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1. Introduction

Piezoelectric material can convert electrical energy into mechanical energy and vice-versa. It is nowadays widely used for
both active and passive vibration control of flexible structures. In active control, a structure is provided with a set of pie-
zoelectric patches as sensors for detecting the vibration and some piezoelectric patches as actuators for changing the
structural response of the system. These piezoelectric sensors and actuators are coupled together by a controller to suitably
analyze the voltage signals from the piezoelectric sensors and reduce the undesired vibrations of the structure by applying
the appropriate voltage to the actuators [1]. Active control not only requires high-voltage amplifiers to drive the piezo-
electric actuators, but also exhibit instability due to spillover effects [2] of uncontrolled eigenmodes of the vibrating
structure. The passive control is achieved by shunting the suitable electric circuits to piezoelectric patches bonded to the
vibrating structure. Piezoelectric patches transform the mechanical vibration energy to electrical energy [3]. The trans-
formed electrical energy can be dissipated into heat energy by shunt electric circuits. Piezoelectric patches shunted with
passive electrical networks can be attached to a host structure for reduction of structural vibrations. In contrast to active
control, this approach guarantees the stability of the system. Moreover, the later approach has low complexity in
implementation.

The passive vibration control via piezoelectric materials which is frequently called ‘‘shunted piezoelectric damping’’, was
firstly presented by Hagood and Flotow [4]. Due to its simplicity, lightness, and small size, the shunted piezoelectric
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technique has been widely studied by many researchers. Becker et al. [5] presented a finite element formulation for nu-
merical treatment of shunted damped structures. In the finite element formulation of these researchers, the piezoelectric
coupling effects of the patches as well as the electrical dynamics of the connected passive electrical circuits are incorporated.
In this reference, the damping ratios are determined from the eigenvalue problem corresponding to the coupled model
containing piezoelectric structure and passive electrical circuit. The effects of parameters like the passive electrical network
and the variation of the patch thickness on modal damping ratios have been studied by these researchers. Ducarne et al. [6]
introduced a strategy for placement and dimension optimization of shunted piezoelectric patches for vibration reduction.
The procedure of these researchers is based on the maximization of the modal electro-mechanical coupling factor of the
mechanical vibration mode to which the shunt is tuned. Thomas et al. [7] investigated the passive reduction of structural
vibration by means of two classical resistive and resonant shunted piezoelectric patches. They proposed closed-form so-
lutions to systematically estimate the performances of the piezoelectric shunts in the attenuation of free and forced vi-
brations of the elastic host structures. Caruso [8] analyzed and compared the vibration shunted damping performance of
elastic structures considering three different electric circuits. He also determined the optimal values of the electric com-
ponents belonging to each shunt circuit, taking into account the inherent structural damping of host vibrating structures.
Park et al. [9] studied the vibration control of plates with shunted piezoelectric dampers. In this reference, the governing
equations of motion are derived by employing the classical laminate plate theory and Hamilton’s principle. Park et al. va-
lidated their theoretical formulation experimentally for simply supported aluminum plates. Delpero et al. [10] proposed a
robust method for the measurement and prediction of loss factor in the piezoelectric shunted damping. The method of these
researchers is based on the analysis of the dynamic response of the structure when the piezoelectric patches are connected
to a resonant shunt circuit. Vasques [11] improved the passive shunt damping performance of a two-layered resonant-
shunted piezo-elastic smart beam structure using modal piezoelectric transducers with shaped electrodes. They employed a
one-dimensional coupled electromechanical analytical model based on equivalent single-layer Euler–Bernoulli beam model
to design modal and uniform electrodes of piezoelectric transducers. Alaimo et al. [12] presented a one-dimensional finite
element method for active and passive vibration damping of layered piezoelectric beams. The model of these researchers is
based on the first-order shear deformation beam theory. In order to express the problem in terms of the mechanical
variables, Aliamo and colleagues employed a preliminary analytical condensation of the electric state to the mechanical
state. In this reference, the finite element model has been formulated in the frame of state-space approach and its efficiency
has been evaluated for both active and passive vibration damping problems. Larbi et al. [13] used the piezoelectric elements
connected with resonant shunt circuits, for the vibration damping of some specific resonance frequencies of the double
laminated panels with viscoelastic core. Taking into account the frequency dependence of the viscoelastic material, they
proposed a finite element formulation for the fully coupled visco-electro-mechanical-acoustic system. To solve the problem
at a lower cost, Larbi and colleagues used a modal reduction approach. Park and Han [14] studied the sensitivities of
damping performance with respect to system parameters for three types of passive shunted piezoelectric. They selected a
loss factor as a performance index for the damping performance of each type of shunted piezoelectric. They also evaluated
the damping performance degradation varying temperature conditions. Behrens et al. [15] introduced a current flowing
controller as an alternative method for multiple mode piezoelectric shunt damping. The proposed piezoelectric shunt circuit
which requires less resistors, capacitors and inductors, can also damp multiple modes using a single piezoelectric
transducer.

In order to achieve higher shunted piezoelectric damping performances, the piezoelectric patches should be made of
several layers of different piezoelectric materials. Although this conventional type of design may provide higher damping
performances, it has several disadvantages. In these types of piezoelectric transducers, adhesive epoxy resin is usually used
to bond the piezoelectric layers, which causes high stress concentrations at the layer interfaces. These stress concentrations
lead to the initiation and propagation of micro-cracks near the interfaces of two bonded piezoelectric layers. Such draw-
backs reduce lifetime and reliability of these structures. The main drawbacks of the conventional piezoelectric transducers
can be overcome by using FGPMs. FGPMs are a kind of piezoelectric materials whose mechanical and electrical properties
vary continuously in one or more directions [16]. The aim of this paper is to evaluate the performance of shunted FGPM
damping for vibration control of laminated composite beams. A refined Sinus beam finite element is employed for static,
free vibration and transient dynamic response of FGPM beams. To this end, the governing differential equations of motion
are firstly derived using Hamilton’s principle. The resulting system of equations are also reorganized to take into account the
addition of the shunted piezoelectric configurations. A simple finite element model is used for solving the governing
equations. The proposed beam element is a three-nodded element which satisfies the continuity conditions between layers
for displacements, transverse shear stress and the free conditions at the top and bottom surfaces of the beam. Moreover, the
computational cost of the present element is very low in comparison with the available layer-wise beam and plate/shell
theories. It has four independent generalized displacements. The employed element is based on the Sinus model kinematics
introduced in Touratier [17]. Then, it has been extended to take into account the interlaminar continuity of the transverse
shear stresses in Polit and Touratier [18] for plates, and in Dau et al [19] for shells. The coupling with the piezoelectric effect
is carried out in Ossadzow-David and Touratier [20], and Fernandes and Pouget [21] using an analytical approach. The
original Sinus model has been enriched in Vidal and Polit [22] by introducing a layer refinement in the kinematics, and then
extended to thermal (Vidal and Polit [23]) and piezoelectric ([16,24]) effects. In the present study, it is intended to extend
these last works to FGPM shunt damping of laminated composite beams. It is assumed that all material properties of FGPM
transducers are variable along the thickness direction. Through the numerical examples, the effects of the Effective
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Fig. 1. Geometry of laminated beam passively controlled by the different FGPM shunt circuits.
Electromechanical Coupling Coefficients (EEMCCs), electric shunt circuits and material gradient composition of FGPM
transducers on the shunted damping performance are assessed and discussed. The optimal values of the electric compo-
nents belonging to each shunt circuit are numerically determined. Various results are presented in order to validate and
illustrate the efficiency of the proposed refined Sinus finite element model. The damping performance of the shunted FGPM
is investigated and assessed for different electric circuits connected to electrodes.
2. Mathematical formulations

