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ERROR ESTIMATION AND ADAPTIVITY 
IN ELASTOPLASTICITY 

L. GALLIMARD, P. LADEVEZE AND J. P. PELLE 

Laboratoire de Mdcanique et Technologie, ENS de CachanlCNRSlUniversiti P .  et M .  Curie, 
61 Avenue du President Wilson, 94235 Cachan Cedex, France 

SUMMARY 
In this paper, a method is developed to control the parameters of a finite element computation for 
time-dependent material models. This method allows the user to obtain a prescribed accuracy with 
a computational cost as low as possible. To evaluate discretization errors, we use a global error measure in 
constitutive relation based on Drucker's inequality. This error includes, over the studied time interval, the 
error of the finite element model and the error of the algorithm being used. In order to master the size of the 
elements of the mesh and the length of the time increments, an error estimator, which permits estimating the 
errors due to the time discretization, is proposed. These tools are used to elaborate two procedures of 
adaptivity. Various examples for monotonous or non-monotonous loadings, for 2-D or axisymmetric 
problems, show the reliability of these procedures. 
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INTRODUCTION 

Today, industry requires the resolution of highly complex problems: 3-D problems, non-linear 
material behaviour, contacts, large deformations, etc. For these problems, the economic aspects 
are very important: computation time, time necessary to  prepare the computation (especially the 
meshing of complex structures), amount of data to store, etc. To perform such analyses, it is 
imperative, even within the framework of using more and more efficient computers, to master the 
parameters of the computation (size of the elements, type of elements, time increment length) in 
order to  minimize the computional costs while obtaining a prescribed accuracy. 

The aim of this article is to study these questions for the computation of structures with 
a non-linear material behaviour (elastoplasticity for instance), under the assumption of small 
displacements and for quasi-static loading. 

Numerous studies have dealt with the problem of adaptive control for linear problems;'-8 in 
comparison, few studies deal with the non-linear problems, especially with rate-dependent model 
 problem^.^**-'^ 

In elastoplasticity, the quality of the finite element solution at the instant t depends not only on 
the quality of the mesh, but also on the quality of the time discretization used since the beginning 
of the loading. Mastering such an analysis is thus clearly more complex than for linear static 
problems. In particular, the approach which consists of applying directly the procedures used in 
statics, at certain time steps, is insufficient to  estimate the quality of such a computation. TO 
master a non-linear computation, it is therefore necessary to build error measures that allow, over 
the whole time interval [0, TI,  to take into account all the errors of discretization: errors due to 
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the mesh, errors due to the incremental method (including the errors introduced by the use of 
Newton’s method on each time increment). An error in constitutive relation E ,  having these 
properties and a strong mechanical meaning, has been proposed by Ladeveze.” This error 
measure is based both on Drucker’s inequality,” which is satisfied by most of the elastoplastic 
and viscoplastic material models, and on techniques to construct admissible fields. An initial 
implementation for plane stress problems and for 3-node triangular elements as well as proced- 
ures allowing to master the meshes, have been proposed by Coffignal et a1.” The definition of this 
error measure and its main properties are recalled in the first part of this work. 

In the second part, we present techniques which allow building, by post-processing the finite 
element solution, a stress field which verifies at each instant t the equilibrium equations. An 
important point is that these techniques are independent of the algorithm used to solve the 
non-linear problem. 

The error measure in constitutive relation E takes into account simultaneously the errors due to 
the space discretization and the errors due to the incremental method. To control the parameters 
of the computation (size of the elements and size of the time increments), it is necessary to separate 
the contribution due to the incremental method from the contribution due to the mesh. To solve 
this difficulty, we propose a time error indicator which permits, for a given space discretization, 
estimating the part of the error due to the time approximations. 

Using these two error indicators, a rather simple procedure of adaptivity is initially proposed. 
Various examples of monotonous and non-monotonous loading show the possibilities of this 
procedure; for these examples, we use the Prandtl-Reuss model. Then, a more elaborate 
procedure is given. This procedure enables us to adapt simultaneously the mesh and the time 
discretization. 

ERROR IN CONSTITUTIVE RELATION 

For purposes of simplicity, let us consider the problem of the analysis of a structure in 2-D 
elastoplasticity (plane stress or plane strain). Yet, all the concepts can be extended without any 
difficulty to axisymmetric or 3-D computations. 

Notation 

Let [0, T ]  be the time interval. Let us suppose that the structure is a domain R. On a part d,R 
of the boundary 82, we suppose that the imposed displacement field is 

On the complementary part 

azR = an - alR 

a density of forces Fd(t, M) is imposed. Moreover, R is submitted to a density of body forces 

In elastoplasticity, the value of the stress at t is a function of the history of the strain at the 

(1) 

Sdk M).  

instant t, that may be translated, at each point current M of the structure R, by the relation 

a(?, M) = A [E(t’, M),  t’ < t ]  

where A is an operator characteristic of the material and E is the strain field. 
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Figure 1. Notation 

Reference problem 

U and a stress field Q defined on [0, T ]  x R such that: 
The elastoplastic problem can be formulated in the following manner: Find a displacement field 

(a) U satisfies the kinematic constraints: 

V t  E [0, T ]  U(t ,  M) = Ud(t,  M) on dlR 

(b) G satisfies the equilibrium equations: V t  E [0, T ]  

V U *  such that U* = 0 on alR 

jnoTE(U*)dR = SnhTli*dR + ]d2nFTU*dS 

(c) G and the strain E ( U )  satisfy the constitutive relation: 

V t  E [O, T ]  o(t, M) = A[E(U)(t’, M), r’ < t] in Q 

(d) at t = 0, the structure is in a natural state: 

V M E R U(0, M) = 0, o(0, M) = 0 

Discretization 

a finite element discretization. The time interval [0, T ]  is subdivided into increments: 
The problem (2) is solved in an approximate manner by using the incremental method and 

