. Proposed parallel multi-wavelength calibration algorithm

3.1. Overview of the proposed parallel multi-wavelength calibration 

algorithm 

In this section, we define the main steps of our proposed al-

gorithm, then, in the following sections, we describe each step in

detail. 

It is well established that a statistically efficient estimator can

be obtained via the Maximum Likehood method. However, from

a computational viewpoint, its exact evaluation appears to be in-

tractable in the radio astronomical context [6] . With a large num-

ber of samples, statistically efficient estimators can be devised us-

ing the Weighting Least Squares approach. In this context, we de-

fine, for each λ∈ �, the local cost function [5] to be minimized as
λ(p λ) = 

∥∥∥W 

− 1 
2

λ

(
R λ(p λ) − ˆ R λ

)
W 

− 1 
2 

λ

∥∥∥2

F
, (15)

n which 

 λ(p λ) = E D λ M λE 

H 
D λ

+ �n
λ (16)

enotes the covariance matrix when the contribution of the (weak-

st) non-calibrators is absorbed in the noise, and W λ is the weight-

ng matrix. The optimal weighting matrix for Gaussian noise is the

nverse of the covariance of the residuals [58] , which is generally

nknown. Justified by physical reasons and (8) , we consider W λ = I

n our alternating algorithm as an initialization and refine it as

 λ = �n 
λ once we obtain an estimate of �n 

λ. Since �n 
λ is diago-

al, we rewrite the local cost function (15) , i.e., the cost function

ssociated with the wavelength λ, as 

λ(p λ) = 

∥∥(R λ(p λ) − ˆ R λ

)
� �λ

∥∥2

F
, with (17)

λ = 

(
σn 

λσ
n T 
λ

)�− 1
2
. (18)

inally, with (13) , we define the cost function for the entire net-

ork as 

(p ) = 

∑ 

λ∈ �
κλ(p λ) . (19)

Our aim is to estimate p by minimizing κ( p ) in an alternat-

ng and parallel manner. Note that the overall problem is non-

onvex, so we cannot claim finding the global minimum when the

lgorithm converge (nevertheless, in practice we might have good

nitialization that converges to the global minimum as shown in

he real data simulation). We first estimate locally in each agent

he parameter vector { g λ} λ∈�, with the remaining parameters in

 fixed as described in Section 3.2 , by reformulating the prob-

em as a consensus problem, in which the updates of α provide

oherence among wavelength. In a second step, we estimate the

ariables 
{

m λ, d λ, 1 , . . . , d λ,Q , σ
n 
λ

}
λ∈ � for fixed { g λ} λ∈ �, by using a

parse representation approach as described in Section 3.3 . Finally,

e update the weighting matrices { �λ} λ∈ �. During these proce-

ures, the amount of information that needs to be exchanged be-

ween the fusion center and the compute agents is much less than

he volume of data being calibrated, making this scheme com-

utationally feasible. The overall procedure, referred to as Paral-

el Multi-wavelength Calibration Algorithm (PMCA), is presented

n Algorithm 1 . The algorithm is carefully initialized with the

Algorithm 1: Parallel Multi-wavelength Calibration Algorithm 

Input : 
{

ˆ R λ, m 

[0] 

λ

}
λ∈ �, D 

K , , ηp ; 

Init: set i = 0 , 
{

g λ = g 
[0] 

λ

}
λ∈ �, {

D λ = D 

K , m λ = m 

[0] 

λ
, �λ = 1 P×P 

}
λ∈ �; 

repeat 

1 i = i + 1 ; 

2 Estimate paralelelly 
{

g 
[ i ] 

λ

}
λ∈ � with Algorithm 1.2; 

3 Estimate paralelelly 
{

D 

[ i ] 

λ
, m 

[ i ] 

λ
, σn[ i ] 

λ

}
λ∈ � with Algorithm 

1.3; 

4 Update locally 
{
�[ i ] 

λ
= 

(
σn[ i ] 

λ
σn[ i ] T 

λ

)�− 1 
2 }

λ∈ �; 

until 
∥∥p 

[ i −1] − p 

[ i ] 
∥∥

2
≤
∥∥p 

[ i ] 
∥∥

2 
ηp ; 

Output : ˆ p = 

[
p 

[ i ] T 
λ1

, . . . , p 

[ i ] T 
λJ

]T 
; 

rue/nominal calibrator parameters and an initial guess for the an-

enna gains, e.g. from precedent calibration, or by default by the
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nit sensor gain, g 
[0] 

λ
= 1 . The stopping criterion ηp has to be suf-

ciently small to assure convergence. In the following sections, we

etail the two major alternating optimization steps of the proposed

MCA. 

.2. Direction independent antenna gain estimation ( Algorithm 2 ) 

In this section, we describe Algorithm 2 of the PMCA. As

hown in Algorithm 2 , this optimization step is performed w.r.t.

he DI gain parameters { g λ} λ∈ �, while the remaining parameters

m λ, d λ, 1 , . . . , d λ,Q , σ
n 
λ

}
λ∈ � of p are fixed. During this step, each

gent calibrates the sensor gains g λ using the data available lo-

ally and Algorithm 3 . Then, the agents transfers their parameter

stimates to the centralized location. At the fusion center, smooth-

ess of the parameters across wavelength is enforced (line 3 of

lgorithm 2 ), using the coherence parameter vector α, that is

Algorithm 2: Estimation of { g λ} λ∈ �
Input : 

{
ˆ R λ

}
λ∈ �, p 

[ i −1] , ηg ; 

Init: set t = 0 , 
{

g 
[ t] 

λ
= g 

[ i −1] 

λ

}
λ∈ �, {

R 

K 

λ
= A 

D 
[ i −1] 
λ

M 

[ i −1] 

λ
A 

H 

D 
[ i −1] 
λ

}
λ∈ �; 

repeat 

1 t = t + 1 ; 

2 Estimate locally 
{

g 
[ t] 

λ

}
λ∈ � with Algorithm 3 ; 

3 Estimate α[ t] at the fusion center with (36); 

4 Update locally the Lagrange multipliers 
{

y 
[ t] 

λ

}
λ∈ � with 

(24); 

until 
∑ 

λ∈ �
∥∥∥g 

[ t−1] 

λ
− g 

[ t] 

λ

∥∥∥
2

≤ ∑ 

λ∈ �
∥∥∥g

[ t] 

λ

∥∥∥
2
ηg ; 

5 Deduce locally 
{

ˆ g λ
}
λ∈ � from α[ t] with (11); 

Output : 
{

ˆ g λ
}
λ∈ �; 

assed to each agent to provide coherent processing across the

hole wavelength range, and thus improving the local calibration

rocedure. 

