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1. Introduction

Composite structures are widely used in the weight-sensitive
industrial applications due to their excellent mechanical proper-
ties, especially their high specific stiffness and strength. For many
cases of engineering application, the interlaminar stresses are very
important for prediction of delamination which is one of the criti-
cal failure types of laminated systems. It is also well known that
the presence of interlaminar stress components is particularly
important in the regions close to free and loaded edges like bolted
joints. Thus, a particular attention have to be paid to evaluate pre-
cisely their influence on local stress fields in each layer, particularly
at the interface between layers.

The pioneering work on straight free-edge problems can be
found in the review articles [1,2]. However, due to the complicated
geometry and three-dimensional nature of the stresses, laminated
composite plates with curved free-edges received relatively less
attention. In the following, the references are limited to the works
involving the modeling of laminated plate with a hole. Classically,
3D Finite Element (FE) approaches are used [3–7], but the compu-
tational cost can increase dramatically as a refined mesh is needed
near the hole. Thus, the coupling with 2D approach far from the
hole can be carried out [8], but the two regions have to be con-
nected by dedicated formulations. To overcome that, 2D
approaches have been developed and can be classified as follows:
� the Equivalent Single Layer Models (ESL): the Reissner-Mindlin
(FSDT, [9,10]) and higher-order models (TSDT, [11]) have been
addressed. But, only global quantities can be obtained, and the
integration of the equilibrium equations is needed to estimate
the transverse shear stresses with accuracy. Indeed, transverse
shear and normal stress continuity conditions at the interfaces
between layers are violated for all of them.

� the Layer-Wise Models (LW): It aims at overcoming the restric-
tion of the ESL concerning the discontinuity of out-of-plane
stresses at the interface between adjacent layers. These models
are carried out in [11–13] with a high-order expansion of the
displacements (at least three). Unfortunately, the number of
unknowns depends on the number of layers.

It should be mentioned alternative approaches to overcome
high computational cost. For that, the number of unknowns can
be reduced by introducing the continuity conditions at the inter-
face layers (on the transverse shear stresses). The so-called Zig-
Zag models can be deduced as in [14]. Note also the use of hybrid
stress elements based on a mixed form of Hellinger-Reissner prin-
ciple in [15]. Both ESL and LW approaches are developed.

In this work, a promising alternative approach in the field of the
reduced-order modeling based on the separation of variables [16]
is performed to overcome these drawbacks and give the solution
for any location of the hole. Note that the present study is focused
on geometrical modification while preserving the topology of the
geometry. One the one hand, it is based on the spatial coordinates
separation proposed in [17] and also in [18], and the suitable order
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Fig. 1. The laminated plate and coordinate system.
expansion given in [19–22] for the free-edge effects. On the other
hand, a mapping transformation is used for the parameterization
of the geometry to refer to a fixed configuration. It has been
already carried out in the framework of the reduced basis in [23].
It has been also addressed in [24] with triangular domains for ther-
mal problems and recently in [25] applied to non-straight lines for
axisymmetric structures made of isotropic material. These two lat-
ter references are related to the proper generalized decomposition
method. The present work aims at extending theses approaches to
composite plates with a hole which can be considered as a serious
challenging benchmark for the designer of layered structures.
Thus, a representative test is addressed to assess the reliability
and the effectiveness of the present method. The mapping transfor-
mation allows us to avoid complex integrations such as in [26].
Another way to solve this problem could be to use the fictitious
domain with a indicator function for the hole as in [27]. Neverthe-
less, we are particularly interested in the transverse stresses near
the hole. The representation of this indicator could influence the
accuracy of the results in this zone of interest. Thus, this method
is not chosen and we will ensure that the quality of the mesh
remains good in this zone.

In our approach, the displacements are written under the form
of a sum of products of bidimensional polynomials of (x, y), unidi-
mensional polynomials of z and two unidimensional functions of
the position of the hole XT ;YT . A piecewise fourth-order Lagrange
polynomial of z is chosen. A linear interpolation is used for the func-
tions of XT and YT . As far as the variation with respect to the in-
plane coordinates is concerned, a 2D eight-node quadrilateral FE
is employed. The deduced non-linear problem implies the resolu-
tion of four linear problems alternatively. This process yields to a
2D and three 1D problems. Moreover, the explicit solution with
respect to the hole position allows us to build a virtual chart in a
straightforward manner avoiding the use of numerous expensive
LW computations. This could be used to determine the influence
of the hole position on the strength failure as in [28]. It could be also
seen as a first step towards geometric optimization for laminates.

We now outline the remainder of this article. First, the
mechanical formulation is recalled. The parameterization of the
hole position requires a mapping transformation which is
described. Then, the iterative algorithm to solve the non-linear
problem introduced by the variables separation is detailed. The
FE discretization is also described. Numerical evaluations are
subsequently presented for one-layer and four-layer plate. The
behavior of the method is first presented and illustrated. Then, it
is assessed to capture local effects and 3D state of the stress, and
in particular the transverse stresses near the curved edge, by
comparing with reference model available in literature. Results of
a LW model issued from Carrera’s Unified Formulation [29] are
used. Interesting features near the curved free edge can be
emphasized even with involving very localized phenomenon.
2. Reference problem description: the governing equations

Let us consider a composite structure occupying the
domain V ¼ X�Xz with X ¼ ½�a=2; a=2� � ½�b=2; b=2� and
Xz ¼ ½�h=2;h=2� in a Cartesian coordinate ðx; y; zÞ. The plate is
defined by an arbitrary region X in the ðx; yÞ plane, located at the
midplane for z ¼ 0, and by a constant thickness h. See Fig. 1.

2.1. Constitutive relation

The plate can be made of NC perfectly bonded orthotropic lay-
ers. The constitutive equations for a layer k can be written as

rðkÞðzÞ ¼ CðkÞeðzÞ for z 2 ½zk; zkþ1� ð1Þ
where we denote the stress vector r, the strain vector e. zk is the
z-coordinate of the bottom surface of the layer k.