O < t l < t i < * . *  < t i < . . *  < T 

With the history of the displacements and of the stresses being known up until t i ,  the problem is 
then to compute this history on the increment [ t i ,  t i+  Numerous algorithms, presented in the 
bibliography, may be used to solve this p r ~ b l e m . ~ ~ * ~ ~  

At the end of each time increment t i +  1, these algorithms yield: 

(a) a finite element displacement field that satisfies the kinematic constraints: 

Uh(ti+l,  M) = N ( M ) q ( t i + ~ )  (3) 
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where N(M) denotes the matrix of the shape functions and q( t i+i)  the vector of the nodal 
displacement at t i  + ; 

(b) a stress field bh(ti+ 1, M) that satisfies the equilibrium equation for the finite element 
problem at ti + : 

VU,* = N(M)q* such that U: = 0 on 8,n 
n 

(4) 

where B(M)q* is the strain associated with the field U,* = N(M)q*. 

Remarks. 1. In practice, the field' a&+ ,, M) is only computed on the integration points of 

2. The stress field given by the finite element solver is very often the field dh(t i+ l ,  M) obtained 
each finite element. 

from &( U h )  by integrating the constitutive relation: 

dh(ti+l, M) = A(E(Uh(Z, M)) ,  T < ti+,) (5 )  

It must be noticed that this stress field satisfies equation (4) in an approximate manner. 

Drucker 's inequality 

Let (E, a) and (5, 0) be two strain-stress pairs, with E and 5 related to c and 0 through the 
constitutive relation, and with E and 2 equal to zero in the initial state. The material strictly 
satisfies Drucker's inequality if 

1; (a - 5)' (i: - i ) d z  > 0 V t  E [O,  T ]  

and 

!:(a - 5)'(i: - i ) d t  = 0 V t c  [0, T ]  * { E  = Eand c = if} (7) 

Most of the constitutive laws used in plasticity and in viscoplasticity strictly satisfy Drucker's 
inequality, as does the Prandtl-Reuss model which will be used for the examples. 

Error in constitutive relation 

Let (UcA, cSA) be a displacement-stress pair, which is zero at t = 0. UcA is a kinematically 
admissible displacement field (2a), and csA satisfies the equilibrium equation (2b). Generally, this 
pair does not satisfy the constitutive relation (2c). Thus, (UCA, cSA) is an approximate solution to 
the problem (2). 

The strain field eCA = &(UCA) can be related to a stress field cCA through the constitutive 
relation. In the same way, the stress aSA can be related to a strain field cSA through the inverse of 
the constitutive relation. 

We define the quantity q ( t ,  M) as follows: 
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For a material which strictly satisfies Drucker’s inequality, the pair (UCA, oSA) is the exact 
solution of the problem (2), if and only if 

q ( t , M ) = O  VtE[O,  TI  and V M E R  (9) 
To estimate the quality of (UCA, oSA) as an approximate solution to problem (2), the previous 
relations lead us to define the following error measure: 

e = [ Sup 5 q( t ,  M)dR]1’2 
tc[O.Tl R 

so that 

e = 0 o (UCA, oSA) is the exact solution to problem (2)  (11) 

e is called the error in constitutive relation associated with the admissible pair (UCA, oSA). 
Associated with this absolute global error, we define a relative global error: 

e 

D 
& = -  

where 

We also define the contribution of a time interval [0, t] to the relative error: 

CSUPr.[O,t1 jn q ( r ,  M)dQ1l’z 
D E [ O , f ]  = 

the contribution at t :  

(13) 

(14) 

and the contribution of the element E at t :  

Obviously, these contributions satisfy 

E 2 ( t )  = 1 $ ( t )  and E = Sup ~ ( t )  
E te[O,TI 

Remark. The quantity jn ih (oiAiSA + o:AicA)drdSZ, which is used for the definition of D, is 
always greater than or equal to zero. This quantity is greater than zero if one of the fields, oSA or 
oCA, is not equal to zero. Indeed, it is equal to the sum of 

f f  f f  

(oSA - O)T ( B S A  - 0) dr and (oCA - O)T (ECA - 0)dr Jo J O  

quantities which are always positive or equal to zero as a consequence of Drucker’s inequality. At 
least one of these quantities is not zero if oSA or oCA is not equal to zero. 
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Relation with the error in elasticity 

We can therefore write 
Let us suppose that the whole structure remains elastic or that we do not introduce plasticity. 

= Ki'asA and (iCA = Ke&CA (1 8) 

where Ke denotes the Hooke matrix. 
By integrating (8) over the time interval [0, t ] ,  we obtain 

V ( t ,  M) = 4 [ a s A ( t )  - K ~ & c A ( ~ ) ] ~  K l l  [ C S A ( ~ )  - K ~ & c A ( ~ ) ]  (19) 

and hence ,. 

where 1 1 .  )I is the energy norm over the whole structure. 
In the same way, we obtain 

hence 

(22) 

When the whole structure remains elastic, the error in constitutive relation defined in (12) is equal 
to the energy errors classically used?. 24 

1 IIgsA(T) - Ke&cA(T)I12 1 &elasticity - - -[ IIaSA(T)112 + IIKe&CA(T)Il2 

Relation with the exact error 

It may be shown that in elasticity the error in constitutive relation classically used is always 
greater than or equal to the exact error. And, it has been shown by numerical experiments that, 
for classical construction of the admissible fields, the effectivity index Oeffectivity is approximately 
equal to 1-5 (Reference 25) where 

computed error 
exact error 

- 
Oeffectivity - 

Thus, the error based on Drucker's inequality has the same properties as long as the structure 
remains elastic. 

Some numerical experiments have been conducted in elastoplasticity, and we observe that in 
general Oeffcctivity varies between 1-5 and 4. 