At this point, we distinguish between centralized and parallel

ased estimation of α. Specifically: 

• Joint calibration leads to a direct estimation scheme of α from

the data, in which we substitute in the minimization of (19) the

sensor gains { g λ} λ∈ � by α according to (11) . However, this re-

quires access to all data by minimizing (19) w.r.t. α, which is

computationally unfeasible due to the restriction resulting from

the large data volumes.

• Let us recall that Z computational agents are disposed on a net-

work (see, Section 2.3 ), where the z th agent, A z , accesses data

for wavelengths λ∈�z ⊂�. In this perspective, we propose a

parallel calibration scheme, in which the sensor gains corre-

sponding to each wavelength λ are estimated locally and con-

sensus is enforced among agents by imposing constraint (11) .

With this network setup, we formulate the parallel calibration

rocedure as 

minimize 
α, { g λ} λ∈ �

∑ 

λ∈ �
˜ κ [ i ] 

λ ( g λ) 

ubject to g λ = B λα, ∀ λ ∈ �, (20) 

n which ˜ κ [ i ] 

λ
(g λ) = κλ(p λ| m 

[ i ] 

λ
, D 

[ i ] 

λ
, σn[ i ] 

λ
) , i is the [ i ]th iteration of

lgorithm 1 , and where the cost function consists of a sum of

ndependent cost functions, one for each subband, that are cou-

led through the coherence constraints which however are inde-

endent across sensors. A commonly way to solve (20) is to con-

ider the problem as a consensus optimization problem [26] and
onsequently to use the augmented Lagrangian, given by [59] 

 

[ i ] 
({ g λ} λ∈ �, α, { y λ} λ∈ �

)
= 

∑
λ∈ �

˜ κ [ i ] 

λ ( g λ) + � 

{
y H λ ( g λ − B λα)

}
+ ρ

2 

‖ 

g λ − B λα‖ 

2
2

= � 

{∑ 

λ∈ �
L [ i ] 
λ ( g λ, α, y λ) 

}
, (21) 

here { y λ} λ∈� are the J Lagrange multipliers and ρ is the regular-

zation term, chosen by the practitioner. In order to solve (20) , we

esort to the consensus ADMM [26] . Let t denote the local iteration

ounter of Algorithm 2 , the updates for the [ t ]th iteration are given

y 

 

[ t] 

λ
= arg min 

g λ

� 

{
L [ i ] 
λ

(
g λ, α[ t−1] , y [ t−1]

λ

)}
, λ ∈ �, (22) 

[ t] = arg min 

α
� 

{∑ 

λ∈ �
L [ i ] 
λ

(
g 

[ t] 

λ
, α, y [ t−1]

λ

)}
, (23) 

 

[ t] 

λ
= y [ t−1] 

λ
+ ρ
(

g 

[ t] 

λ
− B λα

[ t] 
)
, λ ∈ �, (24) 

hat correspond to, respectively, the sensor gain update, the

moothness parameter update and the Lagrange multiplier update.

he minimization of (22) is the computationally most expensive

tep and is performed locally by each agent. Similarly, (24) is solve

ocally, whereas (23) is solved at the fusion center. Procedures for

btaining (22) and (23) are detailed in the following. 

.2.1. Minimization of (22) 

Toward the minimization of (22) , we follow an iterative opti-

ization approach based on [18,30] , that we adapt to our par-

llel minimization. Let us assume that g λ and g ∗
λ

are two in-

ependent variables. We then regard g ∗
λ

as fixed and minimize

 

[ i ] 

λ

(
g λ, g ∗

λ
, α[ t] , y 

[ t]

λ

)
w.r.t. g λ only, and without considering the di-

gonal elements in the cost functions in (20) that contain the un-

nown noise variances σn 
λ

. In this case, the local cost function be-

omes separable w.r.t. the elements of g λ, hence, 

˜ [ i ] 
λ

(g λ) = 

P ∑ 

p=1

˜ κ p[ i ] 

λ
([ g λ] p ) , (25)

here ˜ κ p[ i ] 

λ
([ g λ] p ) corresponds to the cost function for the p th row

f R λ, which depends only on [ g λ] p since the remaining parame-

ers are considered as fixed in this step. Let us define the operator

 p (. ) , that converts the p th row of a matrix to a vector and re-

oves the p th element of this selected vector. Further, define the

ector ˆ r 
p 

λ
= S p 

(
ˆ R λ

)
and the weighting vector ω = S p 

(
�[ i ] 

λ

)
. We can

hus write ˜ κ p[ i ] 

λ
([ g λ] p ) in (25) as 

˜ p[ i ] 

λ
([ g λ] p ) = 

∥∥(ˆ r p 
λ

− z [ g λ] p 
)

� ω 

∥∥2

2
, (26)

n which z = S p 
(
R 

K 
λ

G 

∗
λ

)
and where 

 

K 
λ = A D λ M λA 

H 
D λ

(27)

epresents the estimated calibrator sky model. Then, we decom-

ose the augmented Lagrangian in (22) w.r.t. the elements of g λ as

 

[ i ] 

λ

(
g λ, α[ t] , y [ t]

λ

)
= 

P ∑ 

p=1

L p[ i ] 

λ

(
[ g λ] p , α

[ t] , y [ t]

λ

)
, (28)
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a

in which 

L p[ i ] 

λ

(
[ g λ] p , α

[ t] , y [ t]

λ

)
= ˜ κ p[ i ] 

λ ( [ g λ] p ) + [ y ∗[ t] 

λ
] p 

(
[ g λ] p −

[
B λα

[ t] 
]

p

)
+ ρ

2

∥∥∥[ g λ] p −
[
B λα

[ t] 
]

p 

∥∥∥2

2
. (29)

By using standard inversion techniques [ 25 , Section 4], we calcu-

late the minimizer of (29) as 

[ ̂ g 

[ t+1] 

λ
] p = 

2 z H ω 

(
ˆ r p 
λ

� ω 

)
+ ρ
[
B λα

[ t] 
]

p
− [ y [ t] 

λ
] p 

2 

(
z H ω z ω 

)
+ ρ

, (30)

where z ω = z � S p 
(
�[ i ] 

λ

)
. Then, we directly update [ g 

∗[ t+1] 

λ
] p =(

[ ̂ g 
[ t+1] 

λ
] p 

)∗
and proceed in the same manner with the re-

maining parameters in g λ. This procedure is summarized in

Algorithm 3 and is repeated until convergence. 