2.1. Basic equations

The laminated beam of the present study has a rectangular uniform cross section of length L, width b, height h, and is
made of Nl layers either completely or in part constituted of electroded FGPMs. The FGPM layers of the laminated beam are
poled along the thickness direction (x3) with an electrical field applied parallel to this polarization. As shown in Fig. 1, four
different circuits are shunted to the FGPM layers: R shunt, R-L shunt, R-LIIC shunt and RIIL shunt. In this figure, V denotes the
voltage between the electrodes and Q is the electric charge in one of the electrodes. The overhead dot denotes the dif-
ferentiation with respect to time. R, L and C denote the value of resistance, inductance and external capacity of the shunt
circuit, respectively. The considered Cartesian coordinate system is shown in Fig. 2.

In a smart laminated beam with small width, the following assumptions are made:

σ σ σ σ≅ ≅ ≅ ≅ ≅ ( )( ) ( ) ( ) ( ) ( )E0, 0, 0, 0, 0 1k k k k k
22 33 12 23 2

Using the conditions (1), the reduced linear constitutive equations of the kth FGPM layer can written as
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11 13 is the elastic stress vector and { }ε ε γ=( ) ( ) ( )k k k T

11 13 the elastic strain vector, { }=( ) ( )E Ek k
3 the electric

field vector and { }=( ) ( )D Dk k
3 is the electric displacement vector. ¯( )c k , ¯( )e k and χ̄( )k are the reduced elastic constitutive matrix,

the piezoelectric matrix and the dielectric matrix, respectively. The elements of the aforementioned matrices can be cal-
culated using static condensation procedure detailed in [24]. Unlike the homogeneous piezoelectric materials, elements of
matrices ¯( )c k , ¯( )e k and χ̄( )k appeared in Eq. (2) are not constant values in the thickness direction. They are functions of the
coordinate x3 and vary according to the power law, exponent law or every other arbitrary distribution along the thickness
direction of FGPM layers.

The displacement field used for smart laminated beam is based on Refined sinus model [16]:
Fig. 2. Cartesian coordinate system of laminated smart beam.
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where the functions ( )u x x x t, , ,1 1 2 3 and ( )u x x x t, , ,3 1 2 3 represent the axial and transverse displacement components, re-
spectively. ( )u x t,0 1 and ( )w x t,0 1 are the displacement components of the central line. t is the time and ω ( )x t,3 1 denotes the
shear-bending rotation around the x2 axis. ( )u x t,31

1
1 is a supplementary unknown function associated with the refinement

per layer. The comma denotes partial differentiation with respect to the coordinate xi. The expression for ( )F x3 and ( )S x3 can
be found in Ref. [16]. It is seen from Eq. (3) that the refined sinus model includes only four mechanical generalized un-
knowns u0, w0, ω3 and u31

1 .
In this study, a linear electric potential is assumed along the thickness direction of the FGPM layers. The electric field of

the kth FGPM layer is given by:

{ }= = − = − ( ) ( )
( ) ( ) ( ) ( ) ( )E E V h V1/ 4
k k k k k

3 ,3

where ( )h k is the thickness and ( )V k is the electric potential difference acting on the k-th piezoelectric layer.

2.2. The system to be solved

The principle of virtual work for the piezoelectric medium of volume Ω and regular boundary surface Γ can be written
as:
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where FS, FV , q̄, Q̄ and ρ are surface force vector, mechanical body force vector, electrical body charge, surface charge and
mass density, respectively. δu and δφ are admissible virtual displacement and potential.

2.3. Finite element application

In this section, finite element approximations are defined for the mechanical and electrical variables introduced in
Section 2.1. The transverse deflection w0 is interpolated using the C1-continuous Hermite cubic shape functions while La-
grangian quadratic shape functions are used for the interpolation of ω3, u0 and u31

1 . Due to the presence of the electrodes on
the top and bottom surfaces of FGPM layers (equipotential condition), ( )V k is considered to be constant in each element. The
developed beam element has three nodes with a variable number of electric potential degrees of freedom on each element.
Indeed, the number of electric potential degrees of freedom at each element is dependent on the number of FGPM layers.
The electric potential, displacements, strain and electric field components may be expressed in terms of the mechanical and
electrical degrees of freedom as follows:
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For sake of brevity, the elements of matrices Nuu, φφN , Buu and φφB are not presented here. For further details on the FE
formulations, the interested readers can refer to [16].