APPLICATION T O  FINITE ELEMENT COMPUTATION 

The displacement fields Uh(ti ,  M), obtained by a finite element computation, satisfy the kinematic 
constraints. Under the assumption that the displacement field Ud(t,  M) given on a l R  is linear on 
each time increment [ t i ,  t i+  1], assumption which is not very restrictive in practice, the field 
UcA can be chosen for t E [ t i ,  t i+  

t - ti 
t i + l  - ti 

equal to 

(23) UcA(t, M )  = Uh(ti, M )  + ~ (Uh(ti+ 1 9  M )  - Uh(ti, M ) )  
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However, the calculated stress g), is not statistically admissible. So, it is necessary to build, with 
a post-processor of the finite element analysis, a stress field as,, that satisfies the equilibrium 
equations over the interval [O, TI .  

This construction is conducted in two steps: In the first step, we compute, at the end of each 
time step, a stress field ~ ~ , , ( t ~ + ~ )  that satisfies the equilibrium equations at t i + l .  In the second 
step, the stress field as,, is built at any time by interpolation. 

Construction of aSA 

Over the past several years, we have developed techniques for constructing admissible fields for 
the evaluation of errors in linear analysis. These techniques are completely independent of the 
constitutive relation; they will be used herein to build, at the end of each time step t i +  1 ,  a stress 
field ~ ~ ~ ( t ~ + ~ )  that satisfies the equilibrium equations. We briefly recall the main ideas of this 
construction in the Appendix; for more details the reader may consult Ladeveze et a1.4.24 

( t i+ 1, M), the procedure described in the Appendix allows obtaining, at the 
end of each increment, a field asA(ti+l, M) that satisfies the equilibrium equations (2b) at t i + l .  
Then, if we define for t E [ t i ,  t i +  1]: 

Using the field 

and under the assumption that the loading is linear on each time increment, an assumption which 
is not very restrictive in practice, we obtain a field cS,, that satisfies the equilibrium equations (2b) 
at each moment. 

Remark. The procedure for constructing ~ ~ , , ( t ~ + ~ ,  M) uses the equilibrium equation of the 
finite element model (4) which is verified by ah(ti+ 1, M). 

If the finite element software gives the field dh( t i+ l ,  M) defined by (9, which satisfies (4) only 
approximately, it is necessary to build a field ah(ti+ 1, M) which satisfies (4) exactly. Such a field 
can easily be computed in a post-processor by partially performing an additional iteration of 
Newton’s method. More precisely, the field b h ( t i +  1, M) is chosen to be equal to 

where Aij is the solution to the linear problem: 

where 

Ke = In B(M)T K,B(M) dR 

and 

AF = In N(WTf,(ri+ 1, M)dQ IdZnN(WTFd(ti+ 1 ,  M) dS - B(MP dh(ti+ 1 9  M)m 
sn 

In (25), instead of Hooke’s matrix K,, any symmetric definite positive matrix may be used. 
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Computation of the error in constitutive relation 

When the pair (UcA, oSA) is known, it is necessary to determine the fields oCA and E~~ by 
integrating the constitutive law, in order to compute the error in constitutive relation. On each 
Gauss integration point over the whole structure, we integrate the constitute law: 

(i) for a known history of strain &(UCA) to obtain the history of stress oCA; 
(ii) for a known history of stress oSA to obtain the history of strain E ~ ~ .  

Integrating the constitutive law is conducted by classical methods.26-28 However, in order to 
obtain an accurate estimation of q(t ,  M) and hence of the error in constitutive relation, integra- 
tion is carried out on a sub-discretization of the discretization used for the incremental method. In 
practice, each time step [ t i ,  t i+  1] is subdivided into m regular sub-increments [ t i ,  t J+  1 ]  where 
tb = t i  and th = t i +  1, and we choose m x 5-20 depending on the size of the time step. 

TIME ERROR INDICATOR 

The error measure E derived from Drucker’s inequality is global in space and in time. It takes into 
account the errors due to the mesh as well as the errors due to the time discretization. To develop 
efficient adaptivity techniques, it is generally insufficient to control only the size of the elements of 
the mesh, it is also necessary to control the size of the time steps. To achieve this goal, it is 
essential to be able to separate, in the global error E ,  the part of the error due to the spatial 
discretization from the part of the error due to the time discretization. To solve this difficulty, we 
propose here a very simple time error indicator which allows us to estimate the part of the error 
due to the time discretization. 

Let us consider the pair (UcA, oh), where UcA is obtained from the finite element solution by 
(23), and where b h  is the stress field defined by 

t - ti 
V t  E [ t i ,  t i+1] M )  = ah(ti, M )  + ~ [oh(ti+ l r  M )  - bh(ti, M ) ]  (27) 

t i+l - ti 
where the fields ah(ti+ 1, M) satisfy, at the end of each increment, the equilibrium equation of the 
finite element model (4). 

Let us consider the problem (28) obtained from the reference problem (2) by a finite element 
spatial discretization: Find &(t, M )  = N ( M ) q ( t )  and b h ( t ,  M )  such that: 

uh satisfies the kinematic constraints: 

V t  E [0, T ]  Uh(t, M )  = Ud(t,  M) on a l Q  
oh satisjes the equilibrium equations of the Jinite element model Vt  E [0, TI:  

VU,*(M) = N(M)q* such that U: = 0 on a l R  
c c 

J M)TB(M)q*dfi = J &(t, M)TN(M)q*dQ + J Fd( t ,  M)TN(M)q*dS 
R R a2Q 

o h  and the strain &(Uh) satisfy the constitutive relation: 

V t  E [o, T ]  Uh(t ,  M )  = A[E(Uh) (t’, M) ,  t’ < t ]  in fi 

at t = 0, the structure is in its natural state: 

q(0) = 0, M) = 0 
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The pair (Uca, oh) so constructed satisfies all the equations of problem (28), except the constitut- 
ive relation (28c). The quality of this pair as an approximate solution to problem (28) may be 
estimated by an error measure built in Drucker’s inequality. 

by an integration of the constitutive law. Then the 
pairs (&h, oh) and ( E ( U ~ ” ) ,  oCA) satisfy the constitutive law. The associated error in constitutive law 
is defined by 

Let &h be a strain field computed from 

r r l l / Z  

where 

Condition (7) shows that itime = 0 if and only if the pairs (&h, oh) and (&(UCA), oCA) are equal, that is 
if and only if the pair (UCA,  oh) is the exact solution to problem (28). Hence, for a given spatial 
discretization, ilimc estimates the errors due to the time discretization: incremental method errors 
and Newton’s algorithm errors. 