We have

CðkÞ ¼

CðkÞ
11 CðkÞ

12 CðkÞ
13 0 0 CðkÞ

16

CðkÞ
22 CðkÞ

23 0 0 CðkÞ
26

CðkÞ
33 0 0 CðkÞ

36

CðkÞ
44 CðkÞ

45 0

sym CðkÞ
55 0

CðkÞ
66

2
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ð2Þ

where CðkÞ
ij is the three-dimensional stiffness coefficients of the layer

ðkÞ.
2.2. The weak form of the boundary value problem

The plate is submitted to a surface force density t defined over a
subset CN of the boundary and a body force density b defined in V.
We assume that a prescribed displacement u ¼ ud is imposed on
CD ¼ @V � CN .

Using the above matrix notations and for admissible displace-
ment du 2 dU, the variational principle is given by:

find u 2 U such that:

�
Z
V
eðduÞT rdV þ

Z
V
duTbdV þ

Z
CN

duTtdC ¼ 0

8du 2 dU
ð3Þ

where U is the space of admissible displacements, i.e. U ¼
fu 2 ðH1ðVÞÞ3=u ¼ ud on CDg. We have also dU ¼ fu 2 ðH1ðVÞÞ3=
u ¼ 0 on CDg.
3. Application of the separated representation to plate with a
hole

In this section, we introduce the application of the variables
separation for composite plate analysis with an arbitrary hole loca-
tion. The coordinates of the hole center are considered as parame-
ters of the solution. The main idea consists in using a mapping to
refer to a fixed configuration. It has been already used in [25] for
parameterized geometry of axisymmetric structures made of iso-
tropic material, and also in [30] for cylindrical shell applications.
Moreover, the separated spatial representation [18] is considered
with a suitable degree of interpolation of the transverse function
for such structures as in [19].



Thus, the classical mechanical problem defined in Section 2 is
considered as a parameterized problem where the coordinates of
the hole center ðXT ;YTÞ is in a bounded interval I T ¼ I TX � I TY ¼
½Xm

T ; X
M
T � � ½Ym

T ; Y
M
T �. The superscripts m and M stand for minimum

and maximum, respectively. The solution of this problem for a
pointM of the structure depends on the values of these coordinates
and is denoted uðx; y; z;XT ;YTÞ.

3.1. The parameterized problem

The displacement solution u is constructed as the sum of N
products of separated functions (N 2 Nþ is the order of the
representation)

uðx; y; z;XT ;YTÞ ¼
XN
i¼1

gi
XðXTÞgi

YðYTÞ fiðzÞ � viðx; yÞ ð4Þ

where gi
XðXTÞ; gi

Y ðYTÞ; fiðzÞ and viðx; yÞ are unknown functions
which must be computed during the resolution process.

gi
XðXTÞ; gi

YðYTÞ; fiðzÞ and viðx; yÞ are defined on I TX ; ITY ;Xz and X
respectively. As this latter depends on the coordinates ðXT ;YTÞ, it
will be denoted XðXT ;YTÞ (see Fig. 2). The ‘‘�” operator in Eq. (4) is
Hadamard’s element-wise product. We have:

f i � vi ¼ vi � f i ¼
f i1ðzÞv i

1ðx; yÞ
f i2ðzÞv i

2ðx; yÞ
f i3ðzÞv i

3ðx; yÞ

2
664

3
775 with vi ¼

v i
1ðx; yÞ
v i

2ðx; yÞ
v i

3ðx; yÞ

2
64

3
75

f i ¼
f i1ðzÞ
f i2ðzÞ
f i3ðzÞ

2
664

3
775

ð5Þ

For sake of clarity, the body forces are neglected in the develop-
ments and the new problem to be solved is written as follows:

find u 2 Uext (Uext ¼ fu 2 ðH1ðV � I TÞÞ
3
=u ¼ ud on CD � I Tg)

such that

aðu; duÞ ¼ bðduÞ 8du 2 dUext ð6Þ

with

aðu; duÞ ¼
Z
XðXT ;YT Þ�Xz�IT

eðduÞTCeðuÞdXdXz dXT dYT

bðduÞ ¼
Z
CN�IT

duTtdCdXT dYT

ð7Þ

where XðXT ;YTÞ �Xz � I T is the integration space associated with
the geometric space domain XðXT ; YTÞ �Xz and the parameters
domain of the hole center coordinates I T . For the present work,
CN is the edge of the plate located at y ¼ b=2. At this stage, it should
Fig. 2. Mapping transformation.
be noted that the integration domain X depends on the coordinates
of the hole center ðXT ;YTÞ.

3.2. Introduction of a mapping transformation

As it is highlighted in the previous section, the integration
domain in Eq. (7) depends on the parameters XT ;YT involved in
the unknown function u. To overcome this issue, a mapping trans-
formation is carried out as for optimization problems or shell anal-
ysis. So, a transformation T XTYT ðX0Þ between the domain XðXT ;YTÞ
and the reference fixed domain X0 (cf. Fig. 2) is defined. The Jaco-
bian of this transformation appears in the integration, and the
strain has to be updated following this choice. The expression of
the left hand side of Eq. (6) can be written as

aðu; duÞ ¼
Z
XðXT ;YT Þ�Xz�IT

eðduÞTCeðuÞdXdXz dXT dYT

¼
Z
X0�Xz�IT

eðduðT XTYT ðX0ÞÞTCeðuðT ðX0ÞÞÞ

JXTYT
ðX0ÞdX0 dXz dXT dYT

ð8Þ

where JXTYT
ðX0Þ is the modulus of the determinant of the geometric

transformation Jacobian matrix.
For our application, it should be noted that the geometry will be

divided into NbArea areas. A domain decomposition Xp
0 is defined

from the initial one X0. In each subdomain, the geometrical trans-
formation remains affine (from Xp

XY to Xp
0, see Fig. 3). Indeed, the

integral in Eq. (8) must be split into integrals over each variable,
so the expression of JXTYT

ðX0Þ must be separated as well. It is an
important feature to keep the separability of the variable as it is
also noticed in [25]. Moreover, the area around the hole (red part
in Fig. 3) is chosen to be fixed to keep the quality of the mesh in
this area where out-of-plane stresses occur.

