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Abstract

This paper presents an extension to plasticity problems of a new error estimator on the constitutive relation which 
was introduced by P. Ladev�eze in a recent paper. Numerical experiments show that this enhanced error estimator can 
lead to a signi®cant improvement in the e�ectivity indexes in the case of anisotropic meshes, or when perfect plasticity is 
approached. 
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1. Introduction

One important research topic is the mastering of

Finite Element (FE) analysis in plasticity calculations

[1,2,5,6,10,12,13,17±21]. For such calculations, the qual-

ity of the ®nite element solution at t depends not only

on the quality of the mesh, but also on the quality of

the time discretization used since the beginning of the

loading. Mastering such an analysis is thus clearly more

complex than in the case of linear static problems. In

particular, an approach which consists of directly ap-

plying at certain time steps the procedures used in statics

is insu�cient to estimate the quality of such a calcula-

tion. Therefore, to master a plasticity calculation, it is

necessary to de®ne error measures that allow to take

into account all discretization errors over the whole time

interval �0; T �. Error measures possessing these proper-

ties have been developed from an a posteriori error es-

timator based on the error on the constitutive relation

[10]. Here, we will consider what we call Drucker's error

estimator [10,4,5]. Other estimators were developed

subsequently in Refs. [12,13]. Drucker's error estimator

uses the same technique as in linear analysis for con-

structing the equilibrated stress ®elds; this technique is

independent of the constitutive relation. However, the

quality of our error estimator depends on the quality of

the equilibrated stress ®eld recovery. In order to improve

the quality of our estimate, we present an enhanced

construction technique derived from Ref. [15] which

minimizes the constitutive relation error over the time-

space domain and takes into account the constitutive

relation. This new and enhanced construction leads to

an enhanced Drucker's error estimator which is intro-

duced here. The outline of this paper is as follows: In

Section 2, the notations for a nonlinear evolution

problem are introduced and in Section 3 the reader is

reminded of the de®nition of the error on the constitu-

tive relation. Section 4 outlines the standard construc-

tion of the equilibrated stress ®elds, and introduces the

new construction which leads to an enhanced Drucker's

error estimator for plasticity problems. In Section 5, the

de®nition of our standard Drucker's error estimator is

recalled, then we introduce the de®nition of an enhanced

Drucker's error estimator. In Section 6, we detail the

construction of the statistically admissible (SA) stress

®eld. Finally, numerical simulations are performed with

six-node triangular elements and the results are given in

Section 7.
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2. Reference problem to be solved

Let us assume that the structure is a domain X
bounded by oX, which is independent of t. Over the time

interval �0; T �, the structure is submitted to

· a prescribed displacement U d�M ; t� on a portion o1X
of the boundary,

· a traction F d�M ; t� on the complementary portion

o2X,

· a distribution of body forces f
d
�M ; t� on the domain

X.

In a time-dependent nonlinear calculation, the value

of the stress at time t is a function of the history of the

strain until time t, which can be de®ned, at each point M

of the structure X, by the relation:

r�M ; t� � A�e� _U �M ; s��; s6 t�; �1�

where A is an operator characteristic of the material and

e is the strain ®eld.

Let us designate by U
�0;T �
ad , the space of the displace-

ments satisfying the kinematic constraints:

U
�0;T �
ad � fU�M ; t� 2 U�0;T � such that U jo1X �M ; t�

� U d�M ; t� 8 t 2 �0; T �g; �2�

where U�0;T � is the space of the displacement ®elds

U�M ; t� de®ned on X� �0; T � and let us designate by

S
�0;T �
ad , the space of stresses which are solutions to the

equilibrium equations:

S
�0;T �
ad � r�M ; t� 2 S�0;T � such that 8 U � 2 U0 8 t 2 �0; T �

�
Z

X
tr�re�U ���dX �

Z
X

f T
d
U � dX�

Z
o2X

F T
d U � dS

�
;

�3�

where U0 � fU�M; t� 2 U�0;T � such that U jo1X� 0g and

S�0;T � is the space of the stress ®elds r�M ; t�.
The nonlinear problem can then be formulated in the

following manner:

Find �U�M ; t�; r�M ; t�� 2 U
�0;T �
ad

�S
�0;T �
ad that satisfies Eq: �1�:

�4�

3. Error on the constitutive relation ± principle

For models which satisfy Drucker's inequality [3]

strictly, the error on the constitutive relation was in-

troduced in Ref. [8] and associated error estimators

appeared in Refs. [4,5,10]. The principle of the error on

the constitutive relation [7,10,11] relies on separating the

equations of the problem into two groups. In what we

call Drucker's error estimator, the ®rst group of equa-

tions combines the kinematic constraints (2) with the

equilibrium equation (3) (i.e. U
�0;T �
ad �S

�0;T �
ad ), and the

second group contains the constitutive relation (1).