The absolute error itimc can be associated, as for e, with a relative error: 

with 

We also define the contribution of time interval [0, t] to the relative error: 

the contribution at t: 

and the contribution of an element E at t: 

Obviously, these contributions satisfy 

Hence, itimc estimates the quality of the solution computed as an approximate solution to problem 

In practice, we will use irime or the relative quantity itimc as an error indicator to evaluate the 
part of the error due to the time discretization. In the fifth part of this paper, we will show that the 
knowledge of the error e and of the time indicator itimc allows constructing an indicator to 
evaluate the part of the error due to space. 

(28). 
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EXAMPLES 

Three examples of evaluating error measures are presented herein. The finite element analyses are 
2-D or axisymmetric analyses computed with the finite element software CASTEM2000.2g The 
meshes used are pre-optimized in e l a ~ t i c i t y , ~ ~ * ~ ~  and they are generated by our automatic 2-D 
mesh generator ARAIGNEE. 

Example I 

The first example is the computation of a perforated disc (Figure qa)) which is subjected, in its 
upper and lower parts, to a monotonous loading (Figure 2(b)). The initial mesh has 415 3-node 
triangular elements (Figure 2(c)) and the analysis is conducted with 23 time steps. The global 
error computed is E = 13 per cent, and the time error indicator is itime = 0.3 per cent. Figure 2(d) 
shows the evolution of the computed contributions as functions of the time E ~ ~ , ~ ~  and i,imc,tO.tl. 
Figure 2(e) shows the size of the plastic zone at the end of the loading, and Figure 2(f) shows the 
map of the contributions E&) at t, when jn q( t ,  M)dR is maximum; for this example, t, = T. 

In this example, the whole structure remains elastic up to t = 40. When t < 40, Figure 2(d) 
displays that the evolution of E ~ , , ~ ]  is linear with respect to the loading, which corresponds with 
a constant error in elasticity. During the elastic loading, it can also be noticed that i,imc,Io,rl is zero, 
which is normal because during an elastic loading, time does not play any part. 

Example 2 

The second example is an axisymmetric analysis conducted with 6-node triangular elements. 
The problem is described in Figure 3(a); it is an axially symmetric part of a press which is 
subjected to a ngn-monotonous loading (Figure 3(b)). Thirty-five time steps are used to determine 
the time discretization. The evolution over time of the contributions E ~ ~ , ~ ~  and itimc, [o,zl are given in 
Figure 3(c). As in the first example, i,ime,tO,zl is zero during elastic loading. Moreover, during the 
two phases of ‘elastic unloading’, the contributions .q0, 11 and itimc, to, z1 remain constant. 

The mesh, optimized in elasticity, contains 21 1 triangular elements (Figure 3(d)). The following 
figures show the map of the contributions c E ( t )  at different time steps: 

Figure 3(e): at time step t,, where the whole structure is elastic; 
Figure 3(f): at time step t l ,  where the first cycle of loading is maximum; 
Figure 3(g): at time step t Z ,  where the second cycle of loading is maximum. 

Finally, Figures 2(h) and 2(i) show the plastic zone at t l  and tz .  

Example 3 

The aim of the third example is to compare on regular meshes the efficiency of the 3- and 
6-node triangular elements. The mechanical problem is shown in Figure *a). It is a bending beam 
computed in plane stress. 

The loading is monotonous and the applied loads are a density of forces: 
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-Error - Time error indicator 

14 T 

12 

2 

0 
0 20 40 60 80 100 

(4 Kinematic time 

(e) (0 
Figure 2. Computation of a perforated disc (a) Mechanical problem (b) Monotonous loading (c) Mesh, 415 3-nOde 
elements-240 nodes (d) Contributions E ~ ~ , ~ ~  and ilimc,[O.l, E = 13 per cent, ilimc = 0.3 per cent (e) Size of the plastic zone, 

initial threshold 700 MPa (f) Local error contributions 
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0 
(b) ‘ 1  t 2  
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- Error - Time error indicator 
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B 3  2 
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0 100 200 300 400 500 600 700 

(C) Kinematic time 

Figure 3. Computation of an axially symmetric press (a) Mechanical problem (b) Non-monotonous loading (c) Contri- 
butions E ~ ~ , ~ ~  and itime,[O,rl, E = 6.3 per cent, itimc = 0.43 per cent (d) Mesh, 21 1 6-node triangular elements486 nodes 
(e) Local error contributions at  t. (f)  Local error contributions at t ,  (g) Local error contributions at tt (h) Size of the 

plastic zone at t , ,  initial threshold 400 MPa (i) Size of the plastic zone at t2 initial threshold 400 MPa 
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100 - 

10 * '  

time 
I 4 

100 loo0 loo00 (4 
Figure 4. Comparison of the efficiencies of 3-node triangular elements with 6-node triangular elements (a) Mechanical 
problem (b) 24-element mesh (c) 1536-element mesh (d) Global relative errors computed as a function of computer 

processing time 

It is easy to verify that, during elastic loading, the exact stress solution is a second-degree 
polynomial: 

fJ,, = A( t ) [2 (x  - L ) y ] ,  bXY = A(t)[h2 - y 2 ] ,  byy = 0 

Four successive analyses have been conducted on the mesh shown in Figure 4(b) and on three 
other meshes obtained by subdividing the first one. The finest mesh is shown in Figure qc). The 
global relative errors computed are shown in Figure 4(d) as a function of the time necessary for 
finite element analysis on an HP 5500 workstation. 