Thus, to express the strain in the reference configurationX0, it is
needed to introduce the Jacobian matrix of the geometric transfor-
mation. The coordinates associated to the reference frame Xp

0 and
the configuration Xp

XY will be denoted x; y and X;Y , respectively.
This matrix can be written as

JXp
0X

p
XY

¼
@X
@x

@X
@y

@Y
@x

@Y
@y

" #
ð9Þ

and the inverse of the Jacobian matrix is introduced:

JXp
0X

p
XY

h i�1
¼ jp11 jp12

jp21 jp22

" #
ð10Þ
Fig. 3. Division into NbArea areas.



Note that the Jacobian matrix is constant. And, it is diagonal in
our case due to the particular choice of the sub-domain Xp

0 (the ele-
ments remain rectangular), so jp12 ¼ jp21 ¼ 0, for p 2 f1; . . . ;NbAreag.

In each sub-domain Xp
0, the strain can be expressed with respect

to the reference frame with the introduction of the Jacobian of the
transformation following

eðuÞ ¼
XN
i¼1

gi
XðXTÞgi

YðYTÞ

jp11 f
i
1 v i

1;1

jp22 f
i
2 v i

2;2

ðf i3Þ
0
v i

3

ðf i2Þ
0
v i
2 þ jp22 f

i
3 v i

3;2

ðf i1Þ
0
v i
1 þ jp11 f

i
3 v i

3;1

jp22 f
i
1 v i

1;2 þ jp11 f
i
2 v i

2;1

2
6666666666664

3
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ð11Þ

where the prime stands for the classical derivative f 0i ¼
dfi
dz

� �
, and ðÞ;a

for the partial derivative. The dependance with respect to the space
coordinates is omitted.

3.3. Resolution of the parameterized problem

The expression of the strain Eq. (11) introduced in the problem
Eq. (6) drives to a non-linear parameterized problem that is solved
by an iterative process. First, we assume that a sum of m < N prod-
ucts of separated functions have been already computed. There-
fore, the trial function for the iteration mþ 1 is written as

umþ1ðx; y; z;XT ; YTÞ ¼ umðx; y; z;XT ; YTÞ þ gXðXTÞgYðYTÞfðzÞ � vðx; yÞ
ð12Þ

where gX ; gY ; f and v are the functions to be computed, and um is the
associated known sets at iteration m defined by

umðx; y; z;XT ;YTÞ ¼
Xn
i¼1

gi
XðXTÞgi

YðYTÞfiðzÞ � viðx; yÞ ð13Þ

The problem to be solved given in Eq. (7) can be written as

aðgX gY f � v; duÞ ¼ bðduÞ � aðum; duÞ ð14Þ

The test function becomes

dðgX gY f � vÞ ¼ dgX gY f � v þ gX dgY f � v þ gX gY df � v
þ gX gY f � dv ð15Þ

Introducing the test function defined by Eq. (15) and the trial
function defined by Eq. (12) into the weak form Eq. (14), the four
following equations to be solved can be deduced:

� for the test functions dgX ,
aðgY f � v gX ; gY f � v dgXÞ ¼ bðgY f � v dgXÞ
� aðum; gY f � v dgXÞ 8dgX ð16Þ

� for the test functions dgY ,
aðgX f � v gY ; gX f � v dgYÞ ¼ bðgX f � v dgY Þ
� aðum; gX f � v dgY Þ 8dgY ð17Þ

� for the test function df
aðgX gY v � f; gX gY v � dfÞ ¼ bðgX gY v � dfÞ
� aðum; gX gY v � dfÞ 8df ð18Þ

� for the test function dv
aðgX gY f � v; gX gY f � dvÞ ¼ bðgX gY f � dvÞ
� aðum; gX gY f � dvÞ 8dv ð19Þ
From Eqs. (16)–(19), a coupled non-linear problem is derived. A
fixed point method is chosen to solve it. Starting from an initial

function ~gð0Þ
X ; ~gð0Þ

Y ;~fð0Þ; ~vð0Þ
� �

, we construct a sequence

~gðkÞ
X ; ~gðkÞ

Y ;~fðkÞ; ~vðkÞ
� �

which satisfy Eqs. (16)–(19) respectively. For

each problem, only one unknown 1D or 2D function has to be
found, the three other ones are assumed to be known (from the
previous step of the fixed point strategy). So, the approach leads
to the process given in Algorithm 1. The fixed point algorithm is
stopped when the distance between two consecutive terms are
sufficiently small (Cf. [19]).

Algorithm 1. Present algorithm
for m ¼ 1 to Nmax do

Initialize ~gð0ÞY ;~fð0Þ; ~vð0Þ

for k ¼ 1 to kmax do

Compute ~gðkÞX from Eq. (16), ~gðk�1Þ
Y ;~fðk�1Þ; ~vðk�1Þ being

known

Compute ~gðkÞY from Eq. (17), ~gðkÞX ;~fðk�1Þ; ~vðk�1Þ being known

Compute ~fðkÞ from Eq. (18) (linear equation on Xz),
~gðkÞX ; ~gðkÞY ; ~vðk�1Þ being known

Compute ~vðkÞ from Eq. (19) (linear equation on X),
~gðkÞX ; ~gðkÞY ;~fðkÞ being known
Check for convergence

end for

Set gðmþ1Þ
X ¼ ~gðkÞX ; gðmþ1Þ

Y ¼ ~gðkÞY ; fðmþ1Þ ¼ ~fðkÞ;vðmþ1Þ ¼ ~vðkÞ

Set umþ1 ¼ um þ gmþ1
X gmþ1

Y fmþ1 � vmþ1

Check for convergence
end for
3.4. Finite element discretization

It should be noted that the initial weakform Eq. (6), Eq. (7)
involves multidimensional integrals. As the displacement is
assumed to be written under a separated representation (one 2D
and three 1D functions), it is needed to separate the calculation
of these integrals to achieve an efficient process in terms of compu-
tational cost. The three following sections are devoted to show
how the expression of the weakform (Eqs. (16)–(19)) can be
deduced under this suitable form. Then, the FE discretization can
be introduced.