Substituting Eqs. (2) and (6) into Eq. (5), and assembling the elementary matrices yield the following classical general
dynamic of motion:

φ¨̂ ( ) + ^ ( ) + ^ ( ) = ( ) ( )φt t t tM u K u K F 7.auu uu u

φ^ ( ) + ^ ( ) = ( ) ( )φ φφt t tK u K Q 7.bu

The matrices and vectors in the above equations are the mechanical degrees of freedom ^ ( )tu , the electrical degrees of

freedom φ̂( )t , the mass matrix ∫ ρ Ω=
Ω

dM N Nuu uu
T

uu , the elastic matrix ∫ Ω= ¯
Ω
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uu , the electromechanical cou-

pling matrix ∫ Ω= ¯φ Ω φφ dK B eBu
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2.4. Inclusion of FGPM shunted damping

The different shunt circuits connected to the piezoelectric electrodes induce a relation between the electric potential
vector φ̂( )t and the electric charge vector ( )tQ through the following general equation:

R I φ( ( )) + (^ ( )) = ( )t tQ 0 8

where R and I are linear differential operators with respect to time t . The closed circuit condition can be recovered for
R = 0 and I = I, and R = I and I = 0 give the open circuit one. The effects of shunted FGPM damping must be introduced in
Eq. (7) and Eq. (7.b) is expressed in terms of the electric charge vector ( )tQ :

( )φ̂( ) = ( ) − ^ ( ) ( )φφ φ
−t t tK Q K u 9u

1

Substituting Eq. (9) into Eqs. (7.a) and (8) leads to the following general coupled dynamic equations of the shunted
piezoelectric damping structural system:
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In the following subsections, Eq. (10) is specialized to the case of four different shunt circuits considered in the present
study.

2.4.1. R-L shunt circuit
When the classical R-L shunt circuits are considered, Eq. (8) reduces to:

φ¨ ( ) + ̇ ( ) + ^ ( ) = ( )t t tLQ RQ 0 11

where L and R are inductance and resistance matrices, respectively. = − ̇I Q denotes the electric current flowing in the
shunt circuits. Substituting Eq. (9) into Eqs. (7.a) and (11), the following coupled dynamic system is obtained:
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2.4.2. Resistive shunt
In this case, the following relation exists between φ̂ and Q:

φ̇ ( ) + ^ ( ) = ( )t tRQ 0 13

After substituting Eq. (9) into the above equation and Eq. (7.a), the following coupled system is obtained:
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2.4.3. RIIL shunt circuit
When a RIIL shunt circuit is connected to the FGPM electrodes, the Eq. (8) is written as:

φ¨ ( ) + ̇ ( ) + ^ ( ) = ( )−t t tLQ LR Q 0 151

By substituting expression (9) for φ̂( )t in Eqs. (7.a) and (15), the following coupled system is then obtained:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

¨̂ ( )
¨ ( )

+
−

̇̂ ( )
̇ ( )

+
−

−

^ ( )
( )

= ( )

( )

φφ φ φφ

φ φφ φ φ φφ

φφ φ φφ

− − − −

− −

− −

t

t

t

t

t

t

t

M 0
0 L

u

Q

0 0
LR K K LR K

u

Q

K K K K K K

K K K
u
Q

F
0 16

uu

u

uu u u u

u

1 1 1 1

1 1

1 1

2.4.4. R-LIIC shunt circuit
In case of R-LIIC circuits, Eq. (8) becomes

φ φ φ¨ ( ) + ̇ ( ) + ¨̂ ( ) + ̇̂ ( ) + ^ ( ) = ( )t t t t tLQ RQ LC RC 0 17

where C is the admittance matrix. Adopting the approach employed in the previous subsections, the following coupled
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equation is obtained for the considered dynamic system:
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2.5. State-space design

In this section, the state-space approach is employed for solving the coupled dynamic equations of the shunted pie-
zoelectric damping structural system (Eq. (10)). The state-space approach is the basis of the modern control and is efficient
to analyze systems with several inputs and outputs. In this approach, dynamic systems are described by means of first order
differential equations [25]. Introducing the state-space variable ( )tx as { }η η( ) = ( ) ̇ ( )t t tx , T , Eq. (10) can be written in the
following state-space form:

̇ ( ) = ( ) + ( ) ( )t t tx A x B f 19
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and I denotes the identity matrix. A and B are called the state-space and dynamic input matrices, respectively. The general
solution to Eq. (19) is:

∫ τ τ( ) = ( ) + ( ) ( )
τ( ) ( − )t e e dx x B f0 20
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3. Case studies and discussion

This section aims at evaluating the performance of the proposed FGPM shunt damping approach and its associated finite
element implementation for passive vibration control of laminated composite beams. First, the performance of the proposed
finite element formulation is evaluated through comparison with other results available in the literature. Then, the forced
and free vibrations of some laminated composite beams are controlled using the proposed FGPM shunt damping technique.
Comparisons have been made between the damping performances of the different shunt circuits.

3.1. Example 1

A four-layered [0°/90°/90°/0°] cantilever beamwith two FGPM patches perfectly bonded on its top and bottom surfaces is
considered (see Fig. 3). The beam is made of graphite epoxy (GE) layers with the mechanical properties given in Table 1. The
thickness of GE layers and FGPM patches are hGE¼0.5 mm and hp¼0.125 mm, respectively. The beam and FGPM patch
lengths are L¼0.25 m and Lp ¼0.125 m, and their common width is b¼1 m. The FGPM patches are installed on the beam
and have opposite poling directions. The piezoelectric patches are made of PZT-5J based exponentially graded piezoelectric
layers with the following material properties:
Fig. 3. Configuration of the considered smart laminated composite beam (the arrows drawn inside the FGPM layers represent the poling direction).
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Table 1
Mechanical and electrical properties of materials.

PZT-5J [12] GE [12] PZT-5A [26]

( )c GPa11
0 82.29 183.44 99.20

( )c GPa12
0 34.08 4.36 54.02

( )c GPa22
0 82.29 11.66 99.20

( )c GPa13
0 30.24 4.36 50.78

( )c GPa23
0 30.24 3.92 50.78

( )c GPa33
0 59.77 11.66 86.86

( )c GPa44
0 21.27 2.87 21.10

( )c GPa55
0 21.27 7.17 21.10

( )c GPa66
0 24.10 7.17 22.60

( )−e C m15
0 2 14.25 0 12.33

( )−e C m24
0 2 14.25 0 12.33

( )−e C m31
0 2 �10.49 0 �7.21

( )−e C m32
0 2 �10.49 0 �7.21

( )−e C m33
0 2 16.58 0 15.12

χ ( )− −F m1011
0 9 1 14.53 1.53 1.53

χ ( )− −F m1022
0 9 1 14.53 1.53 1.53

χ ( )− −F m1033
0 9 1 10.12 1.53 1.50

ρ ( )kg m/ 3 7400 1590 7800
χ χ ρ ρ= = = = ( )ξ ξ ξ ξc c e e e e e e, , , 21kl kl
a h

ik ik
a h

ij ij
a h a h0 / 0 / 0 / 0 /p p p p

where a is a constant characterizing the degree of the material gradient along the thickness direction. ckl
0 , eik

0 , χij
0 and ρ0 are

the values of material properties at the bottom and top of the upper and lower FGPM patches, respectively. ξ in Eq. (21) is a
local coordinate defined within FGPM layers and should be measured from its reference (lower or upper) surface (see Fig. 3).
For the gradient factors, five different values = −a 2,−1,0,1 and 2 are considered. The variations of the material properties in
the top and bottom FGPM layers are symmetric as shown in Fig. 3.