Algorithm 3: Local estimation of { g λ} λ∈ �z 
.

Input : 
{

ˆ R λ, R 

K 

λ
, g 

[ t−1] 

λ
, y 

[ t−1] 

λ
, �[ i ] 

λ

}
λ∈ �z 

, α[ t−1] , ηg ; 

Init: set 
{

t λ = 0 , g 
[ t λ] 

λ
= g 

[ t−1] 

λ

}
λ∈ �z 

; 

foreach λ ∈ �z do 

repeat 

1 t λ = t λ + 1 ; 

for p = 1 , . . . , P do 

2 ˆ r 
p 

λ
= S p 

(
ˆ R λ

)
;

3 z = S p 
(
R 

K 

λ
G 

∗
λ

)
; 

4 z ω = z � S p 
(
�[ i ] 

λ

)
; 

5 [ g 
[ t λ] 

λ
] p = 

2 z H ω 

(
ˆ r 

p 
λ
�ω 

)
+ ρ
[
B λα[ t−1] 

]
p
−[ y 

[ t−1]
λ

] p

2 ( z H ω z ω ) + ρ
; 

until 

∥∥∥g 
[ t λ−1] 

λ
− g 

[ t λ] 

λ

∥∥∥
2

≤
∥∥∥g 

[ t λ] 

λ

∥∥∥
2
ηg ; 

Output : 
{

ˆ g λ = g 
[ t λ] 

λ

}
λ∈ �z 

; 

3.2.2. Minimization of (23) 

After gathering the estimates { g [ t+1] 

λ
} λ∈ �, the fusion center can

obtain a closed-form expression of α, and then, its estimated value,

ˆ α[ t+1] 
, is sent to all agents in the network. Specifically, 

ˆ α
[ t+1] = arg min 

α
� 

{∑ 

λ∈ �
L [ i ] 
λ

(
g 

[ t+1] 

λ
, α, y [ t] 

λ

)}

= arg min 

α
� 

{∑ 

λ∈ �
y [ t] H 
λ

(
g 

[ t+1] 

λ
− B λα

)

+ ρ

2

∥∥∥g 

[ t+1] 

λ
− B λα

∥∥∥2

2

}
, (31)

which leads, after some calculus, to 

ˆ α
[ t+1] =

( ∑ 

λ∈ �
ρB 

T 
λB λ

) † (∑ 

λ∈ �
B 

T 
λ

(
y [ t] 

λ
+ ρg 

[ t+1]

λ

))
. (32)

Expression (32) can be simplified by means of (11) , as 

ˆ α
[ t+1] = 

1 

ρ

⎛ 

⎝(∑ 

λ∈ �
b λb 

T
λ

) †

� I 

⎞ 

⎠(∑ 

λ∈ �
b λ �

(
y [ t] 

λ
+ ρg 

[ t+1]

λ

))
. 

(33)
ith J ≥ K (see, Section 2.2 ). Finally, denoting 

 = 

1

ρ

(∑ 

λ∈ �
b λb 

T
λ

) †

, (34)

 

[ t+1] = 

∑ 

λ∈ �

(
y [ t] 

λ
+ ρg 

[ t+1]

λ

)
b 

T 
λ (35)

nd by use of the Kronecker product property vec (ABC ) =
C 

T 
� A 

)
vec (B ) , (23) is reduced to the following compact analyti-

al expression, 

ˆ 
[ t+1] = vec

(
IU 

[ t+1] T 

T 
)

= vec 
(
U 

[ t+1] T 

T 
)
. (36)

.3. Direction dependent parameter and noise power estimation 

 Algorithm 4 ) 

In this section, we describe Algorithm 4 of the PMCA dedi-

ated to the estimation of the DD parameters and noise powers,

.e.,
{

m λ, d λ, 1 , . . . , d λ,Q , σ
n 
λ

}
λ∈ � for fixed { g λ} λ∈ �, which is based

ainly on a sparse representation framework with a parallel im-

lementation. 

By taking into account the assumptions A1 and A2 of

ection 2.2 , each of following dictionaries is obtained from sam-

ling the uncertainty sector corresponding to a particular calibra-

or. Let us recall that according to our model, the shifts of the

irections are proportional to λ2 [13] (see, Section 2.2 ). Conse-

uently, we impose the same behavior w.r.t. the wavelength in the

rid resolutions, i.e., 
l 
q 

λ
∝ λ2 , 
m 

q 

λ
∝ λ2 , by scaling them around

0 as 

l q 
λ

= 

(
λ

λ0 

)2


l q 
λ0

, (37)

m 

q 

λ
= 

(
λ

λ0 

)2


m 

q 

λ0
. (38)

hus, we define JQ dictionaries of steering vectors, ˜ A q,λ ∈ C 

P×N q ,

or q = 1 , . . . , Q, λ ∈ �, which contain N q steering vectors, centered

round the true/nominal direction of the q th calibrator, namely d 

K 
q ,

ith resolution 

(

l 

q 

λ
, 
m 

q 

λ

)
and N q � 1. These dictionary steering

atrices are gathered in 

˜ 
 λ = 

[
˜ A 1 ,λ, . . . , ̃  A Q,λ

]
∈ C 

P×N g , λ ∈ �, (39)

ith N g = 

∑ Q 
q =1 

N q denoting the total number of directions on the

rid. 