To build the plate finite element approximation, a classical
finite element approximation in X0 and Xz for ðv; fÞ is introduced.
The elementary vector of degrees of freedom (dof) associated with
one element Xe of the mesh in X0 is denoted qve . The elementary
vector of dofs associated with one element Xze of the mesh in Xz

is denoted q f
e . The displacement fields and the strain field are

determined from the values of qve and q f
e by

ve ¼ Nxyqve ; Ee
v ¼ Bxyqve ;

fe ¼ Nzq
f
e ; Ee

f ¼ Bzq
f
e

ð20Þ

where

Ee
v
T ¼ v1 v1;1 v1;2 v2 v2;1 v2;2 v3 v3;1 v3;2½ �

Ee
f
T ¼ f 1 f 01 f 2 f 02 f 3 f 03

� �
The matrices Nxy;Bxy;Nz, Bz contain the interpolation functions,

their derivatives and the jacobian components.



As far as the functions gX ; gY are concerned, a piecewise linear
interpolation is considered in I T

gXðXTÞ ¼ NgX ðXTÞqgX ; gY ðYTÞ ¼ NgY ðYTÞqgY ð21Þ

where NgX and NgY are the matrices of the interpolation functions,
qgX ;qgY are the associated degrees of freedom.

3.5. Finite element problem to be solved on X0

For the sake of simplicity, the functions ~fðkÞ; ~gðkÞ
X ; ~gðkÞ

Y which are

assumed to be known, will be denoted ~f; ~gX ; ~gY , respectively. And
the function ~vðkÞ to be computed will be denoted v. The strains
in Eq. (19) are defined as

eð~f � vÞ ¼ Rzð~f ÞEXXY
v ¼ Rzð~f ÞT eEv ð22Þ

with

Rzð~f Þ ¼

0 ~f 1 0 0 0 0 0 0 0

0 0 0 0 0 ~f 2 0 0 0

0 0 0 0 0 0 ~f 03 0 0

0 0 0 ~f 02 0 0 0 0 ~f 3
~f 01 0 0 0 0 0 0 ~f 3 0

0 0 ~f 1 0 ~f 2 0 0 0 0

2
66666666664

3
77777777775

ð23Þ

T e contains the components of the inverse of the jacobian
matrix, namely jpii; i ¼ 1;2. It can be deduced from Eq. (11). It is
not detailed here as it is only used for convenience in the expres-
sion of the strain and one integral. In practice, the problem has
to be written in a more suitable way as it is described below.

The variational problem defined on X0 from Eq. (19) is

XNbArea
p¼1

Z
Xp
0

dET
vk

p
zXYð~f ; ~gX ; ~gY ÞEv

h i
dXp

0

¼
XNbAreaPres

p¼1

Z
Cp
N

tpXTYT
dvTtzð~f ÞdSp

�
XNbArea
p¼1

Z
Xp
0

dET
vr

p
zXYð~f ; ~gX ; ~gY ;umÞ

h i
dXp

0 ð24Þ

where

kp
zXYð~f ; ~gX ; ~gYÞ ¼

X
16i63
16j63
i6j

kzð~f Þ � Uij

Z
XT

~g2
XT

p
XijdXT

Z
YT

~g2
YT

p
YijdYT ð25Þ

and

tzð~f Þ ¼
Z
Xz

~f � tdz

rp
zXYð~f ; ~gX ; ~gY ;umÞ ¼

Z
XT

Z
YT

Z
Xz

~gX~gY T T
eRzð~f Þ

T
CeðumÞ

h i
dzdXT dYT

tpXTYT
¼

Z
XT

~gXT
p
X11dXT

Z
YT

~gY dYT

ð26Þ

kzð~f Þ and the 9� 9 matrix Uij are defined by

kzð~f Þ ¼
Z
Xz

Rzð~f Þ
T
CRzð~f Þdz

Uij ¼
Hij Hij Hij

Hij Hij Hij

Hij Hij Hij

2
64

3
75 with ðhijÞkl

¼ 1 if k ¼ i; l ¼ j

or k ¼ j; l ¼ i

¼ 0; otherwise

8><
>:

ð27Þ
The expression of Tp
Xij and Tp

Yij are given in Appendix A.

It should be noted that the expression of kp
zXY ð~f ; ~gX ; ~gYÞ intro-

duced in Eq. (25) is split into 6 matrices. It allows us to obtain a
separated representation which is particularly suitable to the pre-
sent formulation.

Note that rp
zXY is also expressed under a separated form to keep

the computational efficiency of the method. For this purpose, the
same principle as the computation of kp

zXY is performed. It is
detailed in Appendix B.