3.1.1. Static tests
First, the static electro-mechanical response of the smart beam is evaluated. To this aim, three different configurations

are considered: the sensor configuration, the actuator configuration and the sensor–actuator configuration. In sensor
configuration, a mechanical force of F¼1N is applied at the free end of the smart beam. The electric boundary conditions of
the two FGPM patches are assumed to be short circuit (SC). In the actuator configuration, the lower electrodes of both FGPM
patches are grounded while a voltage V¼1 V is applied through the top electrode terminal. Concerning the sensor-actuator
configuration, both shearing force F¼1 N and applied voltage V¼1 V are considered acting together. The mesh convergence
study shows that a mesh with 10 elements of equal lengths is adequate to model the considered beam under different
configurations (see Table 2). Based on the mesh convergence study, a mesh with 10 finite elements (87 DOFs) is used for
solving the present and all subsequent problems. The tip deflection of the smart beam is calculated using the present finite
element model for five material gradient composition = −a 2,−1,0,1 and 2. The results are shown in Table 3. For a¼0, the
considered smart composite beam of the present example reduces to the smart beam examined by Alaimo et al. [12]. They
analyzed this problem using a 1D beam element based on the first-order shear deformation theory. In Table 3, the present
results are compared with both the results of Alaimo et al. and the results obtained from 2D finite element analysis. The
comparison of the computational cost is also given in this table. The excellent matching results demonstrate the efficiency of
the present refined sinus finite element model.
Table 2
Tip deflection of the cantilever smart laminated beam for different number of elements: a¼-2.

Configuration Number of elements

4 10 20 40

Sensor [ − m10 6 ] 46.2335 46.2342 46.2345 46.2346

Actuator [ − m10 6 ] �2.5257 �2.5257 �2.5256 �2.5255

Sensor-actuator [ − m10 6 ] 43.7078 43.7085 43.7089 43.7091

Number of DOFs 39 87 167 327
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Table 3
Tip deflection (wtip static, ) of the cantilever smart laminated beam under different configurations.

Configuration a¼�2 a¼�1 a¼0 a¼1 a¼2

present present present Alaimo et al. [12] 2D finite element [12] present present

Sensor [ − m10 6 ] 46.2342 45.0211 42.9412 42.9370 42.9470 39.4213 33.9058

Actuator [ − m10 6 ] �2.5257 �3.6129 �5.4622 -5.4607 �5.4495 �8.5689 �13.4033

Sensor-actuator [ − m10 6 ] 43.7085 41.4082 37.479 37.4763 37.4975 30.8524 20.5025

Number of DOFs 87 87 87 96 81153 87 87
3.1.2. Free vibration tests
The lowest six natural frequencies of the beam with open circuit (OC) and SC electric boundary conditions are predicted

using the present finite element model. The results for different values of material gradient indexes are summarized in
Tables 4 and 5. In Table 4, the SC natural frequencies of the beam obtained from the present finite element formulation have
been compared with the results of Alaimo et al. and the results obtained from 2D finite element analysis. It is seen again that
the results obtained using the present formulation are in good agreement with those reported using the 1D and 2D finite
element models.

The SC and OC natural frequencies listed in Tables 4 and 5 were used to evaluate the EEMCCs of the considered smart
beam. The numerical values of EEMCCs corresponding to the first six vibrating modes of the beam are shown in Table 6. The
EEMCC for structure with piezoelectric elements, vibrating in the j-th mode, is defined as [7]:

ω ω
ω

=
( ) − ( )

( ) ( )
k

22
j
eff j

OC
j
SC

j
SC

2 2

2

where ωj
SC and ωj

OC denote the j-th natural frequencies of the electromechanical system in short and open circuit conditions,
respectively. It is worthy to note that the EEMCC is an important parameter affecting the performance of passive shunt
damping systems [27]. It can be observed from Table 6 that all EEMCCs of the cantilever smart composite beam corre-
spondent to different vibrating modes increase with the increasing of the material gradient index of the FGPM patches. It is
also seen from Table 6 that value of the EEMCC for the first bending mode of the beam is higher than other ones regardless
of the values of the material gradient index. Since the FGPM patches are bonded near the clamped end where the strains are
higher for the first bending mode, such behavior is expected. The low values of EEMCC for other bending modes may be due
to the occurrence of the charge cancellation phenomenon [28].

3.2. Example 2

Once the accuracy of the proposed finite element has been demonstrated for static and free vibration analyses, its
damping behavior for different shunted circuits is investigated in this section. The FGPM laminated beam is the same as in
the previous example. The two FGPM patches are connected to distinct shunt circuits characterized by the same electrical
components. R shunt, R-L shunt, R-LIIC shunt and RIIL shunt circuits are considered in this example. A mechanical step time
force of F(t)¼1N is applied at the free end of the beam. This step time force is shown in Fig. 4.

In order to validate the performance of the proposed refined sinus finite element formulation for passive vibration
damping of composite beams, a comparison has been made with the other results available in the literature. A R-L shunt
circuit with R¼ Ω34 and L¼0.4832H is connected to both FGPM patches. The values of material gradient composition is
assumed to be a¼0. The time history response of the normalized tip deflection ( ( )w t w/tip tip static, ) of the beam under step
loading is shown and compared with the results of Alaimo et al. [12] in Fig. 5. It is seen that there is an excellent agreement
between the present results and those obtained by Alaimo et al. based on FSDT.
Table 4
SC natural frequencies of the smart laminated beam.

a¼�2 a¼�1 a¼0 a¼1 a¼2

present present present Alaimo et al. [12] 2D FE [12] present present

ω SC
1

53.074 53.695 54.816 54.827 54.81 56.893 60.698

ω SC
2

312.52 308.37 301.69 302.27 301.5 291.22 276.38

ω SC
3

864.51 852.35 834.26 837.83 833.5 809.27 779.31

ωSC
4

1676.01 1648.68 1605.39 1617.8 1602 1540.04 1453.15

ω SC
5

2748.01 2708.89 2649.45 2680.6 2642 2563.24 2447.29

ω SC
6

4041.14 3974.94 3870.80 3935.7 3855 3716.42 3519.83

http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023


Table 5
OC natural frequencies of the smart laminated beam.

