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a b s t r a c t 

In this work, a method to compute explicit thermal solutions for laminated and sand- 

wich beams with arbitrary heat source location is developed. The temperature is written

as a sum of separated functions of the axial coordinate x , the transverse coordinate z and

the volumetric heat source location x 0 . The derived non-linear problem implies an itera- 

tive process in which three 1D problems are solved successively at each iteration. In the

thickness direction, a fourth-order expansion in each layer is considered. For the axial de- 

scription, classical Finite Element method is used. The presented approach is assessed on

various laminated and sandwich beams and comparisons with reference solutions with a

fixed heat source location are proposed. Based on the accurate results of the thermal anal- 

ysis, thermo-mechanical response is also addressed using also a separated representation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

Composite and sandwich. structures are increasingly used in industrial applications owing to their specific mechanical

properties. They can be also submitted to multi-physics environments such as thermal effects, and in particular due to

the internal volume heat source. Some applications can be mentioned. In the thermally activated composite (smart mate-

rial), the deformation of the structure can be controlled by acting on the internal heat source [1] . It requires to know the

thermo-mechanical response of the structure for various localized thermal sollicitations. The identification of the damage of

composite can be viewed as another illustration. In fact, the determination of the position of the heat source allows some

researchers to localize the damaged region, as in [2] for carbon fibre reinforced laminates. In all theses cases, the classical

way consists in performing different computations with a fixed value of the heat source position. The present approach

based on the variables separation aims at building the explicit thermal solution with respect to this location avoiding the

cost of numerous computations. Then, thermo-mechanical analysis can be performed. 

In open literature, various mechanical models dedicated to composite or sandwich beams take into account the thermal

effects with a fixed value of the heat source location. They can be classified into two families as Equivalent Single Layer

(ESL) or Layerwise (LW) models. In the ESL models, the number of unknowns remain low as it is independent of the num-

ber of layers. Unfortunately, the physical requirements such as the shear stress continuity at the layer interfaces are not

fulfilled. In this family, different types of models can be distinguished: the classical laminate theory [3] , the first order shear
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deformation theory ( [4] with a linear variation of temperature through the thickness), and higher order theories [5,6] for

thermal stresses analysis of beams or plates. The limitations of the ESL approach can be overcome by the LW models. The

thermal effect for beam structures has been included in [7] . But, the cost becomes very high as the number of unknowns

increases with the number of plies. It should be noted the substantial works developed by Carrera ( [8,9] ). Various ESL and

LW theories with mixed and displacement-based approaches for assumed distribution of temperatures (uniform, linear, lo-

calized) are addressed in the framework of the Carrera’s Unified Formulation (CUF). Different displacement or stress field

approximations over the cross-section are considered. A family of higher-order beam elements can be deduced. 

An alternative strategy consists in considering a priori physical requirements in the kinematics. Thus, refined models can

be built to improve the accuracy of ESL models avoiding the additional computational cost of LW approach. In this way, a

zigzag theory for beams has been carried out by Kapuria in [10] . A piecewise linear function along the thickness is used for

the temperature. In [11] , a global-local approach in conjunction with a Hermite interpolation of the temperature through

the thickness is used. For an overview about the thermal analysis, see [5,12–14] . 

Until now, the so-called Proper Generalized Decomposition (PGD) [15] has shown advantageous characteristics to de-

crease significatively the computational costs in the framework of the reduction model. Indeed, it allows to decrease the

dimensionality of numerous physical problems. For instance, the coordinate variables separation in multi-dimensional PDEs

has been performed in [15] . Moreover, this approach has been carried out in [16,17] for mechanical applications involving

composite beams and plates. Concerning the thermal analysis, the variables separation of the spatial coordinates x and z

has already been used in [18] for laminates. Other parametrized thermal problems have been also considered in [19–21] .

Note that the introduction of the load position as a parameter of the solution in the framework of mechanical simulations

has been carried out in [22] . For a review about the PGD and its fields of applications, the reader can refer to [23,24] . 

This work aims at modeling composite beam structures regardless of the volume heat source location for thermo-

mechanical analysis. This particular study has not been yet addressed in the previous quoted works. For this purpose, the

present approach is based on the separated representation where the temperature is written as a sum of products of unidi-

mensional polynomials of x coordinate, z coordinate, and also the volume thermal heat position x 0 . A piecewise fourth-order

Lagrange polynomial of z is chosen as it is particularly suitable to model composite structures. As far as the variation with

respect to the axial coordinate is concerned, a 1D three-node beam Finite Element (FE) is employed. The functions of the

volume heat source position are also piecewise quadratic. Finally, the deduced non-linear problem is linearized. Thus, three

1D linear problems are solved alternatively, in which the number of unknowns is much smaller than in a Layerwise ap-

proach. Finally, the solution depends explicitly on the load position. 

Then, the thermo-mechanical analysis can be addressed as a weak coupling is considered. The solution of the mechanical

problem, also written under a separated form as in [25] , is built by considering the temperature distribution as a load. As

the separated form of the temperature unknowns are chosen, the nature of the mechanical problem remains unchanged.

Moreover, the approach allows us to refine easily the description of the temperature variation without increasing signifi-

cantly the computational cost which is important to derive an accurate mechanical response. 

This article is organized as follows. Firstly, the thermo-mechanical formulation is recalled. The resolution of the

parametrized thermal problem based on the variables separation is described. The particular assumption on the temper-

ature field yields a non-linear problem which is solved by an iterative process. Then, the FE discretization is given. Finally,

numerical tests are provided. Both thermal loads and thermo-mechanical coupling are considered for laminated and sand-

wich beams. The behavior of the method is illustrated and discussed. It is assessed by comparing with 2D FEM computations

issued from a commercial finite element software with different fixed heat source locations and sizes. The results show the

accuracy and the efficiency of the presented method. 

