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elastoplasticity based on an
enhanced error in constitutive

relation
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LMT Cachan, ENS de CACHAN/CNRS/Université Paris VI, Cachan
France

Keywords Finite element analysis, Error cause removal, Plasticity

Abstract Many industrial analyses require the resolution of complex nonlinear problems. For
such calculations, error-controlled adaptive strategies must be used to improve the quality of the
results. In this paper, adaptive strategies for nonlinear calculations in plasticity based on an
enhanced ervor on the constitutive relation are presented. We focus on the adaptivity of the mesh
and of the time discretization.

Introduction

In elastoplasticity, the quality of the finite element solution depends on the
parameters describing the discretizations used: the mesh elements’ sizes, the
order of the elements, the size of the time steps, but also the parameters of the
iterative techniques used to solve the nonlinear problems (particularly the
stopping criteria for the iterations). In elastoplasticity, low-degree elements
(first- or second-degree) are generally used. Moreover, when the stopping
criteria are sufficiently precise, the error introduced by the iterative
techniques is negligible in comparison with the errors due to the mesh and the
time discretization (Ladevéze et al., 1999). For these reasons, improving the
quality of the finite element analysis requires, in most cases, simultaneous
adaptations of the mesh and of the time discretization (Gallimard ef al., 1996).
A classical approach is to perform an initial finite element analysis and to
calculate a posteriori error estimators and error indicators on this first
analysis. These errors are then used to determine new computation
parameters in order to improve the quality of the calculation. The efficiency
of the adaptive procedure depends greatly on the accuracy of the information
given by the error estimator, both on the global level and on the local level.
Three main approaches to the development of estimators can be found in the
literature: the estimators introduced by BabuSka and Rheinboldt (1978),
which use the equilibrium residuals to calculate the errors (Babuska and
Rheinboldt, 1982; Johnson and Hansbo, 1992; Huerta et al., 1998; Rannacher
and Stuttmeier, 1999); the estimators introduced by Zienkiewicz (Zienkiewicz
and Zhu, 1987), which consist of comparing the finite element solution with a
smoothed solution (Zienkiewicz and Zhu, 1987; Coupez et al, 1998); the
estimators introduced by Ladevéze (Ladevéze and Pelle, 1983), which are



based on the concept of error in the constitutive relation (Ladevéze ef al.,
1986; Gallimard et al., 1996; 1997, 2000; Ladeveéze and Moés, 1998; Ladevéze et
al., 1999). The error measures in the constitutive relation satisfies the
following property: if the error measure is equal to zero then the approximate
solution of the problem is equal to the exact one. That means that this error
measure takes into account all discretization errors over the whole time
interval.

The purpose of the paper is, for finite element analysis in elastoplasticity, to
compare the efficiency of adaptive techniques based on different versions of
Drucker’s (1964) error in the constitutive relation. Three versions are compared:

(1) A version, called standard, introduced in Ladeveéze ef al. (1986) and
developed in Gallimard et al. (1996), which uses a rigorous quasi-explicit
construction of the admissible fields.

(2) A version, called “p+k”, which uses an approximate numerical
construction of the admissible fields. This version is an extension to
elastoplasticity of techniques used in heat transfer by Strouboulis in
Strouboulis and Haque (1992) and in linear elasticity in Coorevits et al.
(1999).

(3) An enhanced version developed in Gallimard ef al. (2000), where we
introduce a minimization of the error on a set of admissible stress fields
which leads to an enhanced admissible stress field which is nearer the
exact stress field that the admissible field obtained by the standard and
the “p+k” version. This version leads to better global and local
effectivity indexes than the previous two.

In the first section, we briefly recall the formulation of the elastoplasticity
problem which serves as reference. Then, the formulation of the associated
discretized problem is given. Drucker’s error on the constitutive relation is
recalled, along with the principle of its implementation: construction of
balanced force densities and construction of admissible stresses. The enhanced
version and its different variants are presented and compared. The last section
is devoted to the adaptation of the finite element analysis. To separate, in the
global error, the contribution due to the spatial discretization from the
contribution due to the time discretization, error indicators are proposed. The
examples of adaptation presented confirm the effectiveness of the enhanced
error estimator introduced in Gallimard et al. (2000).

Problem to be solved
Let us consider a structure 2, with boundary 0. Over the interval [0, 7 the
structure is subjected to:

- aprescribed displacement on a part 9, 2 of the boundary: u;(M, t);
« aforce density given by 9,2 = 0Q — 012 Fy(M, t);
« adensity of body forces in 2 : f;(M, t).