a¼�2 a¼�1 a¼0 a¼1 a¼2

ω OC
1

53.331 54.069 55.394 57.830 62.237

ω OC
2

312.52 308.39 301.70 291.25 276.43

ω OC
3

864.82 852.81 834.96 810.39 781.16

ωOC
4

1676.01 1648.69 1605.41 1540.09 1453.28

ω OC
5

2748.31 2709.33 2650.10 2564.23 2448.79

ω OC
6

4041.15 3974.96 3870.87 3716.59 3520.35

Table 6
EEMCCs for the smart FGMP laminated beam.

a

�2 �1 0 1 2

keff
1

0.0985 0.1182 0.1456 0.1822 0.2266

keff
2

0.0068 0.0084 0.0106 0.0138 0.0174

keff
3

0.0271 0.0328 0.0410 0.0527 0.0690

k eff
4

0.0015 0.0027 0.0043 0.0076 0.0130

keff
5

0.0148 0.0178 0.0221 0.0278 0.0350

k eff
6

0.0021 0.0033 0.0056 0.0098 0.0172

Fig. 4. The history of the applied step time force.

Fig. 5. Tip deflection of the cantilever laminated beam with R-L shunt circuit (R¼ Ω34 ).
3.2.1. R shunt circuit
The electrodes of two FGPM patches are connected to the pure resistive circuits. In order to find an optimal value for

resistor R, the minimum value of a proposed damping performance index is seek. The proposed damping performance index
is defined below:
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Fig. 6. Variations of damping performance index with respect to resistor values (R shunt).
∫=
( ) −

( )
y

w t w
w

dt200
23

t tip tip static

tip static0

,

,

It is worthy to note that the above introduced damping performance index is indeed relevant to the area under the tip
deflection-time graph. In Ref. [12], a similar damping performance index is employed. Variations of the damping perfor-
mance index with respect to the resistance of shunt circuit are shown in Fig. 6. For the material gradient index, five values

= −a 2,−1,0,1 and 2 is considered. The time history of the normalized tip deflection of the laminated beam is shown in
Fig. 7 for the optimal resistor values. It is seen from these figures that the damping performance of the resistive shunt
circuits increases with the increasing of the material gradient composition. The depicted graphs of Fig. 6 also reveal that the
optimum value of the resistors reduces with the increasing of the material gradient composition of FGPM patches. For
a¼�2, the minimum value of y is 2.14 larger than that of a¼ 2. The optimal value of resistor R is also 8.43 times larger than
that of a¼2. The EEMCCs of the smart beam increase with the increasing of the material gradient composition of the FGPM
patches, leading to the improvement of the shunt damping performance of the system.

3.2.2. R-L shunt circuit
The R-L shunt configuration is considered here. In contrast to R-shunt circuit which acts on the structure vibration

despite of its frequency content, the shunt circuits containing inductor can only minimize the structure vibration state
associated to a particular natural frequency of the structure. This is achieved by tuning the natural frequency of the electrical
circuits to that of the structure to be damped out [8]:

πω
=

( ) ( )
L

C
1

2 24j p
2

where Cp is the piezoelectric transducer capacitance and ωj denotes the jth natural frequency (Hz) of the structure to be
damped out. Similar to the resistive shunt circuit, the optimal value of resistor R is determined by minimizing the value of
the proposed damping performance index y. The influence of the resistance on the damping performance index is shown in
Fig. 8 for the five values of the material gradient index = −a 2,−1, 0, 1 and 2. The transient responses in terms of beam tip
deflection are reported in Fig. 9 for the optimal resistor values. Similar to the resistive shunt circuit case, it is seen again that
the minimum value of the damping performance index increases with the increasing of the material gradient composition.
Fig. 7. Time history of normalized tip deflection of the beam with R shunt circuits for optimal value of resistors.
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Fig. 8. Variations of damping performance index with respect to resistor values (R-L shunt).

Fig. 9. Time history of normalized tip deflection of the beam with R-L shunt circuits for optimal values of resistors.
The optimum values of the resistor reduce also with the increasing of material gradient composition of FGPM patches. For
a¼2, the optimum value of the resistor and the minimum value of the damping performance index are 13 Ω and 8.47 m.s,
respectively. In case of a¼-2, these values are 50 Ω and 12.66 ms.

3.2.3. RllL shunt circuit
The classical RIIL shunt circuits, tuned to the first beam mode are connected to the FGPM patches. The optimal value of

the resistor R is determined by minimizing the value of the proposed damping performance index. For different material
gradient index, variations of shunt resistance with respect to the damping performance index are depicted in Fig. 10. The
time history of the normalized tip deflection of smart beam is reported in Fig. 11 for the optimal resistor values. The
obtained numerical results of this example reveal again this fact that with increasing the material gradient composition, one
can increase the performance of shunt damping without stress concentrations near the interfaces between the beam and
piezoelectric patches.

3.2.4. R-LllC shunt circuit
The R-LllC shunt circuits, tuned to the first beam mode are connected to the electrodes of two FGPM patches. In order to
Fig. 10. Variations of damping performance index with respect to resistor values (RIIL shunt).
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Fig. 11. Time history of normalized tip deflection of the beam with RIIL shunt circuits for optimal values of resistors.
achieve the maximum damping performance, the value of the inductance is adopted as follow [8]:

πω
=

( ) ( + ) ( )
L

C C
1

2 25p1
2

First, the value of the external capacity C in the R-LllC shunt circuits is chosen equal to the capacity of the FGPM patches
with a¼0. In other words, it is assumed that C¼Cp¼17.1 μF. Variations of damping performance index with respect to the
resistor values are depicted in Fig. 12 for five values of the material gradient composition = −a 2,−1,0,1 and 2. In Fig. 13,
the time history of the normalized tip deflection of the laminated beam is depicted for the optimal resistor values. Due to
the increasing of the EEMCCs, it is seen again that the damping performance of the R-LllC shunt circuit increases with the
increasing of the material gradient composition. With the increasing of material gradient composition from a¼�2 to a¼2,
the minimum value of the damping performance index decreases from 21.53 ms to 9.02 ms. In contrast to other shunt
circuit configurations, the optimum values of the resistor in R-LllC shunt circuits are not sensitive to the change in the
material gradient composition of the FGPM patches (see Fig. 12).