3.1. Druckers's inequality

Let �e; r� and �e0; r0� be two arbitrary strain±stress

pairs which satisfy the constitutive relation described in

Eq. (1) on �0; T �, with �e; r� � �e0; r0� � �0; 0� at t � 0.

The material is said to satisfy Drucker's inequality if it

satis®es Eq. (5). Moreover, if Eq. (6) is satis®ed, the

material is said to satisfy Drucker's stability inequality

strictly.

8 t 2 �0; T �
Z t

0

tr��rÿ r0��_eÿ _e0��dt P 0; �5�

8 t 2 �0; T �
Z t

0

tr��rÿ r0��_eÿ _e0��dt � 0

() 8 t 2 �0; T ��e; r� � �e0; r0�: �6�
Note that in Ref. [9], it is shown that Eqs. (5) and (6) are

veri®ed for most practical plasticity and viscoplasticity

models. Moreover, in Ref. [9], it has been proved that

for such models the solution to the reference problem to

be solved is unique.

3.2. The Drucker error on the constitutive relation

Let sad � �U KA; rSA� be an admissible pair belonging

to U
�0;T �
ad �S

�0;T �
ad , and let us de®ne the scalar quantity.

g�M ; t; sad� �
Z t

0

tr��rSA�M ; t� ÿ rKA�M ; t��

� �_eSA�M ; t� ÿ e� _UKA�M ; t���dt; �7�

where rKA is the stress ®eld related to the displacement

U KA through the constitutive relation (1) on X� �0; T �,
and eSA is the strain ®eld related to rSA.

For a material which satis®es Drucker's inequality

strictly,

· g�M ; t; sad� is positive or zero on X� �0; T �,
· g�M ; t; sad� � 0 on X� �0; T � if and only if �U KA; rSA�

is the exact solution to the reference problem (4).

To evaluate the quality of �U KA; rSA� as an approx-

imate solution to the model problem, the previous re-

lations lead us to de®ne the following time-global error

measure at T:

eT � sup
t2�0;T �

e�0; t�; �8�

where the contribution to the error over �0; t� is

e2�0; t� �
Z

X
g�M ; t; sad�dX: �9�



The relative error is given by

eT � sup
t2�0;T �

e�0; t�=D;

D2 � 2

Z T

0

Z
X

tr�rKA _eKA�
h

� tr�rSA _eSA�
i

dXdt: �10�

This includes all sources of error: space discretization,

time discretization, . . .
The next section discusses the technique for con-

structing an admissible pair �U KA; rSA� from a ®nite el-

ement solution and from the data.

4. Recovery of SA stress and kinematically admissible

(KA) displacement on X� �0;T�

4.1. Finite element solution

Within the framework of the FEM, an approximate

solution to problem (4) is obtained by using an incre-

mental method along with a ®nite element discretization

E and a time discretization D.

Assuming that the histories of both displacements

and stresses are known until tiÿ1, then the problem is to

compute these histories on the increment �tiÿ1; ti� (with

D � ft1; . . . ; tng and t1 � 0 < t2 < � � � < tnÿ1 < tn � T ). A

number of algorithms using a displacement approach

are available to solve this problem [16].

At the end of each time increment ti, these algorithms

provide

· a ®nite element displacement ®eld which satis®es the

kinematic constraints,

U h�M ; ti� � N�M�T q�ti�; �11�

where N�M� designates the matrix of the shape

functions and q�ti� the vector of the nodal displace-

ments at ti,

· a stress ®eld rh�M ; ti� which satis®es the equilibrium

equations of the ®nite element model at ti,

· a stress ®eld ~rh�M ; ti� which is linked to U h�M ; ti� by

the constitutive relation.