2. Thermo-mechanical problem description

A laminated or sandwich beam with NC layers is defined in a domain B = B x × B y × B z = [0 , L ] × [ − b 
2 ≤ y ≤ b 

2 ] × [ − h 
2 ≤

z ≤ h 
2 ] expressed in a Cartesian coordinate ( x, y, z ). The cross-section of the beam is rectangular. h and b are the height and

the width, respectively. The central line of the beam is chosen as the x axis. It is shown in Fig. 1 . 

In this work, a plane stress assumption is used ( σ12 = σ23 = σ22 = 0 ). 
h/2x

y

y

z
z

L

b

Fig. 1. The laminated beam and co-ordinate system.



 

 

 

 

2.1. Heat conduction problem 

2.1.1. Thermal constitutive equation 

Here, the two-dimensional linear heat conduction equations are considered. The constitutive equation is given by the

Fourier law 

Q = 

[
q 1 
q 3 

]
= −λ̄ grad (θ ) , (1) 

where 

λ̄ = 

[
λ1 0 

0 λ3 

]
and grad (θ ) = 

[
θ,x 

θ,z 

]
.

λ1 , λ3 are the thermal conductivity components, q 1 , q 3 are the heat flux components. They are expressed in the coordinate

system x, z . The derivative of the temperature with respect to x and z are denoted θ , x , θ , z , respectively. 

2.1.2. The classical weak form of the boundary value problem 

For δθ ∈ δ� ( δ� = { θ ∈ H 

1 (B) /θ = 0 on ∂B θ } ), the variational principle is given by:

find θ ∈ � such that ∫ ∫ 
B 

grad (δθ ) T Q (θ ) d B + 

∫ ∫ 
B 
δθ r d d B + 

∫ 
∂B h 

δθ h d d ∂B = 0 , 

∀ δθ ∈ δ�
(2) 

where r d and h d are the prescribed volume heat source and surface heat flux applied on ∂B h . The temperature θd is imposed

on ∂B θ . � is the space of admissible temperatures, i.e. � = { θ ∈ H 

1 (B) /θ = θd on ∂B θ } .
In the present work, the convection heat transfer and the prescribed surface heat flux are not considered. 

2.2. Thermo-mechanical problem 

2.2.1. Constitutive relation 

The reduced two dimensional constitutive law of the k th layer with thermo-mechanical coupling is given by 

σ(k ) = C̄ 

(k ) 
(
ε 

(k ) − ᾱ(k ) �θ(k ) 
)
, (3) 

where �θ(k ) = θ (k ) − θ0 is the variation of temperature. 

The stress and strain tensor are supposed to be written as 

σT = [ σ11 σ33 τ13 ] , ε 

T = [ ε 11 ε 33 γ13 ] . 

We have also 

C̄ 

(k ) = 

⎡ ⎣ C̄ (k ) 
11 

C̄ (k ) 
13 

0 

C̄ (k ) 
33 

0 

symm C̄ (k ) 
55 

⎤⎦ ,

where C̄ (k ) 
i j

are the reduced moduli of the material for the k th layer issued from the plane stress assumptions ( σ22 = 0 ). They

are given by 

C̄ (k ) 
i j 

= C (k ) 
i j 

− C (k ) 
i 2 

C (k ) 
j2 

/C (k ) 
22 

. (4) 

C (k ) 
i j

are orthotropic three-dimensional elastic moduli. And, we have C̄ (k ) 
55 

= C (k ) 
55 

. 

The vector of the thermal expansion coefficients is ᾱ(k ) T = [ α(k ) 
1 

α(k ) 
3 

0] .

2.2.2. The weak form of the boundary value problem 

The formulation of the thermo-mechanical problem is written under a displacement-based approach for geometrically 

linear elastic beams. Using the above notation and Eq. (3) , the variational principle is given by: 

Find u ( M ) ∈ U such that ∫ ∫ 
B 
δε 

T C̄ 

(k ) ε dB = 

∫ ∫ 
∂V F 

δu · t dS + 

∫ ∫ 
B 
δε 

T C̄ 

(k ) ᾱ(k ) �θ dB ∀ δu ∈ δU, (5)

where t is the prescribed surface forces applied on ∂V F . U is the space of admissible displacements, i.e. U = { u ∈
(H 

1 (B)) 2 / u = u d on ∂B u } . We have also δU = { u ∈ (H 

1 (B)) 2 / u = 0 on ∂B u } . The body forces are not considered in Eq. (5) .



Fig. 2. Volume heat source applied on the laminated beam.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Application of the variables separation to the thermal analysis of beam with any volume heat source locations

The Proper Generalized Decomposition (PGD) has been introduced in [15] . It is based on an a priori construction of sepa-

rated variables representation of the solution. In the framework of thermal problems, the solution with separated coordinate

variables has been developed in [19] . The following sections are dedicated to the introduction of this approach to build a

parametric solution for composite beam submitted to heat sources with any locations. The problem defined by Eqs. (1) and

(2) is considered as a parametrized problem where the heat source location x 0 is defined in a bounded interval [0, L ]. The

thermal solution for a point M of coordinate ( x, z ) of the structure depends on the values of this parameter and is denoted

θ ( x, z, x 0 ) (see Fig. 2 ). 