The introduction of the finite element approximation Eq. (20) in
the variational Eq. (24) leads to the linear system

KzXYð~f ; ~gX ; ~gY Þqv ¼ Rtð~f ; ~gX ; ~gY Þ �Rvð~f ; ~gX ; ~gY ;umÞ ð28Þ

where

� qv is the vector of the nodal displacements, associated with the
finite element mesh in X0,

� KzXYð~f ; ~gX ; ~gYÞ is the mechanical stiffness matrix obtained by
summing the elements’ stiffness matrices

Ke
zXYð~f ; ~gX ; ~gYÞ ¼

R
Xe

BT
xyk

p
zXY ð~f ; ~gX ; ~gY ÞBxy

h i
dXe

� Rtð~f ; ~gX ; ~gYÞ �Rv ð~f ; ~gX ; ~gY ;umÞ is the equilibrium mechanical
residual obtained by summing the elements’ load vectorsR
Ce
NT

xytzð~f ÞdCe and
R
Xe

BT
xyr

p
zXY ð~f ; ~gX ; ~gY ;umÞdXe (associated to

the known terms)

3.6. Finite element problem to be solved on Xz

As in the previous section, the known functions ~vðk�1Þ; ~gðkÞ
X ; ~gðkÞ

Y

will be denoted ~v; ~gX ; ~gY , and the functions ~fðkÞ to be computed will
be denoted f. The strain in Eq. (18) is defined as

eð~v � f Þ ¼ RXXY
xy ð~vÞEf ¼ T RR

X0
xy ð~vÞEf ð29Þ

where T R is the transformation of the derivatives from Xp
0 to Xp

XY ,
and

RX0
xy ð~vÞ ¼

~v1;1 0 0 0 0 0
0 0 ~v2;2 0 0 0
0 0 0 0 0 ~v3

0 0 0 ~v2 ~v3;2 0
0 ~v1 0 0 ~v3;1 0
~v1;2 0 ~v2;1 0 0 0

2
666666664

3
777777775

ð30Þ

As in the previous section, T R is only introduced by
convenience.

The variational problem defined on Xz from Eq. (18) is

Z
Xz

dET
f kxyXYð~v ; ~gX ; ~gY ÞEf dz ¼

Z
Xz

dfTtxyXYð~v ; ~gX ; ~gY Þdz

�
Z
Xz

dET
f rxyXYð~v; ~gX ; ~gY ;umÞdz ð31Þ

where kxyXYð~v ; ~gX ; ~gY Þ can be expressed under the following sepa-
rated form:

kxyXYð~v ; ~gX ; ~gYÞ ¼
X
16i63
16j63
i6j

XNbArea
p¼1

kp
xyij

ð~vÞ
Z
XT

~g2
XT

p
Xij dXT

Z
YT

~g2
YT

p
Yij dYT ð32Þ

kp
xyij

ð~vÞ is obtained by integrating the functions ~v i; i�f1;3g over

each area defined in Fig. 3 and depends on the three-dimensional
stiffness coefficients.



We also define:

txyXYð~v ; ~gX ; ~gYÞ ¼
XNbArea
p¼1

tpXTYT

Z
Cp
N

~v � tdxp

rxyXYð~v ; ~gX ; ~gY ;umÞ ¼
XNbArea
p¼1

Z
Xp
0

Z
IT

~gX ~gY RX0
xy ð~vÞ

TT T
R CeðumÞð Þ

h i
dXT dYT dX

p
0

ð33Þ

The term rxyXYð~v ; ~gX ; ~gY ;umÞ is given under a short form for con-
venience reason, but it can also be written under a separated rep-
resentation following the same decomposition as in Eq. (32).

The introduction of the finite element discretization Eq. (20) in
the variational Eq. (31) leads to the linear system

KxyXYð~v ; ~gX ; ~gY Þq f ¼ Rftð~v; ~gX ; ~gYÞ �Rf ð~v ; ~gX ; ~gY ;umÞ ð34Þ

where

� q f is the vector of degree of freedom associated with the F.E.
approximations in Xz.

� KxyXYð~v ; ~gX ; ~gYÞ is obtained by summing the elements’ stiffness
matrices:
Ke
xyXYð~v ; ~gX ; ~gY Þ ¼

Z
Xze

BT
zkxyXYð~v ; ~gX ; ~gY ÞBz

h i
dze ð35Þ

� Rftð~v ; ~gX ; ~gYÞ �Rf ð~v ; ~gX ; ~gY ;umÞ is a equilibrium residual, it is
obtained by the summation of the elements’ residual vectors
coming from the right hand side of Eq. (33).

3.7. Finite element problem to be solved on I T

In this part, we will focus on the computation of the unknown

function ~gðkÞ
X , denoted gX , the other ones ~vðk�1Þ;~fðk�1Þ; ~gðk�1Þ

Y being

known. They are denoted ~v;~f and ~gY , respectively.
The problem Eq. (16) can be solved in a straightforward manner

following:

KxyzYð~v ;~f ; ~gY Þ gX ¼ RgX tð~v;~f ; ~gYÞ � RgX ð~v ;~f ; ~gY ;umÞ ð36Þ

where we have

� the stiffness matrix
KxyzYð~v ;~f ;~gYÞ¼
XNbArea
p¼1

X
16i63
16j63
i6j

Ep
zX ijð~f ; ~vÞ

Z
YT

~g2
Y T

p
Yij dYT

� �
Tp
Xij

���
XT

ð37Þ

with

Ep
zX ijð~f ; ~vÞ ¼

Z
Xp
0

~ET
v kzð~f Þ � Uij

h i
~Ev dXp

0 ð38Þ

kzð~f Þ and Uij are given in Eq. (27).
� the equilibrium residual
RgX tð~v;~f ; ~gYÞ ¼
XNbArea
p¼1

Z
Cp
N

~vTdxp Tp
X11

��
XT

" #
tzð~f Þ

Z
YT

~gY dYT ð39Þ

RgX ð~v ;~f ; ~gY ;umÞ

¼
XNbArea
p¼1

Z
YT

Z
Xp
0

Z
Xz

~gY
~ET
vT

T
eRzð~f Þ

T
CeðumÞ

h i
dzdXp

0 dYT

ð40Þ
RgX ð~v;~f ; ~gY ;umÞ is built from the known function um. It is com-
puted in the same way as KxyzY to deduce a separated
representation.