We define then J vectors, { ̃  m λ} λ∈ �, as

˜ 
 λ = 

[
˜ m 

T 
1 ,λ, . . . , ˜ m 

T
Q,λ

]T ∈ R 

N g , λ ∈ �, (40)

hich contain the squared DD gains towards all calibrators, where

˜ 
 q,λ is the sparse vector associated with 

˜ A q,λ. Due to the pre-

ious assumption of non-overlapping displacement sectors, each

˜ 
 q,λ is exactly 1-sparse, i.e., 

∥∥ ˜ m q,λ

∥∥
0

= 1 , for q = 1 , . . . , Q, ∀ λ ∈ �.

ince the shift resolution in the dictionaries is made proportional

o λ2 , the support of ˜ m q,λ is independent of λ. To proceed, we ex-

loit that �λ ∝ λ−1 (see, Section 2.2 ) in order to estimate a unique

parse vector for all wavelengths, namely ˜ m . More precisely, under

his assumption, we define ˜ m = 

[
˜ m 

T 
1 
, . . . , ˜ m 

T 
Q 

]T 
as 

˜ 
 λ = 

(
λ0 

λ

)2

˜ m , ∀ λ ∈ �, (41)

hich can be also adjusted for other existing models of �λ. 

Using (16) , the approximate covariance model can be rewritten

s 

R λ = 

˜ E λ
˜ M ̃

 E 

H 
λ + �n 

λ, (42)
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Algorithm 4: Estimation of 
{

D λ, m λ, σn 
λ

}
λ∈ �

Input : 
{

ˆ R λ, g 
[ i ] 

λ

}
λ∈ �, p 

[ i −1] , η ˜ m 

;

Init: set k = 0 , 
{

g 
[ k ] 

λ
= g 

[ i ] 

λ
, M 

[ k ] 

λ
= M 

[ i −1] 

λ

}
λ∈ �, {

D 

[ k ] 

λ
= D 

[ i −1] 

λ
, σn[ k ] 

λ
= σn[ i −1] 

λ

}
λ∈ �; 

repeat 

1 k = k + 1 ; 

for q = 1 , . . . , Q do 

foreach A z , z = 1 , . . . , Z do 

foreach λ ∈ �z do 

2 Calculate locally 

ˆ r 
q 

λ
= ̂

 r λ −∑ q −1 

q ′ =1 
V 

q ′ 
λ

˜ m 

[ k ] 

q′ −∑ Q 
q ′ = q +1 

V 

q ′ 
λ

˜ m 

[ k −1] 

q′ ; 

3 Send 

∑ 

λ∈ �z 
V 

q T 
λ

ˆ r 
q 

λ
to the fusion center; 

4 Hard thresholding by the fusion center 

˜ m 

[ k ] 
q = H 1 

(
˜ m 

[ k −1]
q + τ [ k ] 

q 

∑ 

λ∈ � V 

q T 
λ

ˆ r 
q 

λ

)
; 

5 The fusion center communicates the non-zero element 

of ˜ m 

[ k ] 
q and its associated direction d 

[ k ]

λ0 ,q
; 

until 
∥∥ ˜ m 

[ k −1] − ˜ m 

[ k ] 
∥∥

2
≤
∥∥ ˜ m 

[ k ] 
∥∥

2 
η ˜ m 

; 

6 Deduce locally 
{

ˆ m λ

}
λ∈ � from 

˜ m 

[ k ] = 

[ 
˜ m 

[ k ] T 
1 

, . . . , ˜ m 

[ k ] T 
Q 

] T
, 

with (41); 

7 Deduce locally 
{

ˆ D λ

}
λ∈ � from D 

[ k ] 

λ0
= 

[ 
d 

[ k ] 

λ0 , 1
, . . . , d 

[ k ] 

λ0 ,Q

] 
with 

(37) and (38);

8 Estimate locally 
{
σn

λ

}
λ∈ � with (57); 

Output : 
{

ˆ D λ, ˆ m λ, ̂  σn 
λ

}
λ∈ � ; 

fi

r

S  

t

V

w

τ

w  

o

 

(

e  

t  

T

a  

i  

a  

t  

t  

t  

i

 

w  

t  
n which 

˜ M = diag ( ̃  m ) , 

˜ 
λ = blkdiag 

(
I N 1 ×N 1 [ σλ] 1 , . . . , I N Q ×N Q [ σλ] Q 

)
and (43) 

˜ 
 λ = 

λ0 

λ
G λ

˜ A λ
˜ �

1
2 

λ . (44) 

et us then define 

 λ = 

(
�n 

λ

)− 1
2 ˜ E 

∗
λ �

(
�n 

λ

)− 1
2 ˜ E λ, (45) 

 λ = �
n − 1

2

λ
� �

n − 1
2 

λ
, (46) 

ˆ 
 λ = vec 

(
ˆ R λ � �λ

)
, (47) 

omputed with the previous estimate of �n 
λ and �λ in (18) . Thus,

e formulate the minimization problem as 

minimize 
˜ m , { σn 

λ} λ∈ �

∑ 

λ∈ �

∥∥ˆ r λ − V λ ˜ m − N λσ
n 
λ

∥∥2

2

ubject to 

˜ m � 0 , σn 
λ � 0 , ∀ λ ∈ �

‖ ̃

 m q ‖ 0 = 1 for q = 1 , . . . , Q . (48) 

ince the p th element of σn 
λ
, [ σn 

λ
] p , is only present in the p th di-

gonal term of R λ, ignoring this term does not affect (asymptoti-

ally) the estimation of ˜ m . Consequently, it is more convenient to

stimate σn 
λ

after the estimation of ˜ m . 

For this purpose, we denote ˆ r λ and V λ, that refer, respectively,

o ˆ r λ and V λ, where the elements corresponding to the diagonal of

 λ are discarded. We further define 

 λ( ̃  m ) = 

∥∥ˆ r λ − V λ ˜ m 

∥∥2 

2
, λ ∈ �, (49)

o obtain the solution of ˜ m in (48) after supposing σn 
λ

� 0 , as 

ˆ ˜ m = arg min 

˜ m

∑ 

λ∈ �
h λ( ̃  m ) 

subject to 

˜ m � 0 , 

‖ ̃

 m q ‖ 0 = 1 for q = 1 , . . . , Q ,

(50) 

hich is used in Algorithm 4 . 