It should be noted that for a given accuracy, the use of 6-node triangular elements leads to 
a five-fold time saving in comparison with the use of 3-node triangular elements. 
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ADAPTATIVITY OF COMPUTATIONS 

To control the parameters of an elastoplastic computation, it is necessary to separate, in the 
global error, the part due to the time discretization from the part due to the space discretization. 
Moreover, to accurately predict the parameters of the final FE analysis from the results of an 
initial FE analysis, we must identify the behaviour of the errors used as a function of the size h of 
the elements and of the size At  of the time increments. As far as we know, theoretical results on 
this subject do not exist; so, we have estimated these types of behaviour with numerical tests. 

Study of the time error indicator 

Let us once again consider the beam problem (Figure *a)). An initial finite element analysis is 
conducted on the mesh of Figure 5(a) with 6-node triangular elements and 18 time steps. The 
global error computed is E = 1.60 per cent, and the time error indicator is itime = 050 per cent. 
The evolution over time of the contributions E [ ~ , , ~  and itime,[O,fl is given in Figure 5(b), and the size 
of the plastic zone is given in Figure 5(c). 

With a coarser time discretization (6 time steps), the errors computed are (Figure 5(d)) 

E = 2.39 per cent and it imc = 2.05 per cent 

With the same time discretization of 6 time steps and a refined mesh (each element of the initial 
mesh being subdivided into 4 elements), the errors computed are (Figure 5(e)) 

E = 2.1 1 per cent and itime = 2.06 per cent 

This example shows, on the one hand, that if the time discretization is coarse and the mesh is 
very fine, the global error is very similar to the time error indicator and, on the hand, that the time 
error indicator, for a given time discretization, depends very little on the mesh used. We have also 
noticed that during the elastic phases (where there is no time integration), this indicator is zero. 
These observations lead us to consider that itime is a good estimate of the part of the global error 
due to the time discretization. 

To evaluate the behaviour of itimc as a function of the time step size At, we have conducted some 
numerical tests which show that 

itime = WAt) (36) 

As an example, let us consider the console shown in Figure qa). The mesh used (273 6-node 
triangular elements) is given in Figure 6(b), and the loading is monotonous. The analysis is 
conducted for various values of the number of time steps. The evolution of itimc as a function 
of the number of time steps is shown in Figure qc), and the size of the plastic zone is given in 
Figure 6(d). It can be noticed that the evolution of itime as a function of the number of time steps is 
consistent with condition (36). 

Evolution of the error as a function of h 

The error e takes into account the errors due to the mesh as well as those due to the time 
discretization. To separate these contributions, we suppose that the global error e may be split 
into two parts: 

where Isppcc denotes the contribution of the errors due to the spatial discretization and Itime the 
contribution of the errors of discretization over time. 

(37) 2 e2 = I&ace + Itime 
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Figure 5. Study of the time error indicator (a) Mesh 1,778 6-node triangular elements-1645 nodes (c) Size of the plastic 
zone, initial threshold 96 MPa (b) Contributions E ~ ~ . ~ ~  and i,imc.~O.llr 18 increments, mesh 1 (d) Contributions E ~ ~ , ~ ~  and 
i , imc, l . l l  6 increments mesh 1 (e) Mesh 2, 31 12 6-node triangular elements--6401 nodes ( f )  Contributions E , ~ , ~ ~  and 

i,ime.lo.rl. 6 increments, mesh 2 

Considering the properties noted previously, the time indicator itime (29) is a good estimate of 
Itimc. Thus, the part of the error due to space may be defined by 

(38) 2 
Ispace = SUP {e2 - it ime, 0) 
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Figure 6. Evolution of the time error indicator as a function of the number of time steps (a) Mechanical problem 
(b) Mesh, 273 6-node triangular elements-618 nodes (c) Evolution of itime (d) Size of the plastic zone, initial threshold 

800 MPa 

Remark. For each of the examples studied, we have always noted the inequality e2 > i&,. If 
this inequality holds, we have Izpace = e2 - iB, .  Nevertheless, as the inequality e2 > i;,, has not 
been proved, definition (38) ensures that I~pa,, is greater than or equal to zero. 

To be able to predict new sizes for the elements during‘an adaptation procedure, it is necessary 
to know, at least approximately, the evolution of Ispace as a function of h. The aim of the following 
examples is to evaluate this evolution. 

In the first example, let us reconsider the perforated disc shown in Figure 2(a) and a 415 3-node 
element mesh (Figure 2(c)). Two other meshes are obtained by subdividing this first mesh. In 
a first step, we have performed, on each mesh, a finite element analysis in elasticity, and we have 
computed eelasticity (20), the error in constitutive relation classically used in linear analysis.24 In 
a second step, we have performed the same analyses for an elastoplastic constitutive relation, with 
the monotonous loading shown in Figure 2(b), and we have computed e, itime and Ispace. The 
results are shown in Table I and in Figure 7 for Io’,ace and eelasticity. 

It can be noted that the indicator in space Ispace and the error in elasticity eelasticicy have a similar 
evolution. More precisely, on the two finer meshes, we obtain 

2 

Ispace = O(h0’84) and eelastici,y = O(hO”’) 
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Table I. Results for 3-node triangular elements 

2 1 
Number of 
elements e2 i i n e  Ispace eelasticity 
~~ ~ 

415 21934 011 219.23 1.098 
1660 70.05 0.13 69.92 0.332 
6640 22.00 0.12 21.88 0099 

squared error 
-space +elasticity 

'Oo0 T 

loo 10 I I 
I number of elements 

1 '  
100 loo00 

\ I - 
O.l t 

0.01 1 

Figure 7. Evolution of Ifpce and e&s,iei,r as a function of the number of elements 

The convergence rate obtained for Ispace with 3-node triangular elements is thus similar to the one 
obtained in elasticity. A similar computation with 6-node triangular elements yields the results of 
Table 11. 