The computation of the unknown function ~gðkÞ
Y is given in

Appendix C. We can notice that the computational cost of this

problem is very low once the problem associated to ~gðkÞ
X is solved.

In fact, the computational cost comes mainly from the evaluation

of the 6� NbArea scalar values Ep
zX ijð~f ; ~vÞ which have been already

computed and stored in the ~gðkÞ
X problem.
4. Numerical results

This section is devoted to the assessment of the present
approach for static response of composite plates with a hole. The
example involved in this work is a challenging test in the modeling
of such structures. The separated representation has already
shown interesting features in the framework of free-edge effects
(see [22]) and also for parametric geometry [25]. Thus, it is inter-
esting to extend the method to a variable geometry for anisotropic
structure where high stress gradient occurs.

In the numerical examples, an eight-node quadrilateral FE
based on the classical Serendipity interpolation functions is used
for the unknowns depending on the in-plane coordinates. For the
unknowns depending on the z-coordinate, the displacement is
described by a fourth-order interpolation as it is justified in [19].
A Gaussian numerical integration with 3 � 3 points is used to eval-
uate the elementary matrices. As far as the integration with respect
to the transverse coordinate is concerned, an analytical integration
is performed.

The results are compared with a fourth-order LayerWise model
(denoted LD4) referring to the systematic work of Carrera and his
‘‘Carrera’s Unified Formulation” (CUF), (see [31,32]). It can be con-
sidered as reference results. Firstly, the behavior of the method is
illustrated on a one layer plate. A convergence study is carried
out. Then, the capabilities of the approach are assessed on a 4-
layer cross-ply structure and in particular, the accuracy of the
out-of-plane stresses occurring in the vicinity of the hole is shown.

Note that the use of subdomains with a fixed area around the
hole allows us to have a simple translation in the geometrical
transformation described in Section 3.2. So, the size of the ele-
ments remains unchanged near the zone of interest and no addi-
tional error is introduced by the mapping transformation in this
region, as the mesh will not be distorted. However, the usual errors
hold.

4.1. Description of the test case

A plate with a circular hole subjected to a uniaxial tension in the
longitudinal direction is considered. The angle h is defined from the
x� axis (see Fig. 4). The test is described below:

geometry: rectangular composite cross-ply plate ½0�� or
½0�=90�=90�=0�� the radius of the hole is R ¼ 3 m. All layers have
the same thickness. h ¼ 2 m, a ¼ 20 m, b ¼ 40 m.
boundary conditions: clamped on one side (y ¼ �b=2) and
subjected to a constant pressure qyðx; b=2Þ ¼ q0

material properties: EL ¼ 25 GPa; ET ¼ 1 GPa; GLT ¼
0:2 GPa;GTT ¼ 0:5 GPa; mLT ¼ mTT ¼ 0:25 where L refers to the
fiber direction, T refers to the transverse direction.
mesh: the whole plate is meshed. Ntheta ¼ 10 elements on a
quarter of the hole. The size of the central part is ahole ¼ 10 m
(Fig. 3).



number of dofs: mesh 1: one-layer case Ndofxy ¼ 5616 and
Ndofz ¼ 12� NC þ 3 ¼ 15mesh 2: our-layer case
Ndofxy ¼ 16;056 and Ndofz ¼ 12� NC þ 3 ¼ 51
reference values: LD4 (one-layer case NdofLD4xy ¼ 28;080;
four-layer case NdofLD4xy ¼ 272;952)

If not mentioned, the dimensional quantities are expressed in SI
units.
4.2. The one-layer case

The approach is first assessed on a one-layered plate where the
coordinates of the hole center belongs to the interval
I T ¼ ½�4;4� � ½�12;12�. It allows us to consider a wide range of
variation for the position of the hole. A convergence study is per-
formed with respect to the number of elements associated to the
functions gX and gY , denoted NDFXYT . For a fixed value of XT ;YT , a
local error indicator between a reference solution uref and a sepa-
rated variables solution un of order n is introduced as

�n ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aerrðun � uref ;un � uref Þ

aerrðuref ;uref Þ

s

with aerrðu;vÞ ¼
Z
X�Xz

eðvÞTCeðuÞdXdXz

ð41Þ

The variation of this error indicator with respect to the number
of the iterations is represented on Fig. 5 for
ðXT ¼ �4;YT ¼ �12Þ; ðXT ¼ 0;YT ¼ 0Þ; ðXT ¼ 4;YT ¼ 12Þ and for dif-
ferent values of NDFXYT . It corresponds to the bounds of the interval
for the variation of the position of the hole center. The trend of
these three configurations is rather similar. Thus, the influence of
NDFXYT is not significant for this range. Moreover, we notice that
the configuration with the hole at the center of the plate (namely
X0) drives to the lowest error rate. In the following, 65 terms are
built to obtain the solution.

For further investigations, the contribution of each 4-uplets in

the total strain energy DEðmÞ ¼ aerr ðum ;umÞ�aerrðum�1 ;um�1Þ
aerr ðuN ;uNÞ is shown in

Fig. 6 for the three locations of the hole. The main contributions
are brought by the first 4-uplets, in particular for ðXT ¼ 0;YT ¼ 0Þ
where 99% of the energy is included in the first 5 couples.
Nevertheless, depending on the configuration, some modes with
a high number can have significant contributions. For
ðXT ¼ �4;YT ¼ �12Þ, 46 couples are required to obtain 95% of the
total energy (the 47th couple involves 5%). Thus, each term of
Fig. 4. Plate under uniaxial tension.
the solution will contribute in a different way for a given configu-
ration as wide modification of the geometry of the plate could
occur. To illustrate these discrepancies, a local error rate on some
maximum values for u3;r22 and r33 is showed in Fig. 7. It can be
inferred from this figure that the accuracy of the results decreases
at the bounds of the study domain for XT ;YT . Nevertheless, the
error rate remains less than 2% for r22 (corresponds to the direc-
tion of the traction). For the transverse normal stress, this error
is about 15% as it is the most difficult quantity to improve, but it
is localized near the bounds of the domain ½�4;4� � ½�12;12�.