To consider the l 0 constraints in (50) , which are non-convex and

P-hard [60] , we choose the Distributed Iterative Hard Threshold-

ng method [61–63] , which is based on Iterative Hard Threshold-

ng [64] . This greedy algorithm consists of a projected gradient de-

cend direction algorithm and offers strong theoretical guarantees

hat have been successfully employed in the DoA estimation con-

ext [65,66] . Particularly, when the grid is fine and the columns

f ˜ A q,λ are strongly coherent, we can guarantee that each 

˜ m q ob-

ained from (50) is exactly 1-sparse. Thus, using the Coordinate

escent algorithm [67] to minimize (50) , we obtain an analytic so-

ution for each sub-problem and the sparsity of the desired mini-

izer ˜ m reduces the computational complexity. Each step involves

he hard thresholding operator H s (. ) , that keeps the s -largest com-

onents of a vector and sets the remaining entries equal to zero,

hus, it automatically satisfies both constraints of sparsity and pos-

tivity. We obtain the update for the [ k ]th iteration as 

˜ 
 

[ k ] 
q = H 1 

(
˜ m 

[ k −1]
q + τ [ k ]

q 

∑ 

λ∈ �
V 

q T 
λ

(
ˆ r 

q 

λ − V 

q 

λ
˜ m 

[ k −1]
q 

))
, (51) 

ith V 

q 

λ
the q th column of V λ, where we can allow a step size

[ k ] 
q that depends on 

˜ m 

[ k −1] 
q and the [ k ]th iteration, by the use of

he Normalized Iterative Hard Thresholding [68] . Let us take bene-

t of the 1-sparsity of ˜ m q (see, Section 2.2 ) in order to choose τ [ k ] 
q :
rstly, we define its associated residual as 

ˆ 
 

q 

λ = ̂

 r λ −
Q ∑ 

q ′ =1 
q ′ � = q 

V 

q ′ 
λ

˜ m q ′ . (52) 

econdly, we consider the initialization 

˜ m 

[ k −1] 
q = 0 and note that

he dictionary of ˜ m q is given by 

 

q = 

[
V 

q T 
λ1

, . . . , V 

q T 
λJ

] T
, (53) 

hose columns have the same norm. Consequently, by choosing 

[ k ] 
q = 

1 

‖ 

v q ‖ 

2 
2 

= 

1 ∑ 

λ∈ �
∥∥vq 

λ

∥∥2

2

, (54) 

here v q and v 
q 

λ
are, respectively, any column of V 

q and V 

q 

λ
, we

btain directly the step size and then solution for ˜ m q . 

In the network, the z th agent, A z , accesses only { h λ(. ) } λ∈ �z 
in

50) . In order to estimate ˜ m q and then deduce its DoA and m q, λ,

ach agent A z can calculate the values 
∑ 

λ∈ �z 
V 

q T 
λ

ˆ r 
q 

λ
and send them

o the fusion center, which performs the thresholding step in (51) .

hen, the fusion center transmits only the non-zero value of ˜ m q 

nd its corresponding direction d λ0,q . Benefiting from the positiv-

ty of ˜ m q , we are able to adopt the procedure of [61] , that solves

 top- K problem. Thus, the Z agents can send only a fraction of

he estimates to the fusion center further reduce the communica-

ion overhead. We remark, that for compactness of the presenta-

ion, this procedure is not included in Algorithm 4 , since it only

mproves the communication efficiency. 

Afterward, the estimation of 
{
σn

λ

}
λ∈ � is performed locally,

ithout the need of transmitting the estimated values. Firstly, note

hat without considering non-calibration sources, i.e., R 

U 
λ

≈ 0 , the
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t  

p  

w  

P

estimation of σn 
λ

is given by 

σn 
λ = vecdiag

(
ˆ R λ − ˆ G λ

ˆ R 

K 
λ

ˆ G 

H 
λ

)
, (55)

since we assume independence of σn 
λ

across wavelength. Secondly,

we remove the bias introduced by the non-calibration sources as

follows: we calculate the power 

ˆ σ r 
λ = 

a H 
λ
(d λ,r ) 

(
ˆ R λ − ˆ G λ

ˆ R 

K 
λ

ˆ G 

H 
λ

)
a λ(d λ,r ) 

‖ 

a λ(d λ,r ) ‖ 

2
2

(56)

of the residual sample covariance matrix for a random direction

d λ, r , where no source is supposed to be present. We then ap-

proximate a H 
λ
(d λ,r ) a λ(d λ,q ) ≈ 0 for any d λ, r � = d λ, q , which yields

ˆ σ r 
λ

as the sum of the sensor noise powers [7,69] . By imposing∑ P 
p=1

[
σn 

λ

]
p

= ˆ σ r 
λ

to the minimization of (17) w.r.t. σn 
λ
, the new un-

biased solution is given by 

ˆ σ
n 
λ = σn 

λ + 

1 

P 

(
ˆ σ r 
λ − 1 

T 
P×1 σ

n 
λ

)
1 P×1 , (57)

which concludes the description of Algorithm 4 . Finally, operation

flow and signaling exchange between a local processor A z and the

central processor is given in Fig. 2 . 

4. Cramér–Rao bound

The Cramér–Rao Bound (CRB) expresses a lower bound on the

variance of the estimation error of a deterministic vector parame-

ter for an unbiased estimator [70,71] . In this section, after obtain-

ing the CRB for the mono-wavelength scenario, we define the un-

constrained CRB in the multi-wavelength scenario and finally take

into account the dependence across wavelength (see, Section 2.2 )

to obtain the constrained CRB that corresponds to the data model

(4) and the constraints in Section 2.2 .