Figure 8 shows similar evolutions for I,',,,, and eelasticity. More precisely, on the two finer 
meshes, we obtain 

2 

Ispace = O(h0.93) and eclasliciIy = 

Again, the rates of convergence of the indicator in space Ispace and the error in elasticity 
eelasticity are almost identical. In this example, computed with either 3- or 6-node triangular 
elements, the rate of convergence of the error in elasticity is almost the same because of the 
presence of singularities. 

Thus, let us consider a problem where the elastic solution is perfectly regular. The finite element 
analysis is conducted on the beam in Figure 4(a) with a 70-element mesh (Figure 9), then with 
3 other meshes obtained by successive refinements (see Table 111). 

Figure 10 shows once again a similar evolution for Is",,,, and eZLasticity. More precisely, on the 
two finer meshes, we obtain 

Ispace = O(h''6) and eelasticity = O(h1'9) 

Again, the rates of convergence of the indicator in space Ispace and the error in elasticity 
eelasticity are very similar, and their values are close to 2, the theoretical rate of convergence in 
elasticity for 6-node elements. 

In conclusion, the previous examples have shown that it is reasonable to consider that the part 
of the error due to the spatial discretization evolves, relative to the size of the elements, much the 
same as the error in elasticity evolves. 
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Table 11. Results for 6-node triangular elements 

Number of 
elements e2 i L  I.&~ eLticity 

92 76.81 789 68.92 0.2398 
368 21.81 8.21 1360 00518 
1472 11.12 8.18 2.94 0.0128 
5888 8.97 8.16 0.81 0.0034 

squared error 

1 go 1 OW loo00 

0.001 1 

Figure 8. Evolution of I$ce and e&,,ici,y as a function of the number of elements 