In the present work, a weak thermo-mechanical coupling is addressed. Once the thermal problem has been solved, the

mechanical response is deduced using also the variable separation following [17] . It will not be detailed hereafter for brevity

reason. Only the coupling term is detailed in Appendix A . 

3.1. The parametrized problem 

The temperature solution θ is built as the sum of N products of functions of only one spatial coordinate ( N ∈ N is the

order of the representation) such that: 

θ (x, z, x 0 ) = 

N ∑ 

i =1

f i (x 0 ) T 
i 

x (x ) T i z (z) , (6)

where T i z (z) is defined on B z and T i x (x ) , f i ( x 0 ) are defined on B x . A classical quadratic FE approximation is used in B x and a

LW description is chosen in B z as it is particularly suitable for the modeling of composite structures. 

The expression of the temperature gradient is written as follows: 

grad (θ ) = 

N ∑ 

i =1

f i (x 0 ) 

[
T i x,x (x ) T i z (z) 

T i x (x ) T i z,z (z) 

]
. (7)

For a structure submitted to a localized internal heat source at x = x 0 in one layer, the parametrized problem can be

formulated as: 

find θ ∈ �ext ( �ext = { θ ∈ H 

1 (B × [0 , L ]) /θ = θd on ∂B θ × [0 , L ] } ) such that:

a (θ, δθ ) = b(δθ ) , ∀ δθ ∈ δ�ext , (8)

with 

a (θ, δθ ) = −
∫ 

x 0

∫ 
B 

grad (δθ ) T Q (θ ) d Bd x 0 

b(δθ ) = 

∫ 
x 0

∫ 
B z s 

δθ r d δ(x − x 0 ) d B z s dx 0 
(9)

where δ is the Dirac distribution and B z s represents the location where the internal heat source is applied (see Fig. 2 ). 

The assumption on the expression of the temperature given in Eq. (6) implies the resolution of a non-linear problem

which is described in the following section. 



 

 

 

 

 

 

 

 

 

 

 

 

3.2. Resolution of the parametrized problem 

A greedy algorithm is used to solve Eq. (8) . If we assume that the first m functions (cf. Eq. (6) ) have been already

computed, the trial function for the iteration m + 1 can be given by 

θm +1 (x, z, x 0 ) = θm (x, z, x 0 ) + f (x 0 ) T x (x ) T z (z) , (10)

where f, T x and T z are the unknown functions and θm is the associated known sets at iteration m defined by 

θm (x, z, x 0 ) = 

m ∑ 

i =1

f i (x 0 ) T 
i 

x (x ) T i z (z) . (11)

The problem to be solved given in Eq. (8) can be written as 

a ( f T x T z , δθ ) = b(δθ ) − a (θm , δθ ) . (12) 

The test function is 

δ( f T x T z ) = δ f T x T z + f δT x T z + f T x δT z . (13)

Introducing the test function defined by Eq. (13) and the trial function defined by Eq. (10) into the weak form

Eq. (12) leads to the three following problems: 

• for the test function δT x

a ( f T z T x , f T z δT x ) = b( f T z δT x ) − a (θm , f T z δT x ) , ∀ δT x , (14) 

• for the test function δT z

a ( f T x T z , f T x δT z ) = b( f T x δT z ) − a (θm , f T x δT z ) , ∀ δT z , (15)

• for the test function δf

a (T x T z f, T x T z δ f ) = b(T x T z δ f ) − a (θm , T x T z δ f ) , ∀ δ f . (16)

From Eqs. (14) –16 , a coupled non-linear problem to be solved is deduced. Classically, a fixed point method is carried out

for simplicity reason. Starting from an initial function 

˜ T (0) 
x , ˜ T (0) 

z , ˜ f (0) , we construct a sequence ˜ T (k ) 
x , ˜ T (k ) 

z and 

˜ f (k ) which

satisfy Eqs. 14 –16 , respectively. For each problem, only one unknown 1D function has to be found, the two other ones are

assumed to be known (from the previous step of the fixed point strategy). So, the approach leads to the process given in

Algorithm 1 . 

Algorithm 1 Present algorithm. 

for n = 1 to N max do 

Initialize ˜ T (0) 
x , ˜ T (0) 

z , ˜ f (0) 

for k = 1 to k max do 

Compute ˜ f (k ) from Eq. (16) (straightforward resolution), ˜ T (k −1) 
x , ˜ T (k −1) 

z being known 

Compute ˜ T (k ) 
z from Eq. (15) (linear equation on B z ), ˜ f (k ) and 

˜ T (k −1) 
x being known 

Compute ˜ T (k ) 
x from Eq. (14) (linear equation on B x ), ˜ f (k ) and 

˜ T (k ) 
z being known 

Check for convergence 

end for 

Set f n +1 = 

˜ f (k ) , T n +1 
z = 

˜ T (k ) 
z , T n +1 

x = 

˜ T (k ) 
x 

Set θn +1 = θn + f n +1 T n +1 
z T n +1

x 

Check for convergence 

end for 

The fixed point algorithm is stopped when 

‖ f (k +1) T (k +1) 
x T (k +1) 

z − f (k ) T (k ) 
x T (k ) 

z ‖ B×B x 

‖ f (0) T (0) 
x T (0) 

z ‖ B×B x
≤ ε, (17) 

where ‖ A ‖ B×B x = 

[∫
B x 

∫ 
B z 

∫ 
B x A 

2 d x d z d x 0
]1 / 2

and ε is a small parameter to be fixed by the user. In the present study, we set

ε = 10 −6 . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. FE discretization 

To solve the beam problem previously introduced, a discrete representation of the functions ( T x , T z ) is chosen. A classical

finite element approximation in B x and B z is used. The elementary vectors of degree of freedom (dof) associated with the

finite element mesh in B x and B z are denoted q 

x 
e and q 

z 
e , respectively. The temperature fields and the associated gradient

are computed from the values of q 

x 
e and q 

z 
e by 

T x e = N x q 

x 
e , E e x = B x q 

x 
e , 

T z e = N z q 

z 
e , E e z = B z q 

z 
e ,

(18)

where E e x 
T = [ T x,x T x ] and E e z 

T = [ T z T z,z ] . The matrices [ N x ], [ B x ], [ N z ], [ B z ] contain the interpolation functions, their

derivatives and the jacobian components. They are built following the chosen discrete representation. 