Let us consider the mono-wavelength scenario and stack the

unknown parameters in 

p λ = 

[
� (g 

T 
λ ) , � (g 

T 
λ ) , m 

T 
λ, m 

U T 
λ , d 

T 
l,λ, d 

U T 
l,λ , d 

T 
m,λ, d 

U T 
m,λ, σn T 

λ

]T
, (58)

where d l,λ = 

[
d l,λ, 1 , . . . , d l,λ,Q 

]T 
, d 

U 
l,λ

= [ d U 
l,λ, 1

, . . . , d U 
l,λ,Q U 

] T , d m,λ =
[ d m,λ, 1 , . . . , d m,λ,Q ] 

T , d 

U 
m,λ

= [ d U 
m,λ, 1

, . . . , d U 
m,λ,Q U 

] T and �U 
λ�U H 

λ =
diag 

(
m 

U 
λ

)
. We obtain the CRB, C λ, corresponding to the parame-

ter vector in (58) , after straightforward adaptations from [ 6 , Chap-

ter 4]. Then, for the multi-wavelength scenario, we gather the un-

known parameters in a vector p = [ p 

T 
λ1

, . . . , p 

T 
λJ

] T , suppose that the

signals are i.i.d. across wavelength and ignore the constraints in

Section 2.2 for the parameters. Consequently, we obtain the un-

constrained CRB, ˜ C , as 

˜ C = 

⎡
⎣C λ1 

0 0 

0 

. . . 0 

0 0 C λJ 

⎤
⎦ . (59)

From 

˜ C , we obtain the constrained CRB [72] corresponding to

the data model, C , as 

C = 

˜ C − ˜ C 
T ( 
 ˜ C 
T ) −1 
 ˜ C 

T , (60)

where 
 is the gradient matrix of the constraints in Section 2.2 ,

given by 


 = 

[

T 

g λ
, 
T 

m λ
, 
T

m 

U 
λ
, 
T 

D λ
, 
T

D U
λ

] T
, (61)

in which the constraints on g λ, m λ, m 

U 
λ
, D λ and D 

U 
λ
, λ ∈ �, are

represented in 
g λ
, 
m λ

, 

m 

U 
λ
, 
D λ

and 

D U 

λ
, respectively. Since

m λ ∝ λ−2 , we have

λ2 
1 m λ1 

= λ2 
2 m λ2 

= . . . = λ2 
J m λJ 

, (62)
eading to 

m λ
=

⎡ 

⎢ ⎢ ⎢⎣ 

λ2 
1 I −λ2 

2 I 0 . . . 0 

λ2 
1 I 0 

. . . 0 

.. . 
.. . 

. . .
.. . 

λ2 
1 I 0 . . . 0 −λ2 

J I

⎤
⎥⎥⎥⎦ (63)

nd we add zeros for the indices corresponding to the remaining

arameters in p . 

m 

U 
λ

is obtained in the same way. On the other

and, in order to derive 
D λ
, we make use of the following con-

traints 

−2 
1 d l,q,λ1 

= λ−2 
2 d l,q,λ2 

= · · · = λ−2 
J d l,q,λJ 

, (64)

−2 
1 d m,q,λ1 

= λ−2 
2 d m,q,λ2 

= · · · = λ−2 
J d m,q,λJ 

, (65)

eading to 

l 
q =

⎡ 

⎢ ⎢ ⎢⎣
λ−2 

1 
−λ−2 

2 
0 . . . 0 

λ−2 
1 

0 

. . . 0 

.. . 
.. . 

. . .
.. . 

λ−2 
1 

0 . . . 0 −λ−2 
J 

⎤
⎥⎥⎥⎦ (66)

nd we add zeros for the indices corresponding to the remaining

arameters in p and process in a same way for d m 

to obtain 
m 

q .

hus, 
D λ
is given by 

D λ =
[

lT 

1 , . . . , 

lT 
Q , 


m T 
1 , . . . , 
m T

Q 

] T
, (67)

nd we derive in the same way 

D U 

λ
. Finally, we consider the con-

traint (11) that reduces the degree of freedom of { g λ} λ∈ � from JP

o KP , i.e., we add (J − K) P constraints. Let us define 

 K = [ g 

T 
λ1 

, . . . , g 

T 
λK

] T , (68)

 K = 

[
B 

T 
λ1 

, . . . , B 

T
λK

]T
. (69)

hus, 

 λ = B λB 

−1 
K g K , λ = λK+1 , . . . , λJ , (70)

eading to 

g λ =

⎡ 

⎢ ⎢ ⎢⎣
B λK+1 

B 

−1
K 

−I 0 . . . 0 

B λK+2 
B 

−1
K 

0 

. . . 0 

.. . 
.. . 

. . .
.. . 

B λJ 
B 

−1
K 

0 . . . 0 −I 

⎤
⎥⎥⎥⎦ (71)

nd we add zeros for the indexes corresponding to the remaining

arameters in p , which concludes our derivation of the constrained

RB. 

. Simulations

The proposed method is evaluated in realistic situations, with

ypical parameter values commonly used in radio astronomy ap-

lications [3,6,7] . In order to analyze the estimation of { g λ} λ∈ �,

e first focus on Algorithms 2 and 3 and then show results for the

MCA. 



Fig. 4. g λ-residual, εg λ , as function of the iteration number t λ of Algorithm 3 , for 

different values of the [ t ]th iteration of Algorithm 2 .

Fig. 5. Primal residual, εr , as function of the iteration number t of Algorithm 2 ,

for smoothing polynomial terms K = 2 , 3 , 4 and regularization term ρ = 5 · 10 2 P, 5 ·
10 3 P, 5 · 10 4 P. 

Fig. 6. Dual residual, εd , as function of the iteration number t of Algorithm 2 ,

for smoothing polynomial terms K = 2 , 3 , 4 and regularization term ρ = 5 · 10 2 P, 5 ·
10 3 P, 5 · 10 4 P. 

Fig. 7. RMSE on { g λ} λ as function of wavelength and compared to the CBRs. The

edge wavelengths have a higher error, particularly for K = 2 and K = 4 , due to our 

choice of false interpolating polynomials compared to the real/true polynomial or- 

der K K = 3 . 