Figure 9. 70element mesh 

Table 111. Results for 6-node triangular elements 
~~~~~~ 

2 
Number of 
elements e2 i L  eSpace efiasticity 

70 180.1 9.96 170-1 07709 
280 34.80 10.43 24.38 0.0584 
1120 1344 10.46 341 0.0041 
4480 10.76 10339 0 3 7  000027 
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Figure 10. Evolution of If,. and e~,sslisily as a function of the number of elements 

A simple procedure of adaptivity 

This first procedure consists of using sufficiently fine time discretizations to be able to neglect 
the part of the error due to time in comparison with the part of the error due to space. This 
procedure may be described in the following way: Let E~ be the prescribed accuracy. 

(1) An initial analysis over the time interval [0, TI] is performed on a mesh T, (previously 
optimized in elasticity) for a time discretization A. Then, the global error E and the indicator in 
time ilime are computed. 

( 2 )  If irimc < B E o ,  it is considered that the errors due to the time discretization may be neglected. 
And, the characteristics of the optimal mesh T* are determined by using the procedure developed 
in elasticity (the main ideas of this procedure may be found in the Appendix). 

(3) If itime > O E ~ ,  a new time discretization A* is determined, in the part of [0, T ]  where the 
loading leads to plastic behaviour, with the aim of satisfying < O E o .  The size At* of the time 
steps is computed using (36) with respect to the size At of the time steps of A 

A subsequent analysis is performed with A* on the initial mesh T,. In one step, this procedure 
generally leads to obtaining the desired inequality and the point (2) above is then applied. 

In this procedure, the time error indicator must be small in comparison to the global error. 
Thus, OEo must be small in comparison to E ~ .  In practice, we use 8 = 4. Two examples of this 
procedure follow. 

First example: The example of the console described in Figure 6(a) is considered again. The 
prescribed accuracy is E~ = 5 per cent. The initial mesh used (Figure ll(a)) has 273 6-node 
triangular elements. The time discretization has time step for the elastic loading and 2 time steps 
for the plastic loading whose length is 

At = 40 

The errors computed are (Figure 1 l(b)) 

E = 11.7 per cent and itimc = 6.8 per cent 



209 ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY 

- Error -o- Time error indicator 

12 T 

10 i 
aP 8 4  

i 2 1 
2 t  

01- 
0 20 40 60 80 100 

-u- Error (init) 

- -x- Time error (init) - Error (optim) - Time error (optim) 

0 20 40 60 80 100 
(e) Kinematic time 

Figure 11. Adaptivity of the computation for the console; prescribed accuracy 5 per cent (a) Initial mesh, 273 &node 
triangular elements418 nodes, error 11-7 per cent (b) Contributions E ~ ~ . ~ ~  and ilimc.lO.fl, 1 elastic increment, 2 plastic 
increments, At = 40 (c) Optimized mesh, 448 6-node triangular elements-999 nodes, error 4.7 per cent (d) Optimality 
map (e) Contributions and ilime,lo,fl; initial mesh and optimized mesh, 1 elastic increment, 8 plastic increments, 

At = 10 
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(a) (b) 

Figure 12. Direct application of the procedure for an overly large time step (a) Optimized mesh, 530 6-node triangular 
elements-1167 nodes; prescribed accuracy: 5 per cent; obtained 8 per cent (b) Optimality map 

In this first analysis, itimc cannot be neglected. So, a new time discretization is computed 
beforehand. In taking 8 = 3, the time step computed is 

At* = 10 

Using this new time discretization, the errors computed are (Figure 1 l(e)) 

E = 10.3 per cent and Itimc = 1.68 per cent 

The inequality i&,= < Be,, is then satisfied, and point (2) described above may ,e appliec The 
optimized mesh thus determined is shown in Figure 11(c), and the errors computed are 
(Figure 1 l(e)) 

E* = 4.7 per cent and i&,e = 1-61 per cent 

To control the optimality of the mesh, a simple method consists of determining a map of 
optimal sizes for a prescribed accuracy equal to the obtained accuracy E* (neglecting once again 
the errors due to the time discretization). If the built mesh is correctly optimized, the procedure 
must yield for each element a coefficient of modification of size rE close to 1. In practice, a mesh is 
correctly optimized if, for the majority of the elements, 0.75 < rE < 1.5. Figure 1 l(d) shows that 
the mesh T* is very well-optimized. 

It must be noted that direct application of point (2) above, without having previously 
determined a new time discretization, leads to the mesh shown in Figure 12(a) and to an error of 
8 per cent, compared with the prescribed 5 per cent. Besides, Figure 12(b) shows that this mesh is 
not optimal. 

Second example: The example of the axisymmetric press described in Figure 3(a) is considered 
again. The prescribed accuracy is 2 per cent. The initial mesh is shown in Figure 13(a), and the 

Figure 13. Adaptivity of the computation for the press; prescribed accuracy 2 per cent (a) Initial mesh, 211 6-node 
triangular elements486 nodes, error 6.3 per cent (b) Optimized mesh, 677 6-node triangular elements-1466 nodes, 
error 2.3 per cent (c) Contributions E ~ , , , ]  and i,ime.(o,,,; initial mesh and optimized mesh (d) Optimized mesh, optimality 

map (e) Regular mesh, 680 6-node triangular elements-1463 nodes, error 5.6 per cent 
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time discretization has 35 time steps. The errors computed are: E = 6.3 per cent and itime = 0.43 
per cent. In applying the procedure the mesh T * (Figure 13(b)) is obtained in one step, and the 
errors computed are E* = 2.3 per cent and iZme = 0.44 per cent. 

Figure 13(c) shows the evolution of the contributions E [ ~ , ~ ~  and itime,[O,tl on the initial mesh and 
on the optimized mesh, and Figure 13(d) allows controlling the optimality of the built mesh. In 
comparison, Figure 13(e) shows a regular mesh including almost the same number of nodes as the 
optimized mesh. The errors computed on this mesh are E = 5.5 per cent and itimc = 0.63 per cent. 

These examples show that this first procedure functions correctly. Yet, it is clear that the main 
drawback of this technique is that the possibilities of optimizing the time discretization are 
neglected. 

Simultaneous adaptivity of the space-time parameters 

(37). Let us recall that evaluating Itime with ilime, we get the following evaluation for Ispace: 
The idea herein is to use more completely the decomposition e2 = I,”,,,, + I:,, introduced in 

2 lspace = e2 - i z  time 

To determine a size map, the contributions of each element E of the mesh to Ispace must be known. 
First of all, it seems logical to define these quantities by 

(40) 

For the global error, in all the examples computed, we have always noted e2 > iime. However, for 
very fine meshes and coarse time discretizations, it may be observed on some elements that 
e i  d i&,e,E. To avoid this difficulty, we have chosen to define the local contributions of an 
element by 

2 .2  
Ispace, E = e i  - ‘time, E 

(41) 2 
Ispace. E = SUP LO7 ei - E l  

Hence 

And for the whole structure, 

2 
‘space = c E I,’,ace, E and 

This allows obtaining (37) once again. 
These quantities may be associated with relative ones: 

e Itime Ispace 
Ispace = - & = -  

D 9 l t i m e  = ~ D ’  

(43) 

(44) 

where D is the denominator defined in (12). 
For a prescribed global error of e0 ,  the following procedure may be defined: 

(1) An initial analysis over the time interval [0, T ]  is performed on a mesh T, (previously 
optimized in elasticity) for a time discretization A. Then, the global error E,  the time indicator 
Itime and the space indicator Ispace are computed. 
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(2) A new mesh T* and a new time discretization A* are determined in ofder to equally split 
the optimized error between the space error and the time error: 

E* = Eo 
(45) 

The time discretization A* is computed such that Z:ie = 4 E:.  In order to obtain during the 
optimized computation Z&, = Is*pace. Thus, the length of the time step is determined uniformly by 

Obviously, this modification of the size of the time step is not performed on the first elastic 
increment. 