3.4. Finite element problem to be solved on B x 

For the sake of simplicity, the functions ˜ f (k ) and 

˜ T (k ) 
z which are assumed to be known, will be denoted 

˜ f and 

˜ T z , and the

function 

˜ T (k ) 
x to be computed will be denoted T x . The gradient in Eq. (14) can be written as 

grad ( ̃  T z T x ) = �z ( ̃  T z ) E x, (19)

with 

�z ( ̃  T z ) = 

[
˜ T z 0 

0 

˜ T z,z 

]
. (20)

The variational problem defined on B x from Eq. (14) is ∫ 
B x 

δE T x λx 0 z ( ̃
 f , ˜ T z ) E x dx = r d Q z s ( ̃  T z )

∫ 
B x 

˜ f δT x dx −
∫ 
B x 

δE T x Q x 0 z ( ̃
 f , ˜ T z , θ

m ) dx, (21)

with 

λx 0 z ( ̃
 f , ˜ T z ) =

∫ 
B x 

˜ f 2 dx 0 

∫ 
B z 

�z ( ̃  T z ) 
T λ̄�z ( ̃  T z ) dz, (22)

Q x 0 z ( ̃
 f , ˜ T z , θ

m ) =
∫ 
B x 

∫ 
B z 

˜ f �z ( ̃  T z ) 
T λ̄ grad (θm ) d z d x 0 , (23)

Q z s ( ̃  T z ) = 

∫ 
B z s 

˜ T z dz, (24)

r d is considered as constant. 

Note that Eq. (23) can split into two independent integrals over B x and B z as θm is written under a separated form. 

The introduction of the finite element approximation Eq. (18) in the variational Eq. (21) allows us to deduce the following

linear system: 

�x 0 z ( ̃
 f , ˜ T z ) q 

x = R x ( ̃  f , ˜ T z , θ
m ) , (25)

where q 

x is the nodal temperatures vector associated with the FE mesh in B x , �x 0 z ( ̃
 f , ̃  T z ) the conductivity matrix obtained

by summing the elements’ conductivity matrices �e 
x 0 z 

( ̃  f , ̃  T z ) and R x ( ̃  f , ̃  T z , θm ) the equilibrium residual obtained by summing

the elements’ residual load vectors R 

e 
x ( ̃

 f , ̃  T z , θm ) 

�e 
x 0 z 

( ̃  f , ˜ T z ) =
∫ 

L e

B 

T 
x λx 0 z ( ̃

 f , ˜ T z ) B x dx (26)

and 

R 

e 
x ( ̃

 f , ˜ T z , θ
m ) = r d Q s ( ̃  T z )

∫ 
L e

N 

T 
x 

˜ f dx −
∫ 

L e

B 

T 
x Q x 0 z ( ̃

 f , ˜ T z , θ
m ) dx. (27)

L e refers to one element of the mesh in B x ( B x = ∪ L e ). 

3.5. Finite element problem to be solved on B z 

For simplicity reason as in the previous section, the functions ˜ f (k ) and 

˜ T (k −1) 
x which is assumed to be known, will be

denoted 

˜ f , ˜ T x , and the unknown function 

˜ T (k ) 
z will be denoted T z . The gradient in Eq. (15) becomes 

grad ( ̃  T x T z ) = �x ( ̃  T x ) E z (28)



 

 

 

 

 

 

 

 

 

 

 

 

with 

�x ( ̃  T x ) = 

[
˜ T x,x 0 

0 

˜ T x 

]
. (29) 

The variational problem defined on B z from Eq. (15) is ∫ 
B z 

δE T z λx 0 x ( ̃
 f , ˜ T x ) E z dx = r d Q x 0 x s ( ̃

 f , ˜ T x )

∫ 
B z s 

δT z dz −
∫ 
B z 

δE T z Q x 0 x ( ̃
 f , ˜ T x , θ

m ) dx (30)

with 

λx 0 x ( ̃
 f , ˜ T x ) =

∫ 
B x 

˜ f 2 dx 0 

∫ 
B x 

�x ( ̃  T x ) 
T λ̄�x ( ̃  T x ) dx, (31) 

Q x 0 x ( ̃
 f , ˜ T x , θ

m ) =
∫ 
B x 

∫ 
B x 

˜ f �x ( ̃  T x ) 
T λ̄ grad (θm ) d x d x 0 , (32)

Q x 0 x s ( ̃
 f , ˜ T x ) =

∫ 
B x 

˜ f ˜ T x dx. (33) 

As in Eq. (23) , the integral in Eq. (32) can split for the same reason. 