Fig. 8. ˜ m -residual, ε ˜ m , as function of the iteration number k of Algorithm 4 , for

different values of the [ i ]th iteration of Algorithm 1 .

Fig. 9. Variation of the residuals as function of the iteration number i of

Algorithm 1 .

Fig. 10. RMSE on the directions of the calibrators and their associated directional

gains as function of number of samples N , and compared to their corresponding

multi-constrained-CRB.

Fig. 11. RMSE on the undirectional gains and antenna noise powers as function of

number of samples N , and compared to their corresponding multi-constrained-CRB.

Fig. 12. LOFAR’s core station antenna locations.
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.1. Data setup 

The antenna locations correspond to the LOFAR’s Initial Test

tation [73] , with P = 60 antennas disposed in a five-armed spiral,

s shown in Fig. 3 . We assume a sky model with λ0 = 10 m ( f 0 =
0 MHz) consisting of Q = 2 strong calibration sources and Q 

U =
 weak non-calibration sources, provided from the ten strongest

ources in the table of [14] , such that they represent the weak

ontributed in the covariance matrices (the matrix R 

U 
λ

in (7) ). The

otal power of these sources is assumed to be 1% of the total

ntenna noise power, a typical scenario for radio interferometers

6] . We consider data taken at J = 13 wavelengths from 7.1 m to

6.5 m. We create { g λ} λ∈ � by using a polynomial of order K 

K =
 , with b λ,k = 

(
λ−λ0
λ0

)1 −k

, given as one realization sample from



Fig. 13. Comparison of DI gain amplitude estimates (left) and DI gain phase estimates (right) for a few representative examples between the solutions found using PMCA

(solid lines) and the conventional per-channel calibration approach (dots).

Fig. 14. Image of the uncalibrated covariance matrix at 49.4 MHz. The presence of

diffuse emission is noticeable.
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p  
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A

CN 

(
1 , 
(
σα
R

+ j σα
C

)
I 
)

with σα
R

= σα
C 

= 0 . 25 and we consider g 
[0] 

λ
= 1

as an initialization. To initialize Algorithm 2 , we consider the reg-

ularization parameter ρ = 0 during the first estimation of g λ, i.e.,

the first estimation of g λ is done without enforcing smoothness.

We generate the shifts for 
(
l q,λ0 

, m q,λ0 

)
, q = 1 , . . . , Q and the diago-

nal of �λ0 
with one realization sample from a uniform distribution

centred at 
((

l K q , m 

K 
q 

))
and 1 with a variance of σ D 

λ0
= 10 −1 / 

√ 

3 and

σ�
R 

= σ�
C 

= 1 / 
√ 

60 , respectively. We initialize with �λ = I and data

are produced via the signal model given in (3) , in order to obtain

the sample covariance matrices (14) . 

5.2. Results 

5.2.1. Results for the estimation of { g λ} λ∈ �
We illustrate here the convergence behavior and the perfor-

mance of both Algorithms 2 and 3 . The number of observations is

kept to N = 2 14 and all the stopping criteria are set to 0.03. In or-

der to analyze the convergence, we define the g λ-residual, εg λ
, the

primal residual, εr , and the dual residual, εd , as 

ε[ t λ]
g λ

= 

1 

J 

∑ 

λ∈ �

∥∥∥g 

[ t λ] 

λ
− g 

[ t λ−1] 

λ

∥∥∥
2 ∥∥∥g 

[ t λ] 

λ

∥∥∥ , (72)
2

[ t]
r = 

1√ 

P J 

∑ 

λ∈ �

∥∥∥g[ t] 

λ
− B λα

[ t] 

∥∥∥
2
, (73)

[ t] 

d 
= 

1√ 

PJ 

∥∥α[ t] − α[ t−1] 
∥∥

2 
. (74)

he primal residual depicts the error between the local solution

nd the predicted consensus value. On the other hand, the dual

esidual depicts the convergence of the reference variable α. 

In Fig. 4 , we focus on the convergence of Algorithm 3 . For t > 1,

e observe that the convergence is almost immediate ( t λ ≈ 5 it-

rations). In Fig. 5 and Fig. 6 , we show, respectively, the primal

nd dual residuals, both as function of the [ t ]th iteration number,

hen N = 2 14 . We have set the regularization term ρ = 5 · 10 2 P, 5 ·
0 3 P, 5 · 10 4 P and the smoothing polynomial order K = 2 , 3 , 4 , with

 = 2 underestimating the simulated polynomial order while K = 4

verestimating it. It is clear that as the value of ρ increases, the

rimal and dual residuals converge faster, for t ≈ 5 iterations, for

 sufficient value of ρ . Meanwhile, the primal and dual residuals

iffer slightly for different polynomial order K . 

The statistical performance is then compared with mono-

alibration scheme, the unconstrained-CRB C λ and the multi-

onstrained-CRB, C . In Fig. 7 , we plot the Root Mean Square Er-

or (RMSE) for the estimates of g λ. Results are averaged for 500

onte-Carlo runs, for each chosen value of K and ρ . We approach

he multi-constrained-CRB for K = K 

K and even with both K = 2

nd K = 4 , we significantly improve mono-calibration and be close

o the CRB. Moreover, we also have errors due to polynomial inter-

olation, which is clearly seen at the edge wavelengths. 

.2.2. Results for the PMCA 

We similarly analyze both convergence and performance of the

roposed PMCA. During the DoA estimation, we choose initially a

oarse grid, with the same resolution for each coordinate of each

alibrator. We apply grid refinements [36] until we avoid off-grid

ismatch. 