To illustrate the previous results, the 24 first normalized func-
tions v i

1ðx; yÞ;v i
2ðx; yÞ;v i

3ðx; yÞ, the 32 first normalized

f i1ðzÞ; f
i
2ðzÞ; f

i
3ðzÞ functions are shown in Figs. 8–13. For the func-

tions v i
2ðx; yÞ in the direction of the traction, the first 5 modes

are global. It corresponds to the main contribution to the total
strain energy. The corresponding correction in the transverse
direction x is localized in an area near the hole over the whole
width of the plate. Due to the type of solicitation, the associated
transverse functions (cf. Figs. 11–13) are classically constant

through the thickness for f i1; f
i
2 and linear for f i3 (Poisson effect).

We also notice local modes. For instance, corrections all around
of the circumference of the hole or in the vicinity of this one are
obtained with mode 9 and 20 for both v1 and v2. The distribution

of the associated f ijðzÞ functions become more complex. Thus, the
expression of the solution requires high-order z-expansion terms
due to the presence of the hole.

The functions gi
XðXTÞ and gi

Y ðYTÞ associated to the location of the
hole are also given in Fig. 14. They are not similar as the influence
of the hole position is not the same in the two directions. We also
notice a higher gradient of this function near the bound of the
interval, especially for gi

XðXTÞ.
To assess the capability of the method, the distribution of r22

from the hole to the free edge at the middle of the layer is shown
in Fig. 15(a). It is compared with the results from LD4 model for
three different locations of the hole. The results are in very good
agreement with the reference solution. The high stress gradient
near the hole is well captured regardless the configuration. Finally,
the approach allows us to compute with accuracy for a low compu-
tational cost the distribution of the maximal value of r22 with
respect to the hole location as an explicit solution is obtained in
this work. It is represented in Fig. 15(b). It can be noticed that
Fig. 5. Energy error for different number of elements associated to gXðXT Þ and
YðYT Þ � XT 2 ½�4;4� and YT 2 ½�12;12� � ðXT ¼ �4;YT ¼ �12Þ; ðXT ¼ 0;YT ¼ 0Þ;
ðXT ¼ 4;YT ¼ 12Þ.
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Fig. 6. Contribution of each couple to the total strain energy – XT 2 ½�4;4� and YT 2 ½�12;12� – 65 couples.
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Fig. 8. Distribution of v i
1ðx; yÞ.

Fig. 9. Distribution of v i
2ðx; yÞ.



Fig. 10. Distribution of v i
3ðx; yÞ.
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Fig. 11. Distribution of f i1ðx; yÞ.
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Fig. 12. Distribution of f i2ðx; yÞ.
the stress concentration is more sensitive to the hole location in
the width direction of the plate, as expected. In a classical
approach, numerous computations are required to build this type
of curve, as one point corresponds to one F.E. analysis.
4.3. Four-layer plate

In this section, a four-layer ½0�=90�=90�=0�� plate is considered
with I T ¼ ½�4:5;4:5� � ½�13;13�. The choice of this new domain
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Fig. 13. Distribution of f i3ðx; yÞ.
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Fig. 14. Distribution of gi
XðXT Þ (left) and gi

Y ðYT Þ (right).
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Fig. 16. Reference mesh – 4 layers.
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Fig. 18. Distribution of r22 (left) and �r33 (right) along the thickness – 4 layers –
XT ¼ �4; YT ¼ �12.
comes from the previous study on a one-layer structure. The suit-
able mesh is shown in Fig. 16. The convergence study is not given
for brevity reason. 75 4-uplets are used to recover the solution. The
method is now assessed on the local results near the hole. For this
purpose, the distributions of the displacements, the in-plane stress
r22, the transverse stresses through the thickness for XT ¼ �4 and
YT ¼ �12 are shown in Figs. 17–19, respectively. This hole position
is chosen as it is one of the most difficult configuration. The results
of the present approach are in very good agreement with the LD4
model. The error rate on u1 seems high but the value scale is about
10�8. A zig-zag effect occurs for the transverse displacement and it
would be impossible to capture this distribution with both classi-
cal but also higher-order ESL models. Transverse stresses fulfill
the continuity requirement at the layer interface (see Fig. 19).
For the transverse normal stress, the highest variation occurs near
the interface layer 0�=90� (see Fig. 19 left).

For further assessment, the distributions of rhh;rzz and rhz

along the circumference of the hole (one quarter) at the 0�=90�

interface are given in Fig. 20. The accuracy of the present method
is very good, and the different areas subjected to interlaminar
compression or tension are well-identified, in particular for the
transverse normal stress. This aspect could be of paramount
importance in the prediction of the failure of the structure.
Finally, the capability of the method to capture the steep stress
gradient near the curved edge is illustrated in Fig. 21. The distri-
bution of the transverse stresses r33 and r13 at the 0�=90� inter-
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Fig. 17. Distribution of u1 (left), u2 (middle) and u3 (right
face layer along the x axis shows the local effect that is well-
represented when compared to the quasi-3D LD4 model. We also
notice that the stress concentration factor is accurately predicted
(cf. Fig. 21 left).
4.4. Localized stress near the hole for the 4-layer plate

In this last example, the thickness of the plate is decreased
(h ¼ 0:5) to localize the steep stress gradient near the hole. 115
couples are needed to recover the solution with accuracy. Distribu-
tions of stresses along the x axis at the bi-material interface for two
configurations are given in Fig. 22. The levels of the transverse
stresses and the stress concentration factor are well-estimated
despite the high localization of the phenomenon near the hole
and also the wide range of stresses. The efficiency of the method
is proved for this discriminating test case.