The introduction of the finite element discretization Eq. (18) in the variational Eq. (30) leads to the linear system 

�x 0 x ( ̃
 f , ˜ T x ) q 

z = R z ( ̃  f , ˜ T x , θ
m ) , (34) 

where q 

z is the nodal temperature vector associated with the FE mesh in B z , �x 0 x ( ̃
 f , ̃  T x ) the conductivity matrix obtained by

summing the elements’ conductivity matrices �e 
x 0 x 

( ̃  f , ̃  T x ) and R z ( ̃  f , ̃  T x , θm ) the equilibrium residual obtained by summing

the elements’ residual load vectors R 

e 
z ( ̃

 f , ̃  T x , θm ) 

�e 
x 0 x 

( ̃  f , ˜ T x ) =
∫ 

Lz e

B 

T 
z λx 0 x ( ̃

 f , ˜ T x ) B z dz (35) 

and 

R 

e 
z ( ̃

 f , ˜ T x , θ
m ) = r d Q x 0 x s ( ̃

 f , ˜ T x ) 

∫ 
Lz source 

e 

N 

T 
z dz −

∫ 
Lz e

B 

T 
z Q x 0 x ( ̃

 f , ˜ T x , θ
m ) dz. (36)

Lz e refers to one element of the mesh in B z ( B z = ∪ Lz e ). 

3.6. Determination of f on B x 

As previously, the known functions ˜ T (k −1) 
x , ˜ T (k −1) 

z and the unknown function 

˜ f (k ) are denoted 

˜ T x , ˜ T z and f , respectively.

The introduction of the separated form Eq. (10) in Eq. (16) allows us to deduce the straightforward relation: [ ∫
B 

grad ( ̃  T z ̃  T x ) 
T λ̄ grad ( ̃  T z ̃  T x ) dB 

]
f = r d ̃  T x 

∫ 
B z s 

˜ T z d z −
∫ 
B 

grad ( ̃  T z ̃  T x ) 
T λ̄ grad (θm ) d B. (37) 

Remark: For a volume heat source applied on a given region denoted I s , the calculation of the temperature is carried out

following two steps. First, the computation of the functions f i , T i x and T i z in Eq. (6) is performed. Second, only a integration

over I s of the terms f i in the explicit solution is computed at the post-processing level. 

4. Numerical results: thermal analysis

In this section, the following FE discretization is chosen: (i) a classical 3-node quadratic FE for the thermal unknowns

depending on the x-axis coordinate, (ii) a classical quadratic interpolation for the function f , (iii) a fourth-order layer-wise

description for the transverse direction. 

Static thermal tests are presented evaluating the efficiency and the properties of the algorithm and also validating our

approach. To this purpose, a sandwich test is addressed. The convergence of the method, the influence of the location and

size of the thermal load are discussed. The approach is assessed by comparing with 2D FEM solutions using a commercial

code. Finally, the separated variables decomposition is compared with a common tensor decomposition to illustrate the

performance of the method. 



 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Localized volumetric heat source on the upper face of a sandwich beam 

A sandwich beam, given in [10] , submitted to a localized heat source on the upper face is considered. The test is de-

scribed as follows: 

geometry : A three-layer sandwich beam with graphite-epoxy faces and a soft core with thickness e = 0 . 1 h is considered.

S = 

L 

h 
= 10 . 

boundary conditions : localized volumetric heat source over [ xs (1) 
min 

, xs (1) 
max ] in the upper face of the sandwich with a constant

value r d = 0 . 1 W.m 

−3

zero temperature on the bottom surface of the beam such as θ (x, z = −h/ 2) = 0 

material properties : The orientation of all the plies is γk = 0 , k = 1 , 2 , 3 . 

for the face: λL = 1 . 5 W.m 

−1 .K 

−1 
, λT = 0 . 5 W.m 

−1 .K 

−1

where L refers to the fiber direction, T refers to the transverse direction. 

for the core: isotropic material such as λ = 3 . 0 W.m 

−1 .K 

−1 

mesh : N x = 60 (number of elements along the whole beam) 

results : For a fixed heat source location, 2D FEM computations using Ansys with a very refined mesh of PLANE25 ele-

ments is provided (120 elements along the length and 70 elements along the thickness). Results based on the variables

separation x and z , denoted VS-LD4, are also provided. These results are considered as reference solutions. 

4.1.1. heat source for three locations 

First, the approach is assessed for three different locations of the heat source over I 1 = [0 , 10] , I 2 = [10 , 20] and I 3 =
[40 , 50] . For a thermal load over I i , three error indicators between a reference solution θ ref (VS-LD4) and a separated vari-

ables solution θn of order n is introduced: 

1. energy error indicator

εn = 100 

√
a err (θn − θ re f , θn − θ re f ) 

a err (θ re f , θ re f )

with a err (θ1 , θ2 ) = 

∫ 
B x 

∫ 
B z 

grad (θ1 ) 
T λ̄ grad (θ2 ) d z d x, 

(38)

2. global error indicator

ε�
n = 100 

√ √ √√√√
∫ 
B x 

∫ 
B z 

(�n − �re f ) 2 d z d x∫ 
B x 

∫ 
B z 
�re f 2 d z d x 

, (39)

where � stands for θ , q 1 and q 3 
3. error indicator on the maximum value

εθmax 
n = 100 

√
(θn 

max − θ re f 
max ) 

2

θ re f 
max

2
, (40)

The variation of the energy error indicator Eq. (38) with respect to the number of triplets (T i x , T 
i 

z , f 
i ) is represented on

Fig. 3 for the three locations of the heat source. The trend of these three configurations is rather similar. The obtained

curve can be divided into two parts with two different slopes, the first one being over 0 to 15 triplets, and the second
Fig. 3. Energy error indicator with respect to the number of triplets for three locations of volume heat source.



Fig. 4. Global error indicator (left) - θmax error indicator (right) for three locations of volume heat source.