Firstly, we concentrate on the convergence of Algorithm 1 and

lgorithm 4 , respectively. For this purpose, we define the ˜ m , σn 
λ



Fig. 15. Image results of the calibrated covariance matrix at 49.4 MHz from the proposed PMCA (left), the calibrated solution of the existing method used for LOFAR

[5] (right). The diffuse emission appears slightly brighter in the image calibrated using PMCA.
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s

nd p -residuals, respectively, by 

[ k ] 
˜ m 

= 

1 

J 

∑ 

λ∈ �

(∥∥∥m 

[ k ] 

λ
− m 

[ k −1] 

λ

∥∥∥
2∥∥∥m 

[ k ] 

λ

∥∥∥
2

+ 1 

Q 

Q ∑ 

q =1

∥∥∥d 

[ k ] 

λ,q 
− d 

[ k −1] 

λ,q 

∥∥∥
2

)
, (75) 

[ i ]
σn

λ
= 

1 

J 

∑ 

λ∈ �

∥∥∥σn[ i ] 

λ
− σn[ i −1] 

λ

∥∥∥
2 ∥∥∥σn[ i ] 

λ

∥∥∥
2

, (76) 

[ i ]
p = ε[ i ]

g λ
+ ε[ i ]

˜ m
+ ε[ i ] 

σn 
λ
. (77) 

n Fig. 8 , the ˜ m -residual for Algorithm 4 decreases during the first

terations ( k ≈ 5) and stops due to alternating between close direc-

ions on the grid. In Fig. 9 , the previous residuals and p -residual

ecline more slowly and we have to wait i ≈ 10 iterations to assure

 correct convergence. 

In order to investigate the statistical performance, we perform

00 Monte-Carlo runs for different sample sizes N , and setting

= 5 · 10 3 P and K to its true value. We plot the RMSE of different

arameters in Figs. 10 and 11 , as function of the number of samples

 and compared to their corresponding multi-constrained-CRB. As

xpected, the method approaches the multi-constrained-CRB. This

learly show the good robustness of the method in low SNR sce-

ario with a presence of non-calibration sources. This is mainly

ue to (i) considering simultaneously multi-wavelength observa-

ions (thus, more observations) and (ii) forcing smoothness con-

traints which can attenuate the effect of such unmodeled sources

onsidered as outliers. However, it should be noted that this ro-

ustness has its own limit depending on the number and the

ower of the unmodeled sources. 

.3. Application to LOFAR data 

The LOFAR is a phased array radio telescope consisting of 50

ubarrays (referred to as stations ) of which 24 are located in a rel-

tively small centeal area near Exloo in The Netherlands (the core

tations ), 14 are spread throughout The Netherlands (the remote

tations ) and 12 are located in several European countries (the in-

ernational stations ) [1] . For this test, we use data from a single

olarization measurement with a 48-element low band antenna

LBA) array of a single core station, which have been computed

etween 21:01:29 UTC and 21:10:00 UTC on July 30, 2011, a night
ith mild ionospheric disturbances. The data consist of a set of ar-

ay covariance matrices, each obtained for a different 195 kHz wide

requency channel after 1 s of integration. Fig. 12 and Fig. 14 show,

espectively, the locations of the 48 antennas and the uncalibrated

mage at 49.4 MHz, i.e., an image plotted by assuming unit sensor

ain. This image clearly reveals two bright point sources, Cass A

nd Cyg A, but we observe also a large amount of diffuse emission

rom the Milky Way. These covariance matrices constitute in this

ay a relevant test for the robustness w.r.t. unmodeled sources of

ur algorithm, since only the two main sources are considered as

alibrators ( Q = 2 ). 

We select data for 31 frequencies in the range 47.6–53.5 MHz,

ith central frequency (respectively, wavelength) f 0 = 50 . 5 MHz

 λ0 = 5 . 9 m) and choose a polynomial order K = 3 . It is commonly

ssumed that the resolution of a radio telescope is in the order of

/ D , with D the maximum baseline [74] . This led us to define our

wo displacement sectors as 10 × 10 grid with a spacing of 0.2 λ/ D

much larger than possible angular-shifts), centered at the true di-

ections obtained from tables. We plot results of the images pro-

uced from the calibrated (using the PMCA algorithm) covariance

atrix for the frequency channels centered at 49.4 MHz in Fig. 15 ,

ompared with the state-of-the art [5] , which considers the appar-

nt direction of calibrators as fixed w.r.t. λ. 

The two calibrated images are very similar and show improved

ontrast between the two point sources and the noise in the back-

round of the image compared with the uncalibrated image shown

n Fig. 14 . This indicates that calibration has improved the images

n both cases. A closer look at the two images in Fig. 15 reveals

hat the diffuse emission on the South of the sky, which is a bright

ection of the Galactic plane (which can be seen by eye in the

ight sky as the Milky Way), appears slightly brighter in the image

alibrated using PMCA. This indicates that PMCA is more robust to

he presence of unmodeled sources in the image thereby reducing

he likelihood that power in the unmodeled sources is fitted to the

alibrator sources by the calibration algorithm, which causes a bias

n the calibration solutions. 

Another indication that PMCA provides robustness to unmod-

led flux is that the DI gain solutions, as shown in Fig. 13 for a

ew representative examples, are similar to those found with the

onventional approach despite the fact that the diffuse emission

as not spatially filtered as is done in the conventional approach.

his comparison also shows that the gain solutions produced by

he conventional approach vary quite significantly from one fre-

uency channel to the next while the PMCA provides smoothed

olutions, which are physically more realistic. 
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6. Conclusion

In this paper, we proposed a novel iterative scheme for parallel

calibration of next generation radio astronomical arrays, for which

direction dependent effects affect the apparent directions of the

calibration sources and parameter values vary across wavelength.

The proposed algorithm, named Parallel Multi-wavelength Calibra-

tion Algorithm (PMCA), iteratively estimates the complex direc-

tion independent antenna gains and their noise powers, whereas,

it jointly estimates the directions of the calibrators and their asso-

ciated direction dependent gain. These two main steps are, respec-

tively, based on Alternating Direction of Multiple Multipliers and

Distributed Iterative Hard Thresholding procedures. This leads to a

statistically efficient and robust scheme to unmodeled sources as

shown by numerical simulations and by application to actual LO-

FAR data. 

PMCA offers a framework that is easily adaptable to variations

on the scenarios presented in this paper, while maximizing the use

of a priori available knowledge of the physics of the instrument

and the measurement process. The parallelism in the PMCA en-

sures that the algorithm is scalable to large data sets, which can

be paralleled over a number of nodes. The algorithm is set up in

such a way that the use of data remains local, i.e., only the node

on which a specific part of the data resides needs access to that

data. 
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