The problem which describes the evolution of the structure under the
assumption of small perturbations is:
Find u(M, t) and (M, t) defined on Q x [0, 7] such that:

« kinematic constraints and initial conditions

u(M,t) e UOT)
Vte [0, T] u |01Q: Uq (1)
VM eQu |t:0: 0

+ equilibrium equations

o e ST @)
Vi€ [0,T);Vu" € Uy [y Trloe)|d = [y fa"wdQ + [, Fs" u*dS

« constitutive relation
Vte[0,T];VM € Qo | =A(e(@) |75 7<) (3)

In that formulation:

. yoTl designates the space of the displacement fields and S 0] the space
of the stress fields. Generally these spaces are chosen in order to impose
the condition that the energy of the fields be bounded on €2 at each time
t € 10, T). Uy is the trial space for the displacement:

Uy = {u'such that u € Uand u |50= 0}

where U is similar to U*! for the fields which are independent of time;

« A is an operator which depends on the material and charaterizes the
constitutive relation.

Finite element approximation

The discretization of the problem to be solved is classical. In space, a finite
element model is used. For a given ¢, the finite element approximation #;, of the
displacement field is such that:

u, € Uy,

where U}, is the discretized space chosen for U.

The time interval [0, 7] is discretized into # subintervals A; = [t;_1, 1],
A={0=fHh<th<...<t,=T}

Classically, under the assumption that the displacement field is linear over
each time increment, the approximate nonlinear problem to be solved at each
time step ¢; is:



Find (£, 0%,) such that:
u, € Uy, and u, = uy(t;) on &9 (4)

/ Trloke (" )]de = / Fi(t) Ty A9+ / Ft) urdS  (5)
Q Q 19)

,Q
foreachu;,* € Upp
o), — of, " = Ai(e(, — 1)) (6)

where Ujo = Uy N Uj, and A; is the discretized operator which charaterizes
the constitutive relation.

The non linear problem (4), (5) and (6) is solved using a Newton-Raphson
algorithm. Thus, an error related to the precision of the algorithm is introduced.
In general, the pair (u},, 5},) given by the finite element solvers satisfies (4) and
(6) exactly and (5) approximately. It is easy to perform an additional linear
resolution to build a stress o7, which satisfies (5) exactly. Under the assumption
that the loading is linear over each time increment, the finite element solution is
easily completed on [0, 7]. This solution will be called (uy, o). (uy, 04)
satisfies (4) and (5) exactly and (6) approximately.

Error on the constitutive relation

The principle of the error on the constitutive relation consists of dividing the
equations of the problem to be solved into two groups (Ladevéze and Leguillon,
1983):

+ the admissibility conditions: the kinematic constraints and initial
conditions (1) and the equilibrium equations (2);

« the constitutive relation (3).

An approximate solution S,; = (#x4,0s4) for the problem to be solved must
satisfy the admissibility conditions (#x4 satisfies (1) and o4 satisfies (2)). The
quality of this approximate solution is quantified by the non-verification of the
constitutive relation (3).

Drucker’s ervor on the constitutive velation

For models which satisfy Drucker’s inequality (Drucker, 1964) strictly, the
quality of an admissible pair s,; = (#x4,0s4) 1s evaluated by the error
measure e (Ladeveéze et al., 1986; Gallimard ef al., 1996):

e = su [ [ nttsa) ag] " (@)

te0,7]



EC
18,7

where

n(t,Sad) = /Ot (0sa — oxa) (Esa — Exa) dt (8)

and . .
Exa = €(txay)
oxar = Aléxar; 7<) 9)
osap = A(Esar; 7 < 1)

Remark: To calculate sy, it is necessary to invert the constitutive relation.
We also define the contribution of a time interval [0, ¢] to the global error:

ejo,] = Sup / (T, Saa) A2 (10)
T€[0,f] JQ

and a relative error:
ce=¢e /D
T (11)
D2 = 2 / /[O’IT{A éKA + UgA éSA] aQ) dt
0o Ja

Construction of an admissible solution
The difficulty is to derive an admissible solution s,; = (#xa, 0s4) from the finite
element solution (u;, 0,). For the displacement, we simply choose #x4 = u;,. For
the stress, we follow the method described in Ladevéze et al. (1986) and Gallimard
et al. (1996), which uses the construction techniques developed in elasticity
(Ladeveze et al., 1991). We briefly recall the main ideas of this construction.

In a first step, we derive from the finite element solution o7, (M) at {; a stress
field o'y, (M) which satisfies the equilibrium equation at £; exactly (2):

o, €S | 12)
Vur € Uy [, Trlokye(u))dQ = [, fa(t) " wrdQ+ [, q fa(t) " dS

where S is similar to S for the fields which are independent of time.

In a second step, we interpolate the balanced fields linearly over each time
step. Under the assumption that the loading is linear over each time step (an
assumption which, in practice, is not very restrictive), the constructed field is
admissible at each instant.

The construction of oy, is performed in two substeps.

Substep 1. We build on the edges of each element £ of the mesh the traction
forces F;, which represent the stress vectors on the edges of the element.