Fig. 5. Global error indicator q 1 (left) - q 3 (right) for three locations of volume heat source.

Fig. 6. Distribution of the temperature along the beam axis for 3 locations of volume heat source at x = (xs (1) 
min 

+ xs (1) 
max ) / 2 - 50 triplets. 

 

 

 

 

 

 

 

 

one beyond 15 triplets. For further investigations, Fig. 4 shows the error rate on the global and maximum temperatures

versus the number of terms for the different cases. Again, we can notice that the error rate is greatly reduced with only

15 couples, then the new couples do not bring any significant corrections. Nevertheless, as it can be highlighted in Fig. 5 ,

the axial heat flux q 1 is the most difficult quantity to obtain with accuracy, and additional terms are needed to improve

the estimation of q 1 . 50 triplets are needed to have an error rate of less than 1%, whereas 40 triplets are sufficient for the

maximum temperature with the same level of error. 

To illustrate the accuracy of the approach, the distributions of temperature along the axis and the thickness of the beam,

and the variation of the transverse heat flux for three locations of the heat source are shown in Figs. 6 –8 , respectively. It

can be inferred from these figures that the parametrized approach is in very good agreement with the 2D reference solution



Fig. 7. Distribution of the transverse heat flux along the thickness for 3 locations of volume heat source at x = (xs (1) 
min 

+ xs (1) 
max ) / 2 - 50 triplets. 

Fig. 8. Distribution of the temperature across the thickness for 3 locations of volume heat source - 50 triplets.

Fig. 9. Distribution of the temperature for 3 locations of volume heat source - 50 triplets.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

computed with Ansys regardless of the position of the volumetric thermal load, from the edge to the middle of the structure.

The localized temperature rise is well-captured (see Figs. 6 and 9 ). As far as the transverse heat flux is concerned, the free

boundary condition on the top of the beam and the continuity condition at the layers interface are fullfiled (cf. Fig. 7 ).

The high variation in the upper layer is also well-represented. Finally, it can be noticed that the separated representation

approach (x and z coordinates), denoted VS-LD4, with a fixed location of heat source leads to very accurate results, and

could be considered as a reference solution. 

4.1.2. Influence of the size of the heat source region 

To further assess the method, localized volume heat source over a very small region is considered with three locations

( I L 
1 

= [0 , 5 / 3] , I L 
2 

= [10 , 35 / 3] , I L 
3 

= [40 , 125 / 3] ). The variation of the error rate is shown in Fig. 10 . It can be inferred from

this figure that the convergence rate is slower than the previous case as it could be expected. Indeed, this load case implies

a high variation of the temperature along the beam axis around the heat source region as it can be seen in Fig. 11 . 34

couples are needed to obtain a global error rate εθ
n < 1% . Nevertheless, 55 couples are required to obtain the maximal

temperature with accuracy (about 2%) due to the localization effect on the distribution. For illustration, the fifty first triplets

T i x , T 
i 

z and f i are given in Figs. 12–14 . The variations of T i x and f i are rather similar. These results were expected considering

Eq. (37) because they have shorter wavelengths when the number of the triplet increases. For the function T i z , the variation

along the thickness ( Fig. 13 ) seems to be identical beyond the 10 th one. Nevertheless, it is not the case as heat flux are

corrected by these additional terms. 



Fig. 10. Global error rate (left) - θmax error rate (right) for three very localized regions of volume heat source ( I L 1 , I 
L 
2 , I 

L 
3 ).

Fig. 11. Distribution of the temperature along the beam axis for 3 locations of volume heat source - 55 triplets.

Fig. 12. T i x (x ) . 

 

 

 

 

 

Finally, it can be concluded that the accuracy of the method is very good when compared with the reference solution. 

4.2. Comparison with CANDECOMP - PARAFAC approach 

To evaluate the efficiency of the decomposition algorithm developed in the previous section, the results are compared

with the canonical decomposition and parallel factor (CANDECOMP - PARAFAC, denoted HOSVD-PC) [26,27] which is a com-

mon tensor decomposition. For that, an estimate of the best rank-R Candecomp Parafac model of a tensor X is computed

using an alternating least-squares (ALS) algorithm available in [28] . The process consists in factorizing a given N 

th order

tensor X into a sum of component rank-one tensors (set of N component matrices A 

n with A 

n = [ a 

n , . . . , a 

n ] , A 

n ∈ R 

I n ×R ,

1 R 



Fig. 13. T i z (z) . 

Fig. 14. f i ( x 0 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n = 1 , . . . , N) ) that is 

X ≈
R ∑ 

r=1

a 

1 
r ◦ a 

2 
r . . . a 

N 
r = ̂

 X such that min ̂ X 
‖ X − ̂ X ‖ 

2
F

where ‖‖ F is the Frobenius norm and “◦” denotes outer product.

In our case, we have N = 3 and a 

1 
r , a 

2 
r , a 

3 
r corresponds to T r x , T r z , f r respectively. The tensor ̂ X is computed using the

solution X obtained with 55 triplets. The test involves a volume heat source applied on only the size of one element ( xs ∈
[40, 125/3], namely 1.6% of the length of the beam). To compare with the present approach, two types of error rate, a global

one Eq. (39) and a local one Eq. (40) , are given in Fig. 15 . It can be observed that the results are rather similar. It shows the

performance of the present decomposition process. 