Assuming that the data are piecewise linear on �0; T �,
it is easy to complete the FE solution on �0; T � in order to

obtain both a displacement U h�M ; t� that satis®es the

kinematic constraints and a stress ®eld rh�M ; t� that

satis®es the equilibrium equations of the ®nite element

model on �0; T �.

4.2. Recovery of KA displacement on X� �0; T �

Since the displacement U h�M ; t� satis®es the kine-

matic constraints (2), the displacement U KA�M ; t� can be

obtained easily,

U KA�M ; t� � U h�M ; t�: �12�

4.3. Standard recovery of SA stresses on X� �0; T �

The objective is to calculate the stress rSA�M ; t� be-

longing to S
�0;T �
ad . In Ref. [4], we applied the method

introduced by Ladev�eze in Ref. [7]. This method is based

on a prolongation condition used to link rSA�M ; ti� to

the ®nite element stress rh�M ; ti�:

8E 2 E 8 j 2 I

Z
E

tr��rSA�M ; ti�
ÿ rh�M ; ti�� e� xj ��dX � 0; �13�

where E is set of mesh elements, I is the set of nodes and

xj are the shape functions.

The stress rSA�M ; t� is evaluated in two steps:

· In the ®rst step, we determine on the edge of each ele-

ment E the element tractions bF h�ti� which equili-

brate the data. These distributions are obtained as

a linear combination of the shape functions.

· In the second step, the statically admissible stress

®eld is built on each element E from the element trac-

tions bF h�ti�. Then it is easy to complete rSA�M ; ti� in

order to obtain a solution rSA�M ; t� 2S
�0;T �
ad (under

the assumption that the data are piecewise linear over

�0; T �).
This method used in Ref. [4] involves only local calcu-

lations and is independent of the constitutive relation.

However, it is clear that the quality of our error measure

is closely related to the quality of the force distributionbF h�ti�. The projections of bF h�ti� on the shape functions

associated with nonvertex nodes are determined

uniquely by Eq. (13). In contrast, some indeterminate

quantities appear in the projections associated with the

vertex nodes. These indeterminate quantities are re-

solved by the introduction of a cost function which does

not necessarily lead to the best error estimator. Further

details on this construction are provided in Ref. [14].

4.4. Enhanced recovery of SA stresses on X� �0; T �:
principle

An improvement in the recovery method of SA

stresses has been developed in Ref. [15]. Here, we show

how to extend this new method to plasticity problems.

We will assume, as in Section 4.3, that the data are

piecewise linear over �0; T � (an assumption which in

practice is not restrictive). Therefore, we will focus on

the construction of rENH
SA �M ; ti� (for ti 2 �0; T �), where

rENH
SA �M ; t� is obtained by linear interpolation.

Following Ref. [15], we introduce a weak prolonga-

tion condition in order to link the SA stress to the FE

stress.

8E 2 E 8 j 2 I � I

Z
E

tr��rENH
SA �M ; ti�

ÿ rh�M ; ti��e�xj��dX � 0; �14�



where I is associated with the nonvertex nodes.

Let us designate by Sti
ad the space of the stresses

which satisfy the equilibrium equations at ti:

Sti
ad � r 2S such that 8 U � 2 U0

�
Z

X
tr�re�U ���dX �

Z
X

f
d
�M ; ti�TU � dX

�
Z

o2X
F d�M ; ti�TU � dS

�
; �15�

where S is the space of the stress ®elds.

De®ne by SD
ad;h the set of stresses:

SD
ad;h � ffr�M ; t1�; . . . ; r�M ; tn�g

2Sn such that 8 i 2 f1; . . . ; ng r�M ; ti�
2Sti

ad and r�M ; ti� satisfies Eq: �14�g: �16�

rENH
SA �M ; ti� (8 i 2 f1; . . . ; ng) is obtained by solving the

following minimization problem:

FindfrENH
SA �M ; t1�; . . . ; rENH

SA �M ; tn�g
2SD

ad;hthat minimizes the error on the constitutive

relation eT defined in Eq: �8�:
�17�

This explains why this new version is better than the

previous one; the recovered equilibrated stress is better.