The effects of the external capacity on the damping performance of FGPM shunt circuits are investigated in Fig. 14 with
a¼2 for the material gradient composition. For further comparisons, the obtained numerical results are also shown in
Table 7. It can be observed that with the increasing of the value of the external capacity C, the damping performance of the
shunt circuits reduces slightly. However, R-LllC parallel circuit leads to the reduction in the tuning value of the inductance
L due to the insertion of an external capacity C in parallel to the R-L branch. Moreover, the optimal value of the resistor
R reduces slightly with the increasing of the external capacity C. It can be concluded from these numerical results that the
value of the external capacitance C cannot be chosen too large in order to have an effective damping system. In other words,
there are limitations on the reduction of the tuning inductance L and the optimum resistance R achievable with an R-LllC
shunt circuit in practical conditions.

3.2.5. Comparison between different shunt circuits
In order to have a comparison between the damping performance of different shunt circuits connected to electrodes of

the FGPM patches, the obtained numerical results of the previous subsections are summarized in Table 8. It is seen from this
table that the R-L shunt circuit is more effective in passive damping of vibrations than the other shunt circuits regardless of
the values of the material gradient composition. The numerical results of Table 8 show also that the pure resistive shunt
circuit is less effective in the attenuation of vibrations in comparison to other shunt circuits. However, R-shunt circuit has
this particular advantage which can attenuate the vibration of a structure despite of its frequency content. Although the
Fig. 12. Variations of damping performance index with respect to resistor values (R-LllC shunt).

http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023


Fig. 13. Time history of normalized tip deflection of the beam with R-LllC shunt circuits for optimal values of resistors.

Fig. 14. Effect of the external capacitor on the performance of the FGPM shunted damping (a¼2).

Table 7
Comparison between damping performance of R-LllC shunt circuits with different values of external capacity (a¼2).

C (μ )F L (H) Θmin (ms) Ropt (Ω)

0 0.1198 8.50 13
17.1 0.0912 9.02 9
2�17.1 0.0737 9.54 6
4�17.1 0.0532 10.50 4
6�17.1 0.0416 11.48 3
8�17.1 0.0342 12.29 2
10�17.1 0.0290 13.12 1.7
12�17.1 0.0252 13.90 1.3

Table 8
Comparison between the damping performance of different shunt circuits.

a R circuit R-L circuit RIIL circuit R-LIIC (C¼Cp)

ymin Ropt Lopt ymin Ropt Lopt ymin Ropt Lopt ymin Ropt Lopt

2 23.85 49 – 8.47 13 0.1198 9.01 160 0.1198 9.02 9 0.0912
1 32.73 96 – 8.45 20 0.2580 8.99 390 0.2580 10.03 9 0.1630
0 40.93 171 – 9.35 30 0.4832 9.90 910 0.4832 12.47 10 0.2415
�1 46.95 280 – 10.87 40 0.8024 11.36 1800 0.8024 16.51 10 0.3108
�2 51.12 413 – 12.66 50 1.2058 13.09 3200 1.2058 21.53 8 0.3637
damping performance of the R-L and RIIL shunt circuits are almost similar together, the optimum values of resistor in a RIIL
shunt circuit is much higher than R-L shunt one. When R-L shunt circuits are connected to the FGPM patches with material
gradient composition a¼-2, the optimum values of R is 50 Ω. In case of RIIL shunt circuits, this value is 3200 Ω. If both of the
damping performance index and the limitations of electrical shunt components (inductance L and the resistance R) are
considered simultaneously as damping criteria, it seems that the R-LIIC shunt circuit is a suitable choice for the practical
conditions. With connecting the electrodes of the FGPM patches with a¼2 to the R-LIIC shunt circuits instead of an R-L one,
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http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023


the minimum values of the damping performance index does not change significantly. However, the optimum value of the
resistor reduces more than 17 times. The reduction in the optimum values of the inductor is 1.3 times.

The obtained numerical results of Table 8 reveal that the values of inductance L reduce with the increasing of the
material gradient composition whatever the type of shunt circuits. Since the natural frequencies of the smart laminated
beam increase with the increasing of the material gradient composition of FGPM patches, the reduction in the inductance of
shunt circuit is expected. Table 8 also shows that in all shunt circuit cases, the optimum value of the resistor R increase with
the decreasing of the material gradient composition except in R-LIIC shunt case.

3.3. Example 3

As a final example, the shunt passive vibration control of laminated composite beams by using the piezoelectric patches
whose material properties vary along the thickness direction according to the power law distribution is studied. Geometry,
material properties and the boundary conditions of the considered laminated composite beam are the same as those of the
previous example. The only differences are the length and the material properties of the bonded top and bottom FGPM
patches. In this section, the length of the FGPM patches are assumed to be Lp¼0.025 m. The following distribution of
material properties is considered along the thickness direction of the FGPM patches:

ψ ψ ψ= ( − (¯ + ) ) + (¯ + ) ( )z z1 0.5 0.5 26n B n T

where ¯ = −−
+
−+

+

+
z x

z z
z z
z z

2
3

k k

k k

k k1

1

1
and ψ is an arbitrary material property of the FGPM patch. ψT and ψ B represent the values of ψ

on the upper and lower surfaces of FGPM patches, respectively. The symbol n is the material gradient composition. In this
example, the value of the n is assumed to be 5. In the FGPM patch bonded on the top of the laminated beam, the material
properties vary from 100% PZT-5J at the lower surface to 100% PZT-5A at the upper surface. The elastic, piezoelectric and
dielectric constants for these two piezoelectric materials can be found in Table 1. The variations of material properties in the
FGPM patches bonded on the bottom surface of the cantilever beam are assumed to be in symmetrical configuration with
that bonded on upper surface. The beam is subjected to an initial static deformed position, created by a mechanical shearing
force F¼1N applied at the free end of the laminated beam. The lowest six natural frequencies of the laminated beam with
OC and SC electric boundary conditions are shown in Table 9. In this table, the values of EEMCC corresponding to these six
vibrating modes are also shown. It can be observed from this table that the values of the EEMCCs corresponding to the
different vibrating modes of the smart beam are relatively high. Therefore, it is expected that all oscillations related to the
lowest six vibrating modes of the laminated beam can be controlled effectively by using the appropriate shunt circuits.