Then, the energy contribution of each triplet to the total solution is also compared in Fig. 16 . For the present approach,

55% and 87% of the total energy are included in the first 8 and 25 triplets, respectively. The figure illustrates well the

behavior of the greedy type algorithm. On the contrary, for the HOSVD-PC approach, it is important to notice that the

decomposition provided for a given number of terms cannot be truncated. This number must be chosen a priori . We see

clearly that there is no hierarchy in the different terms of the summation (see Fig. 16 right), which is a drawback. In fact,

to obtain this figure, it is needed to compute all the terms each time for a fixed value of R . 

5. Numerical results: thermo-mechanical analysis

The numerical method described in [17] to solve the mechanical problem is used as it has shown interesting features

in terms of accuracy and efficiency. Again, a fourth-order expansion for the z-functions is considered. As the present study

is restricted to a weak thermo-mechanical coupling, once the thermal problem is solved following the presented approach,

the resolution of the mechanical one is limited to the computation of the second term of the right hand side of Eq. (5) .

It is important to note that this integral can be also divided into 2 parts, one over B x and the other one over B z as the

temperature is written under a separated form. Thus, the key point of the method remains available. This computation is

given in Appendix A . 



Fig. 15. global error rate (left) - θmax error rate (right) - comparison between present approach and HOSVD-PC.

Fig. 16. Contribution of each triplet in the total energy [%].

 

 

 

 

 

 

 

In this section, a 8-layer cross-ply beam is considered. The test case is described as follows: 

geometry : composite cross-ply beam [0 °/90 °/0 °/90 °/0 °/90 °/0 °/90 °] with S = 5 and L = 100 . The thickness of each layer

( h /8) is the same. 

boundary conditions : 

• Thermal load : prescribed temperature such as θ (0 , z) = 0 and θ (x, −h/ 2) = 0 , and internal volume heat sources in

the 4 th layer
• Mechanical BC : simply-supported beam

material properties : E L = 181 GPa , E T = 10 . 3 GPa , G LT = 7 . 17 GPa , G T T = 2 . 87 GPa , νLT = 0 . 28 , νT T = 0 . 33 , αL =
0 . 02 10 −6 K 

−1 
, αT = 22 . 5 10 −6 K 

−1 
,

λL = 1 . 5 W.m 

−1 .K 

−1 
, λT = 0 . 5 W.m 

−1 .K 

−1

mesh : the whole beam is meshed, N x = 100 . 

results : The results ( ̄σ11 , σ̄13 ) are nondimensionalized using: σ̄11 = 

σ11

αT E T θ0 
σ̄13 = 

Sσ13 

αT E T θ0 
, with θ0 = 10 , z̄ = z/h . The re-

sults are compared with 2D FEM analysis using Ansys with plane stress assumptions and converged mesh from the

previous section. The eight-node element PLANE77 is used for the thermal part and PLANE183 for the mechanical

analysis. 

5.1. Thermal results with any volume heat source locations 

The distribution of the 25 unknown functions in Eq. (6) is shown in Fig. 17 . The variation of the functions T i z which

depends on the z coordinate shows the importance of the LayerWise description of the temperature through the thickness.

The thermal load implies a localized temperature rise that is difficult to represent with a equivalent single layer approach. 



Fig. 17. T i x (x ) (left), T i z (z) (middle), f i ( x 0 ) (right). 

Fig. 18. Distribution of the temperature with respect to the position of the heat source x̄ 0 (right) and also along the thickness at x = L (left) - 8 layers. 

Fig. 19. Distribution of the temperature along the length of the beam at z = 0 (left) and along the thickness at the middle of the interval I 4 
th 

1 (right)

-8 layers.

 

 

 

 

 

 

 

 

 

 

To illustrate the possibility of the method, a volume heat source over [ ̄x 0 − �, ̄x 0 + �] with � = L/N x is considered. The

temperature variation with respect to the position of the heat source x̄ 0 is shown in Fig. 18 . The distribution of the tem-

perature through the thickness at the end of the beam, the maximal temperature and the temperature at z = h/ 2 , x = L are

provided. In a classical approach, 100 computations with a fixed heat source location are required to plot these curves. On

the contrary, for the present method, the influence of the position of the thermal load is quantified in a straightforward

manner. The maximal temperature is influenced by the boundary conditions at the edges of the beam ( Fig. 18 (right)). Obvi-

ously, the level of temperature at the end of the beam increases when the heat source is close to this one, but the relation

is not linear ( Fig. 18 right - dotted line). 

To assess the results, two heat sources localized in the 4 th layer over the region I 4 th 
1 

= [24 , 30] and I 4 th 
2 

= [49 , 51] , with

an intensity r (1) 
d

= 0 . 8 and r (2) 
d

= 1 are considered. We can see that the temperature and the heat flux are in very good

agreement with the reference solution (cf Figs. 19 and 20 ). The influence of the two heat sources on the temperature varia-



Fig. 20. Distribution of heat flux q 1 at x = 30 (left) and q 3 at the middle of the interval I 4 
th 

1 (right) along the thickness - 8 layers.

Fig. 21. Distribution of displacement - scale factor = 5 - 8 layers - 10 couples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion is clearly visible along the axis beam ( Fig. 19 left), and also across the thickness ( Fig. 19 right). Again, the temperature

rise is well captured. The complex distribution of q 1 and q 3 with respect to z coordinate is also well represented. Finally,

the explicit solution allows us to consider any number of heat source with any location and intensity very easily without

additional computational cost. 

5.2. Mechanical response 

Once the thermal analysis is solved considering the test case of the previous section, the mechanical response is com-

puted using the separated representation on the spatial coordinates x and z . The accuracy of the temperature distribution

over the whole beam, and in particular through the thickness is important to predict the mechanical response with accuracy.