5. Standard and enhanced Drucker's error estimators

5.1. Standard Drucker's error estimator

The standard Drucker's error estimator is de®ned as

in [4]:

eT � sup
t2�0;T �

Z
X

g�M ; t; sSTD
ad �dX

� �
; �18�

where sSTD
ad � �U KA; rSA�, with U KA as de®ned in Section

4.2, and rSA as de®ned in Section 4.3.

5.2. Enhanced Drucker's error estimator

We will de®ne the enhanced Drucker's error estima-

tor by

eENH
T � sup

t2�0;T �

Z
X

g�M ; t; sENH
ad �dX

� �
; �19�

where sENH
ad � �U KA; r

ENH
SA �, with U KA as de®ned in Sec-

tion 4.2, and rENH
SA as de®ned in Section 4.4.

6. Practical construction of rENH
SA �M; t�

This problem is clearly too complex to be solved

exactly. Therefore, we will introduce some simpli®ca-

tions.

Following Ref. [15], the element tractions on the

edges C of each element E are de®ned by a linear com-

bination of the restriction on C of the shape functions

xjjC:

bF h�ti�C � Ai
axajC � Ai

bxbjC �
X
j2�I

Ai
jxjjC; �20�

where

· the high-degree part
P

j2�I Ai
jxjjC is completely de®ned

by the weak prolongation condition (14),

· Ai
a and Ai

b are the parameters

and (a,b) are the vertex nodes and �I designates the set of

the nonvertex nodes.

Let Ai be the column formed with all Ai
a and Ai

b. AsbF h�ti� must equilibrate the data, Ai must belong to a

certain space designated by Ai
ad.

For ®xed bF h�ti�, rENH
SA �M ; ti�jE is built element by el-

ement. For simplicity, we use the same technique as the

one developed in elasticity, and, as proposed in Ref. [15],

we solve on each element E of the mesh an elasticity

problem, where bF h�ti� are the prescribed tractions on oE
and Fd is the body force. This problem is solved by using

a kinematic approximation of degree p � 3 on E (where

p is the degree on E of the current ®nite element ap-

proximation). This leads to a stress which is not strictly

SA, but the error introduced by such an approximation

is very small.

On each element E of the mesh we obtain

rENH
SA �M ; ti�jE � LjE�Ai� � rd�M ; ti�jE; �21�

where rd�M ; ti�jE depends on only the ®nite element so-

lution and the data.

The optimal value for �Ai�i2f1;...;ng is obtained by

solving the minimization problem de®ned in Section 4.4

by Eq. (17).

To simplify the writing, we will consider plane stress

problems. Let us designate by r � frxx; ryy ;
���
2
p

rxygT
and

e � fexx; eyy ;
���
2
p

exygT
, respectively, the vectors of stress

and strain components;

· in order to make full use of the incremental method

selected to solve the ®nite element problem, this min-

imization will be performed successively on each

time increment. And we will minimize e�0;ti �
8 i 2 f1; . . . ; ng instead of eT ,

· moreover, we assume that on �tiÿ1; ti�, rENH
SA �M ; tj� for

j < i is a data element for our minimization problem.

These assumptions lead to relatively simple calcula-

tions.

The problem then is to build



rENH
SA �ti� 2Sti

ad;h such that rENH
SA �ti� minimize e2�0; ti�:

�22�

From Eqs. (7) and (9), it is easy to see that the error

measure may be split into two parts:

e2�0; ti� � e2�0; tiÿ1� � Da; �23�

where

Da �
X
E2E

Z
E

Z ti

tiÿ1

�rENH
SA ÿ rKA�T� _eSA ÿ _eKA�dt dE: �24�

Over the time interval �tiÿ1; ti�, e2�0; tiÿ1� is a data element

of the minimization problem (22), which can be written:

find rENH
SA �ti� 2Sti

ad;h such that rENH
SA �ti� minimizes Da:

�25�

Remark. Da is a scalar quantity which is not necessarily

greater than zero because property (5) is satis®ed only

on �0; ti�1�, but not on �ti; ti�1�.

For the elastoplasticity model, we can derive from

the constitutive law (1) the following relation:

_r�t� � KT�r�s�; s6 t� _e�t�; �26�

where KT�r�s�; s6 t� is the tangent modulus.