Time history of the tip deflection of the beam with the classical R-L shunt circuits tuned to the first bending mode is
shown in Fig. 15 for the optimal value of resistor (Ropt¼90 Ω). It is worthy to note that the optimal value of R has been
calculated via the minimization of the following damping performance index:

∫= ( ) ( )y w t dt 27
t

tip
0

Since the applied initial static deformed position is very close to the first bending mode shape of the laminated beam, it
is clearly visible on Fig. 15 that the employed shunt circuits have a large damping effect on the oscillations. The difference of
electric potential at the R-L shunt circuits connected to FGPM patches versus time is also shown in Fig. 16.

The driving-point receptance frequency response function (FRF) at the free end of the laminated beam (i.e. the response
at the tip for an excitation at the same point) is presented in Fig. 17. In this figure, the tip laminated composite beam FRF is
depicted under the following five electromechanical conditions:

� OC: the shunt is open circuit;
� R-L-1: the classical R-L shunt circuits tuned to the first beam mode (1F) are connected to the electrodes of the FGPM

patches;
� R-L-2: the classical R-L shunt circuits tuned to the second beam mode (2F) are connected to the electrodes of the FGPM

patches;
� R-L-3: the classical R-L shunt circuits tuned to the third beam mode (3F) are connected to the electrodes of the FGPM
Table 9
Natural frequencies and EEMCCs for the smart FGPM laminated beam (n¼5).

Mode ωOC (rad/s) ωSC (rad/s) keff

1 334.6316 333.4984 0.0825
2 2072.265 2067.170 0.0703
3 5729.989 5720.374 0.0580
4 11062.71 11051.79 0.0445
5 17984.76 17976.51 0.0303
6 26396.33 26392.88 0.0162
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Fig. 15. Time history of tip deflection of the beam with R-L shunt circuits for the optimal values of resistors (Ropt¼90Ω).

Fig. 16. Time history of the difference of electric potential at the R-L shunt circuits (Ropt¼90Ω).
patches;
� R-L-4: the classical R-L shunt circuits tuned to the fourth beam mode (4F) are connected to the electrodes of the FGPM

patches;

The optimal electrical parameters used in each shunt circuit are presented in Table 10. In this table, the optimal value of
the resistor R is determined from the depicted graphs of Fig. 18. In these graphs, the reduction in the first four peak
resonance frequency of the laminated beam is depicted versus the resistance of each considered shunt circuit. It can be
concluded from Table 10 that the shunt circuits with lower values of electrical components are needed for the attenuation of
higher vibrating modes of the laminated beam.

The depicted FRF graphs of the laminated beam (Fig. 17) show that the vibration reduction achieved by the FGPM shunts
is excellent. The R-L-1 shunt circuits reduce the first resonance peak about 5.74 dB, whereas its effect in the reduction of
resonant peak correspond the other modes is negligible. The R-L shunt tuned on the second beam mode significantly
reduces the 2F response (15.17 dB). Similar to the R-L-1 shunt circuits, the effect of R-L-2 shunt circuits in the reduction of
resonant peak correspond the other modes are insignificant. The R-L-3 and R-L-4 shunt circuits reduce the 3F and 4F
resonance peaks about 13.51 dB and 34.04 dB, respectively. The focus on the depicted graphs of Fig. 17 shows that the R-L-2
and R-L-4 shunt circuits have more broadband effects than the R-L-1 and R-L-3 shunt circuits.
4. Conclusion

For the first time, the application of FGPMs for shunted passive vibration damping of laminated composite beams was
investigated. A three-nodded beam element which is based on the refined sinus model kinematic was used in deriving the
dynamic equations of the coupled system. The computational cost of the employed element is very low in comparison with
the available layer-wise beam theories. Moreover, the continuity conditions between layers for displacements, transverse
shear stress and the free conditions at the top and bottom surfaces of the beam are satisfied by the present kinematic. The
main practical conclusions of the present paper may be summarized as follows:

� Regardless of the values of the material gradient composition of FGPM, the R-L shunt circuit has the best performance in
damping of vibrations.
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Fig. 17. Frequency response function of the laminated composite beam at its free end: (a) General view showing the first four beam resonances, (b) Detail
of mode 1F resonance, (c) Detail of mode 2F resonance, (d) Detail of mode 3F resonance, (e) Detail of mode 4F resonance.

Table 10
The optimal electrical parameters used in FGPM shunt circuits.

Lopt (H) Ropt (Ω)

R-L-1 2.5494 63
R-L-2 0.0665 12
R-L-3 0.0087 10
R-L-4 0.0023 2
� Pure resistive shunt circuit is less effective in the attenuation of vibrations in comparison to other shunt circuits. However,
R-shunt circuit can attenuate the vibration of a structure despite of its frequency content.

� For the same values of the damping performance index, the required resistance of an RIIL shunt circuit is much higher
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Fig. 18. The reduction in the peak resonance frequency with respect to the resistor values.
than R-L shunt one.

� Due to the insertion of an external capacity C in parallel to the R-L branch, R-LllC shunt circuit leads to the reduction in the
tuning value of the inductance L. For shunted damping of vibrations in practical conditions, R-LIIC shunt circuit seems to
be the best suitable choice.

� The damping performance of different shunt circuits increases drastically with the increasing of the material gradient
composition of FGPM transducers.

� The value of inductance L in all types of shunt circuits reduces with the increasing of the material gradient composition of
FGPM.

� Expect the R-LIIC shunt circuit, the optimum value of the resistor R increase with the decreasing of the material gradient
composition of FGPM.

Finally, the application of FGPM transducers for shunted damping increases the reliability of the passive control networks
by decreasing the interface stress levels and consequently the decreasing of failure from the interfacial debonding.
Funding

The authors received no financial support for the research, authorship, and/or publication of this article.
Conflict of Interest

The authors declare that they have no conflict of interest.
References

[1] S.B. Beheshti-Aval, M. Lezgy-Nazargah, Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams, Smart Struct.
Syst. 6 (8) (2010) 921–938.