In fact, it has been emphasized the localized influence of the thermal source on the corresponding results. 

For the presented test case, 10 couples are needed to build the solution. First, the 2D deformed shape of the beam is

shown in Fig. 21 and compared with the reference solution from Ansys computation. The norm of the displacement is given.

The structure is submitted to bending and stretching in the thickness direction. To illustrate the possibility of the approach

to provide 2D results, the distribution of the axial and transverse shear stress are given in Figs. 22 and 23 . The accuracy of

the results are excellent when compared with the reference solution, despite the high localization effect inside the structure.

In fact, a strong gradient occurs in the vicinity of the thermal load (two regions), and it is well represented by the present

method. Moreover, the two different intensities of the internal sources induce very different stresses levels in these regions.

It can be clearly seen for the transverse shear stress in Fig. 23 . For such analysis, a LayerWise description is required to

capture this gradient. Finally, the distribution of the maximal stresses ( ̄σ11 , σ̄13 ) through the thickness is given in Fig. 24 .

Whereas it is rather complex, the accuracy of the results is very satisfactory. 



Fig. 22. Distribution of σ̄11 (different scale for x and z -axis) - 8 layers - 10 couples.

Fig. 23. Distribution of σ̄13 (different scale for x and z -axis) - 8 layers - 10 couples.

Fig. 24. Distribution of σ̄11 at x = 28 (left) and σ̄13 at x = 24 (right) along the thickness - S = 10 - 8 layers - 10 couples. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion

In the present study, an explicit thermal solution with respect to the volume heat source location has been built for

laminated composite and sandwich beams. For this purpose, the temperature is expressed as a separated representation

of three 1D functions (coordinates x / z, and heat source location x 0 ). Thus, the deduced iterative algorithm needs the

resolution of only 1D problems and each of them implies a low computational cost. The total cost depends on the number

of triplets built to represent the solution. 

The behavior of the approach is illustrated on various benchmarks. The performance of the decomposition process of the

solution is also shown. The method is assessed by comparing with reference solutions, and the results are very satisfactory.

The distribution of the thermal quantities is rather complex, and the high-order expansion of the temperature through the

thickness is particularly suitable to represent that with accuracy. Then, from these accurate results, the thermo-mechanical

coupling has been addressed. For such thermal loads, a refined description of the mechanical quantity is needed to capture

the localization effect occurring in the thickness of the structure. For that, a LayerWise approach coupled with a variables

separation appears to be a very attractive method to predict stresses with accuracy. The computational cost is much lower

than classical LW approach or 3D computations. 

Moreover, the solution allows us to study directly the influence of the heat source location without any additional com-

putational cost, because it does not require the computations of many configurations with some fixed thermal loads. Once

the explicit thermal solution is built, all the subsequent responses can be immediately deduced. So, the approach can be

advantageously used for parametric problems such as identification, inverse problems, reliability ... 

Appendix A. Thermo-mechanical load 

The procedure to compute the second term of the right hand side of Eq. (5) is described here. It is denoted I thme =∫ ∫ 
B δε 

T C̄ 

(k ) ᾱ(k ) �θ dV . In the following, the notations defined in [17] are used. We recall that the displacement is written

under a separated form as 

u (x, z) = 

N mech ∑ 

i =1

f i (z) ◦ v i (x ) + f (z) ◦ v (x ) , (A.1) 

where f and v are the unknown functions to be determined. 

Thus, two problems have to be solved. We can express the strain as follows: 

ε( ̃ f ◦ v ) = B z ( ̃  f ) E v with E v = B 

mech 
x q 

v (A.2)

and 

ε( ̃ v ◦ f ) = B x ( ̃ v ) E f with E f = B 

mech 
z q 

f . (A.3)

The matrices B 

mech 
x and B 

mech 
z contain the interpolation functions, their derivatives and the jacobian components dependent

on the chosen discrete representation. The vector of dofs associated with the FE mesh in B x and B z is denoted q 

v and q 

f ,

respectively. The notation ∼ refers to a known function. 

A.1. FE problem to be solved on B x 

Using Eq. (A.2) and the expression of the temperature under the separated form given in Eq. (6) , I thme can be expressed

under the following form: 

I thme = 

∫ 
B x 

δE Tv
N ∑ 

i =1

f i (x 0 ) 

∫ 
B z 

B 

T 
z ( ̄f ) ̄C 

(k ) ᾱ(k ) 
T i z (z) dz ︸ ︷︷ ︸

f i 
thme z 

T i x (x ) dx (A.4) 

Thus, the elements’ thermo-mechanical load is written as 

F e thme z
( ̄f ) = 

N ∑ 

i =1 

f i (x 0 ) 

∫ 
L e 

B 

mech 
T

x f i thme z 
T i x (x ) dx. (A.5)

A.2. FE problem to be solved on B z 

Using Eqs. (A.3) and (6) , we can deduce that 

I thme = 

∫ 
B z 

δE T f 
N ∑ 

i =1

f i (x 0 ) 

∫ 
B x 

B 

T 
x ( ̄v ) ̄C 

(k ) ᾱ(k ) 
T i x (x ) dx ︸ ︷︷ ︸

f (k ) i 

thme x

T i z (z) dz (A.6) 



 

 

 

Thus, the elements’ thermo-mechanical load is deduced: 

F e thme x 
( ̄v ) = 

N ∑ 

i =1

f i (x 0 ) 

∫
z e

B 

mech 
T 

z f (k ) i 

thme x 
T i z (z) dz. (A.7)

Thus, the computation of I thme split into two integrations over B x and B z . 
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