From the ®nite element solution, we obtain on

�tiÿ1; ti�:

_eKA�t� �
Deh

Dt
; rKA�t� � A�eh� _U �s��; s6 t�; �27�

where Dt � ti ÿ tiÿ1 and Deh � eh�ti� ÿ eh�tiÿ1�:
Since we built rENH

SA linearly on �tiÿ1; ti�, it follows that

rENH
SA �t� � rENH

SA �M ; tiÿ1� � t ÿ tiÿ1

Dt
DrENH

SA ;

_eSA�t� � Kÿ1
T rENH

SA �s�; s
ÿ

6 t
� DrENH

SA

Dt
:

�28�

Let us now designate by DSti
ad;h the set of stresses that

both satisfyZ
E

rENH
SA �tiÿ1�

ÿ � DrENH
SA ÿ rKA�ti�

�T
e�xj�dX � 0

and are in equilibrium with the load increment over

�tiÿ1; ti�.
By using Eqs. (27) and (28), Eq. (25) becomes

find DrENH
SA 2 DSti

ad;h such that DrENH
SA

minimizes
X

E

Z
E

u1�Dr�dE; �29�

where

u1�Dr� � 1
2
DrT Kÿ1

p Drÿ DrT��êM
h � 1

2
Deh�

ÿ Kÿ1
m rENH

SA �ti�� � �rM
h ÿ rENH

SA �ti��TDeh

and

Kÿ1
p �

1

Dt

Z ti

tiÿ1

Kÿ1
T �r�s�; s6 t�dt;

Kÿ1
m �

2

Dt

Z ti

tiÿ1

�t ÿ tiÿ1� Kÿ1
T �r�s�; s6 t�dt;

êM
h �

1

Dt

Z ti

tiÿ1

Kÿ1
T �r�s�; s6 t� rKA�t�dt;

rM
h �

1

Dt

Z ti

tiÿ1

rKA�t�dt:

By using relation (21), problem (29) becomes

Find �Ai� 2 Ai
ad such that : Ai minimizes J : Ai0

7!J�Ai0 � on Ai
ad; �30�

where J is a nonlinear functional.

Problem (30) is a minimization problem with linear

constraints which depends solely on Ai and which may

be solved by using a conjugate gradient technique (with

the initial guess for Ai given by the standard recovery

method [4,5]. This problem is a priori global on the

structure. However, in general, the initialization based

on the standard method will be su�cient (for example,

within the elastic zones), except for certain zones (near a

singularity or within a transition zone between the

plastic and elastic regions). It is not necessary to modify

the standard Drucker's error on the entire structure.

Therefore, the resolution of problem (30), by means of a

conjugate gradient technique, will tend to be limited to

only those zones causing di�culties. Moreover, our

problem is not to ®nd the exact stresses or the exact

densities as solutions to problem (30), but rather to

minimize the error on the constitutive relation overall.

Just a few iterations of the gradient method will be

su�cient to bring the error down to the desired level

with an adequate degree of accuracy.

7. Examples

The following examples have been developed for

plane stress problems. As the constitutive relation, we

will be using a Prandtl±Reuss model for plasticity. There

is only one internal variable p associated with the plastic

strain. The spatial discretization uses six-node triangular

elements.



7.1. Perforated plate: imposed loading

The perforated plate shown in Fig. 1 is submitted to a

monotonous loading. We have performed a set of

computations with a Young's modulus of E � 200000

MPa, a Poisson's ratio m � 0:3 and an isotropic hard-

ening given by R � Hp1=2 (the corresponding mesh is

shown in Fig. 2). The plastic slope H=E varies from 0:1
to 0:001. For these slopes, the size of the plastic zone

varies from 35% to 81% of the structure. When using the

standard error estimator, the e�ectivity index (Fig. 3)

varies from 3.5 to 4.5 as long as the slope is not less than

0:01; when the slope is very small (i.e., when ap-

proaching perfect plasticity), it is di�cult to maintain an

e�ectivity index of less than 5 and a value of 10 can be

reached. If the enhanced error estimator were used, the

e�ectivity index would vary from 2:1 to 2:8. It can be

observed that this evolution is smoother than with the

standard error estimator.

The evolutions of the errors as a function of the ki-

nematic time can also be studied. We have represented

these evolutions in Fig. 4 for a plastic slope of 0:1 and in

Fig. 5 for a plastic slope of 0:005. When the plastic slope

is high, the behavior of the errors is similar to linear

elasticity; Fig. 6 reveals that the e�ectivity index is

constant along the computation. When approaching a

perfectly plastic behavior, the errors increase very fast

and the e�ectivity index varies along the computation.