The mesh T * is built using the techniques developed in statics for a prescribed spatial error: 

Remark. To represent correctly the loading history, it may be necessary to fix a limit At,,, for 
the length At* of each time step. If this maximum length is reached during the computation of A*, 
At* is chosen equal to At,,,, and it is no more possible to equally split the optimized error 
between the space error and the time error. Equations (36) and (37) lead us to built the pptjmized 
mesh T* for a prescribed spatial error: 

1 2  I,*,,, = 2 6 0 .  

Atmar Itirne 

At EO 
I&,, = (1 - a) E: where a = - - 

To illustrate this procedure, we re-examine the example of the console (Figure qa)). The initial 
analysis is conducted with a 273-element mesh (Figure 14(a)) and a coarse time discretization 
(1 time step of elastic loading and 2 time steps of plastic loading). The prescribed error is 5 per 
cent. 

The initial analysis leads to E = 11.7 per cent and ilime = 6.8 per cent. The simultaneous 
adaptivity procedure leads to the use of a 5-increment time discretization with a 621-element 
optimized mesh, as shown in Figure 14(b). The errors computed are then E* = 5.0 per cent and 
i&,e = 3.3 per cent. 

Figure 14(c) shows the evolution of the contributions E [ ~ , ~ ~  and ilime,lO,fl on the initial mesh and 
on the optimized mesh. In this example, the simultaneous procedure leads to a reduction of the 
computer processing time of roughly 25 per cent (see Table IV). 

(b) 

Figure 14 (a-b) 
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---- Error (init) 

-x- Time error (init) - Error (optim) - Time error (optim) 
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Figure 14. Simultaneous adaptivity in time and space for the computation of the console; prescribed accuracy 5 per cent 
(a) Initial mesh, 273 6-node triangular elements418 nodes, error 11.7 per Cent (b) Optimized mesh, 621 6-node 
triangular elements-1366 nodes, error 5.0 per cent. (c) Contributions E [ ~ . ~ ~  and i,emp.[O.,lr initial mesh 1 elastic increment, 

2 plastic increments; optimized mesh: 1 elastic increment, 4 plastic increments 

Table IV. Comparison between the efficiencies of the two procedures 

Procedure Simple Simultaneous 

Number of elements 448 62 1 
Number of nodes 99 1366 
Number of increments 9 5 
Computed error 4.1 per cent 5.0 per cent 
Computer processing time (HP 735) 115 s 90 s 

CONCLUSION 

An error measure with a strong mechanical meaning has been implemented to control the finite 
element analysis in elastoplasticity. This error measure enables taking into account all the errors 
due to the discretization: errors due to the spatial discretizatiop, errors due to the incremental 
method. Initially, it has been implemented for the Prandtl-Reuss constitutive relation in elasto- 
plasticity for 2-D or axisymmetric problems and for 3- or 6-node triangular elements. It must be 
noted that this implementation is independent from the algorithm used to solve the plasticity 
problem. 

The extension of this error measure to other constitutive relations in elastoplasticity does 
not present any difficulties, under the condition that these relations strictly satisfy Drucker’s 
inequality. In the same way, the extension to quadrilaterals and even to tetrahedrons may be 
easily implemented by using the techniques of construction of admissible fields proposed in 
Ladevkze et al.24-30 

The time error indicator that we have built allows separating the contribution to the error due 
to the spatial discretization from the contribution due to the incremental method. Using these 
contributions and their spatial distributions, two procedures of adaptivity of the computation 
parameters have been proposed. The first one imposes the use of sufficiently fine time discretiz- 
ation to that the associated contribution is negligible in comparison with the error due to the 
spatial discretization. In this case, the adaptivity of the computation is confined to the adaptivity 
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of the mesh. The second one is an initial example of a procedure allowing to simultaneously adapt 
the mesh and the length of the time increments. The example presented shows that this procedure 
leads to a significant reduction in computation cost. The very simple strategy employed that 
consists of balancing the contributions in space in time, is independent of the algorithm used. 
Nevertheless, for a prescribed accuracy, this strategy does not ,necessarily lead to the lowest 
computation cost. A better optimization of the computation cost would require taking into 
account the algorithm used. 

APPENDIX 

Construction of asA ( t i + l )  from ah( t i+ l )  

conditions: 
To perform the construction, we impose asA(ti+l) to be linked to by the following 

( b S A ( t i + l )  - ah(t i+ l ) )T E(qi)dE = 0 (47) SE 
which must be satisfied for all functions of basis pi associated with the finite element discretiz- 
ation and for each element E of the mesh. 

In a first step, in using (2b) and (47), we determine on the faces of the elements, from local 
node-by-node computations, the densities of forces $(ti+ 1) such that 

for all U*,  solid displacement field on the element E. In (48), t f E  = 
edge of E. Moreover, on an edge common to two elements El and E l ,  we have 

1 and is constant on each 

t lEl  + V E l  = 0 (49) 

In a second step, the stress field asA(ti+l) is built on each element E in determining a simple 
solution of the equilibrium equations: 

(where n denotes, on dE, the unitary normal outside vector). Indeed, the condition (48) shows that 
(10) admits solutions. We must note that (48) is still satisfied when on an edge I-, the density 
F ( t i +  built is replaced by $( t i+  1) + fi, where fi denotes the density of forces with a zero 
resultant and moment on r. 

As an example, for the 3-node triangular elements, @ ( t i + l )  is built in a linear fashion on each 
edge r: 

(51) 

with A and B constant vectors, and A and A 2  barycentric co-ordinates on the edge r. In taking 

(52) 

where t denotes a unitary vector tangent to r, we obtain fields uSA(ti+l) that lead to an error 
measure of better quality. 

$(ti+,) = A + (A1 - A2)B 

H = ( B T t )  (A, - A , ) t  
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Optimal mesh 

optimal relative to a measure of error E if 
In elasticity, we use the criterion of optimality introduced by Ladeveze et ~ 1 . ; ~  a mesh T *  is 

E* = E~ prescribed accuracy 

N* minimal number of elements 
(53) 

This criterion of optimality naturally leads to minimizing the costs of computations. To solve the 
problem (53), the following procedure is used: 

An initial analysis is performed on a relatively coarse mesh T. 
For this mesh, the global error E and the local contributions 
The characteristics of the optimal mesh T* are determined. 

are computed. 

Then, the mesh T *  is generated by an automatic mesh generator and a second finite element 
computation is made. 

To determine the characteristics of the optimal mesh T*, the method consists of computing on 
each element E of the mesh T a coefficient of size modification: 

1. * 
n E  

r E  = - 
h E  

(54) 

where hE denotes the size of the element E and hg the size to be imposed to the elements of T* in 
the region of E to assure the optimality. The computation of the coefficients rE is based on the rate 
of convergence of the error: 

where q depends upon the type of element used, but equally upon the regularity of the solution. 
Let us suppose that the solution of the problem is regular. Then, q is equal to the convergence 

rate of the used element. For instance, we have q = 1 for the 3-node triangular elements and q = 2 
for the 6-node triangular elements. In this case, to predict the optimal sizes we write that the ratio 
of the sizes is linked to the ratio of the errors by 

E = O(hq) ( 5 5 )  

where E: denotes the contribution of the elements of T* situated in the area E. 
The square of the error on the mesh T* can be evaluated by 

= C riq E: 
E E 

and the number of elements of T* by 
1 

N * = C ,  
E ‘ E  

The problem (53) thereby becomes 
1 

Minimize N* = 1 . with 1 r i q c i  = E: 
E ‘ E  E 

whose explicit solution is given by 
& p  
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