[2] C.R. Fuller, S.J. Elliot, P.A. Nelson, Active Control of Vibration, Academic Press, London, 1996.
[3] G.A. Lesieutre, Vibration damping and control using shunted piezoelectric materials, Shock Vib. Dig. 30 (1998) 181–190.
[4] N.W. Hagood, A. Von Flotow, Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib. 146 (2) (1991)

243–268.
[5] J. Becker, O. Fein, M. Maess, L. Gaul, Finite element-based analysis of shunted piezoelectric structures for vibration damping, Comput. Struct. 84 (31-32)

(2006) 2340–2350.
[6] J. Ducarne, O. Thomas, J.F. Deu, Placement and dimension optimization of shunted piezoelectric patches for vibration reduction, J. Sound Vib. 331 (14)

(2012) 3286–3303.
[7] O. Thomas, J. Ducarne, J.F. Deu, Performance of piezoelectric shunts for vibration reduction, Smart Mater. Struct. 21 (1) (2012) 015008.
[8] G. Caruso, A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping, Smart Mater. Struct. 10 (5) (2001)

1059–1068.
[9] C.H. Park, Y.H. Kim, H.C. Park, Dynamic formulations of plates with shunted piezoelectric materials, J. Intell. Mater. Syst. Struct. 16 (11) (2005) 971–976.
[10] T. Delpero, A.E. Bergamini, P. Ermanni, Identification of electromechanical parameters in piezoelectric shunt damping and loss factor prediction, J.

Intell. Mater. Syst. Struct. 24 (3) (2012) 287–298.
[11] C.M.A. Vasques, Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes,

Smart Mater. Struct. 21 (12) (2012) 125003.
[12] A. Alaimo, A. Milazzo, C. Orlando, A smart composite-piezoelectric one-dimensional finite element model for vibration damping analysis, J. Intell.

Mater. Syst. Struct. http://dx.doi.org/10.1177/1045389X15591380.
[13] W. Larbi, J.F. Deu, R. Ohayon, Finite element reduced order model for noise and vibration reduction of double sandwich panels using shunted

http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref1
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref1
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref1
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref2
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref3
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref3
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref4
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref4
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref4
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref5
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref5
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref5
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref6
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref6
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref6
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref7
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref8
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref8
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref8
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref9
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref9
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref10
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref10
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref10
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref11
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref11
http://dx.doi.org/10.1177/1045389X15591380
http://dx.doi.org/10.1177/1045389X15591380
http://dx.doi.org/10.1177/1045389X15591380
http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023


piezoelectric patches, Appl. Acoust. http://dx.doi.org/10.1016/j.apacoust.2015.08.021.
[14] J.W. Park, J.H. Han, Sensitivity analysis of damping performances for passive shunted piezoelectrics, Aerosp. Sci. Technol. 33 (1) (2014) 16–25.
[15] S. Behrens, S.O.R. Moheimani, A.J. Fleming, Multiple mode current flowing passive piezoelectric shunt controller, J. Sound Vib. 266 (5) (2003) 929–942.
[16] M. Lezgy-Nazargah, P. Vidal, O. Polit, An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams,

Compos. Struct. 104 (2013) 71–84.
[17] M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci. 29 (8) (1991) 901–916.
[18] O. Polit, M. Touratier, High-order triangular sandwich plate finite element for linear and non-linear analyses, Comput. Methods Appl. Mech. Eng. 185 (2-

4) (2000) 305–324.
[19] F. Dau, O. Polit, M. Touratier, An efficient C1 finite element with continuity requirements for multilayered/sandwich shell structures, Comput. Struct. 82

(23-26) (2004) 1889–1899.
[20] C. Ossadzow-David, M. Touratier, A multilayered piezoelectric shell theory, Compos. Sci. Technol. 64 (13) (2004) 2121–2137.
[21] A. Fernandes, J. Pouget, Analytical and numerical approaches to piezoelectric bimorph, Int. J. Solids Struct. 40 (17) (2003) 4331–4352.
[22] P. Vidal, O. Polit, A family of sinus finite elements for the analysis of rectangular laminated beams, Compos. Struct. 84 (1) (2008) 56–72.
[23] P. Vidal, O. Polit, A refined sine-based finite element with transverse normal deformation for the analysis of laminated beams under thermo-

mechanical loads, J. Mech. Mater. Struct. 4 (6) (2009) 1127–1155.
[24] S.B. Beheshti-Aval, M. Lezgy-Nazargah, P. Vidal, O. Polit, A refined sinus finite element model for the analysis of piezoelectric-laminated beams, J. Intell.

Mater. Syst. Struct. 22 (3) (2011) 203–219.
[25] H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, John Whiley and Sons, New York, 1972.
[26] S.B. Beheshti-Aval, S. Shahvaghar-Asl, M. Lezgy-Nazargah, M. Noori, A finite element model based on coupled refined high-order global-local theory

for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths, Thin Walled Struct. 72
(2013) 139–163.

[27] C.L. Davis, G.A. Lesieutre, A. Modal Strain, Energy approach to the prediction of resistively shunted piezoceramic damping, J. Sound Vib. 184 (1) (1995)
129–139.

[28] A. Erturk, P.A. Tarazaga, J.R. Farmer, D.J. Inman, Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered
beams, J. Vib. Acoust. 131 (1) (2009) 011010.

http://dx.doi.org/10.1016/j.apacoust.2015.08.021
http://dx.doi.org/10.1016/j.apacoust.2015.08.021
http://dx.doi.org/10.1016/j.apacoust.2015.08.021
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref14
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref14
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref15
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref15
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref16
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref16
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref16
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref17
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref17
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref18
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref18
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref18
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref19
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref19
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref19
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref19
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref19
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref20
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref20
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref21
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref21
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref22
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref22
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref23
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref23
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref23
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref24
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref24
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref24
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref25
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref26
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref26
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref26
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref26
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref27
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref27
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref27
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref28
http://refhub.elsevier.com/S0022-460X(16)30667-8/sbref28
http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023
http://dx.doi.org/10.1016/j.jsv.2016.11.023

	Assessment of FGPM shunt damping for vibration reduction of laminated composite beams
	Introduction
	Mathematical formulations
	Basic equations
	The system to be solved
	Finite element application
	Inclusion of FGPM shunted damping
	R-L shunt circuit
	Resistive shunt
	RIIL shunt circuit
	R-LIIC shunt circuit

	State-space design

	Case studies and discussion
	Example 1
	Static tests
	Free vibration tests

	Example 2
	R shunt circuit
	R-L shunt circuit
	RllL shunt circuit
	R-LllC shunt circuit
	Comparison between different shunt circuits

	Example 3

	Conclusion
	Funding
	Conflict of Interest
	References