Thus, the present approach allows us to provide 3D results con-
fined in a small region, without the use of numerous 3D FE analy-
sis. Indeed, the obtained solution with geometrical parameters
allows us to have in a straightforward manner the displacements
or stresses for any hole locations. Moreover, the solutions requires
the resolution of only one 2D and three 1D problems, that is less
expensive than 3D or LW analysis. For instance, the LD4 model
requires 272,952 dofs while the present method involves 16,056
dofs for the 2D problem with 4 layers.
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) along the thickness – 4 layers – XT ¼ �4; YT ¼ �12.
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Fig. 19. Distribution of r23 (left) and r33 (right) along the thickness – 4 layers – XT ¼ �4;YT ¼ �12.
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Fig. 21. Distribution of r22 (left), r33 (middle), and r13 (right) from the free edge to the hole at the 0�=90� interface layer – 4 layers – XT 2 ½�4:5;4:5� and
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5. Conclusion

In this work, a variable separation approach is proposed for the
modeling of composite plate with arbitrary hole locations. The res-
olution of the geometrical parameterized problem is based on a
mapping transformation of the sub-domains of the plate. A 8-
node FE for the in-plane approximation is used for all unknowns.
A fourth-order LW description of the thickness approximation is
chosen. The approach has been studied and assessed on various
laminates and geometries.

By comparing with higher-order LW models with a fixed loca-
tion of the hole, it can be inferred from the results that the present
approach has the capability to capture the steepest stress gradient
near the curved free-edge. Indeed, the accuracy of the transverse
stresses through the thickness at the hole is very good. Thus,
quasi-3D results are provided. Moreover, the approach allows us
to determine the influence of the hole position on the stresses or
displacements as an explicit solution is built. Classically, it requires
numerous expensive computations of LW or 3D models. Thus, the
computational gain could be important. And, this one increases
when the number of layers increases. The storage capacity
involved in the present study is also reduced owing to the variables
separation allowing to decrease the dimension of the problem.
Therefore, this method seems to have very attractive features in
the modeling of such a challenging test case for laminates.

Appendix A. Expression of Tp
Xij;T

p
Yij

Tp
X11 ¼ 1

jp11
; Tp

X12 ¼1; Tp
X13 ¼ 1

jp11
; Tp

Y11 ¼ 1
jp22
; Tp

Y12 ¼ 1
jp22
; Tp

Y13 ¼1

Tp
X22 ¼ jp11; Tp

X23 ¼1; Tp
X33 ¼ 1

jp11
; Tp

Y22 ¼ 1
jp22
; Tp

Y23 ¼1; tYp
33 ¼ jp22

ðA:1Þ

Appendix B. Finite element problem to be solved on 0

This section is devoted to the calculation of rp
zXY ð~f ; ~gX ; ~gY ;umÞ in

Eq. (26) under the product of one 2D and three 1D integrals. This
term comes from the m known 4-uplets previously built in the
greedy algorithm. Thus, we can define:

rp
zXYð~f ; ~gX ; ~gY ;umÞ ¼

Xm
k¼1

rp
zXYð~f ; ~gX ; ~gY ;ukÞ

¼
Xm
k¼1

Z
XT

Z
YT

Z
Xz

~gX~gY T T
eRzð~f Þ

T
CeðukÞ

h i
dzdXTdYT

ðB:1Þ

To separate the functions depending of the 5 unknowns
ðx; yÞ; z;XT ;YT , we introduce:

kpk
zXY

~f ; f k; ~gX ; gk
X ; ~gY ; gk

Y

� �
¼

X
16i63
16j63
i6j

kzð~f ; f kÞ � Uij

Z
XT

~gXgk
XT

p
XijdXT

Z
YT

~gYgk
YT

p
YijdYT ðB:2Þ

with

kzð~f ; f kÞ ¼
Z
Xz

Rzð~f Þ
T
CRzðf kÞdz ðB:3Þ

The matrix Uij is defined in Eq. (27), Tp
Xij and Tp

Yij are given in
Appendix A. The superscripts p and k are the number of the sub-
domain and the number of the 4-uplets, respectively.

Finally, rp
zXYð~f ; ~gX ; ~gY ;ukÞ can be expressed as:

rp
zXYð~f ; ~gX ; ~gY ;ukÞ ¼ kpk

zXY
~f ; f k; ~gX ; gk

X ; ~gY ; gk
Y

� �
Ek
v ðB:4Þ
Appendix C. Finite element problem to be solved on IT for
gY ðYTÞ

The computation of the unknown function ~gðkÞ
Y , denoted gX , is

described below, the other ones ~vðk�1Þ;~fðk�1Þ; ~gðkÞ
X being known. They

are denoted ~v;~f and ~gX , respectively.
The problem Eq. (17) can be solved in a straightforward manner

following:

KxyzXð~v ;~f ; ~gXÞ gY ¼ RgY tð~v;~f ; ~gXÞ � RgY ð~v;~f ; ~gX ;umÞ ðC:1Þ

where we have

� the stiffness matrix
KxyzXð~v ;~f ; ~gXÞ ¼
XNbArea
p¼1

X
16i63
16j63
i6j

Ep
zX ijð~f ; ~vÞ

Z
XT

~g2
X T

p
Xij dXT

� �
Tp
Yij

���
YT

ðC:2Þ

Ep
zX ijð~f ; ~vÞ and kzð~f Þ;Uij are given in Eqs. (38) and (27),

respectively.
� the equilibrium residual
RgY tð~v;~f ; ~gXÞ ¼
XNbArea
p¼1

Z
Cp
N

~vT
Z
XT

~gX
1
jp11

dXT


 �
dxp

" #
tzð~f Þ ðC:3Þ

RgY ð~v;~f ; ~gX ;umÞ is built from the known function um. It is com-
puted in the same way as KxyzX .
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