The jump observed a the beginning of the plasti®cation

is due to the fact that the admissible stress begins to

plastify before the FE stress. A signi®cant improvement

is obtained when using the enhanced construction, yet it

is di�cult to eliminate this phenomenon entirely.

7.2. Perforated plate: imposed displacement

The same plate used in Section 7.1 is studied herein.

Loading is governed by prescribing displacement incre-

ments along the y-direction (the corresponding mesh is

shown in Fig. 7). The computation has been performed

with a Young's modulus of E � 200000 MPa, a Pois-

son's ratio m � 0:3 and an isotropic hardening given by

R � �E=1000�p1=2.Fig. 1. Perforated plate.

Fig. 2. Mesh used for the perforated plate: imposed loading.

Fig. 3. E�ectivity indexes versus E=H ratio.



Fig. 8 shows the evolution of the loading versus the

imposed displacement. The limit load is reached around

3� 10ÿ2. Fig. 9 shows the evolution of the contributions

to the error, for both the standard error estimator and

the enhanced error estimator. Fig. 10 displays the ele-

ments which contribute for 80% of the error improve-

ment. Only 12 elements have been detected; they are

located either near the singularity or near the limit of the

plastic zone (Fig. 11). It will be su�cient to minimize

Fig. 4. Contributions to the error for a plastic slope of 0.1.

Fig. 5. Contributions to the error for a plastic slope of 0.005.

Fig. 6. E�ectivity indexes versus kinematic time.

Fig. 7. Mesh used for the perforated plate: prescribed dis-

placement.



the error on only these elements and their neighboring

elements, and then to use the standard construction for

the other elements.

7.3. Calculation with an anisotropic mesh

We will use the example developed in Ref. [15]. The

initial mesh is shown in Fig. 12, with the shape ratio 1=H
as a parameter. The loading is monotonous. We have

performed two sets of computations: the ®rst in linear

analysis, and the second with a Young's modulus

E � 200000 MPa, a Poisson's ratio m � 0:3 and an iso-

tropic hardening given by R � 2000p1=2.

It appears that the new error estimator enables a real

improvement in the e�ectivity index as the shape ratio

increases (Fig. 13). If this result were compared with that

obtained from the elastic computation, we would ob-

serve that the behavior of the e�ectivity index is very

similar (Fig. 14). Fig. 15 represents the evolution of the

Fig. 12. Anisotropic mesh.

Fig. 9. Contributions to the error as a function of the kinematic

time.

Fig. 8. Loading versus displacement.

Fig. 11. Von Mises stress at the end of the loading.

Fig. 10. Error improvement in %.



Fig. 16. E�ectivity index versus kinematic time.

Fig. 13. E�ectivity index in elastoplasticity versus shape ratio

for the standard and enhanced error estimators.

Fig. 14. E�ectivity index in elasticity versus shape ratio for the

standard and enhanced error estimators.

Fig. 15. Contribution to the error versus kinematic time.



errors as a function of the kinematic time for a shape

ratio of 8. The behavior of both the exact error and the

enhanced error estimator seems to be similar. This ob-

servation is con®rmed in Fig. 16, where the e�ectivity

index has been drawn as a function of the kinematic

time.

8. Conclusion

An enhanced error estimator on the constitutive re-

lation for elastoplasticity problems has been presented

here. By introducing a minimization of the error on the

constitutive relation on a set of admissible stresses, we

have built an enhanced admissible stress ®eld rENH
SA

which is nearer to the exact stress ®eld than the standard

admissible stress ®eld rSA. rENH
SA is used to de®ne the

enhanced error estimator. Thus, in the case where a

slight di�erence between the admissible stress ®eld and

the exact stress ®eld leads to an important variation of

the calculated error (quasi-perfect plasticity) or when the

standard admissible ®eld is far from the exact stress ®eld

(anisotropic mesh), this enhanced error estimator leads

to great improvement of the e�ectivity index. Such an

error estimator can easily be developed for viscoplas-

ticity problems. The extension to a dissipation error

estimator, as developed in Refs. [12,13], could also be

performed following the same technique.
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