OSAlEN = UEFE on OF (13)
(the function 7y depends on the element £} it can assume two constant values:

+1 or —1. Moreover, for two adjacent elements, we prescribe g + 1, = 0 on the
common edge I'ggr.)



Naturally, on the edges belonging to 2, nEF ;, = Fa(l;) is prescribed.
Moreover, the tractions F ! are constructed such that each element of the mesh
1s in equilibrium:

for each rigid body displacement #° / fd(ti)TuSdE + / nE(Fz)TuSdF =0. (14
E OF

The key to the method is the prolongation condition which links o{g 4 to the
finite element solution:

For each element E in the mesh and for each node j / (o}, — o))" e(¢))dE =0 (15)
E

where ¢; is the shape function associated with node ;.
The main lines of the construction of F‘ are given in the Appendix.
Substep 2. of 4 1s built on each element E from the element tractions F;, ! as the
solution to the local problem:

leOJSA +fd( ) in E (16)
olSAn—nEF on OF

Two techniques may be used. The first one, described in Ladeveze ef al. (1991),
consists of determining a simple polynomial solution. More precisely, each
triangular element is subdivided into three subtriangles built on the inertia
center and the three vertices. We assume that on each subtriangle o', is linear
for linear elements and quadratic for quadratic elements. This construction is
quasi-explicit and o', is a strictly admissible stress field. This technique leads
to the standard version of the estimator of the error on the constitutive relation.
This error estimator will be designated by ¢ (the corresponding relative error
is designated by %), '

A second technique consists of constructing on £ the stress field o', as a
solution to the following problem:

{ Find ok, that satisfies (17)

: 17
such that o%, minimizes [, 77[cK 'o]dE (17)

where K is a definite symmetric positive operator.
The dualisation of this problem leads to:

Find 02 a displacement field defined on £
for each v* defined on E :

* i\T
é TH(K e(vy)) e(v)]dE = / F(t) v dE + / (FN T dS
OJSA|E = Kff(”E)

(18)



This problem is solved numerically on £ by the finite element method. We use
only one finite element of degree p + k (where p is the degree of the initial finite
element analysis and % a positive integer). This technique, which yields an
approximate admissible field, was introduced in Strouboulis and Haque (1992)
for thermal problems. The corresponding version of the error is called p + %
and the estimator is designated by e?**. (The corresponding relative error is
designated by #**.)

Remark: @ priori this technique works with all definite symmetric positive
operator K. In practical computations we use operators linked with the F.E.
analysis, for instance the Hooke operator, the tangent rigidity at ¢; or at ,_;. In
practice the numerical examples show that the obtained error measure is little
sensitive to this choice.

Enhanced Drucker constitutive error estimator
Principles
An enhanced version of the Drucker constitutive error estimator, derived from a
previous work in elasticity (Ladevéze and Rougeot, 1997), was presented in
Gallimard et al. (2000). The aim is to optimize the construction of the admissible
field o5 in order to improve the quality of the associated error estimator.

The principle of the method may be described as follows:

+ The prolongation condition (15) is weakened by applying it only to the
non-vertex nodes:

VE € T}, and for each non-vertex node j

[0~k 0 B =0 (19)

As a result, on each element edge T the traction F can be split into two
parts:

F |r:j€ I +H Ir (20)

H |r is a traction with zero resultant force and moment which is
completely determined by the weak prolongation condition (19).

R |r is a traction which depends on two arbitrary vectors Ryp and Ry
which need to satisfy only the global equilibrium (14).

- For each set of R |r which satisfies the equilibrium conditions, a stress
field 0%, (R) that belongs to S can be constructed using the techniques
defined in the preceeding paragraph. R is the set of vectors ler
(j = 1,2). If we assume that 024" " has already been calculated, Ropt 15
determined by minimizing the error contribution on each time step
[t;_1,;] approximately:

t;
ﬂmzél<mmwmm%mm—%mwz (21)



where
t—1tia
i —ti1

: ti—t .
OJSA(R)"F i enhji—1

osa(R) = t— 1, Osa

The enhanced balanced stress at # is designated by JQS’Z” = 0%, (R). The
calculated stress field on [0, 7] is designated by o@’% The details of this
technique can be found in Gallimard et al. (2000), together with examples which
show that a very good quality error estimator is obtained. In the following
sections, this enhanced error estimator will be designated by e”” (the
corresponding relative error will be designated by ).

Variants to the enhanced estimator
In practice, the optimization is not performed over the whole set of element
edges. It i1s sufficient to perform the minimization on the element edges
belonging to “sensitive” zones, e.g. high stress gradient, transition zone
between plastic and elastic regions, deformed elements, . . . In the other regions,
we use the standard densities calculated by the method presented in the
Appendix. The choice of the regions where the optimization is performed
obviously plays an important role in the method.

Two other parameters may a priori have an influence on the quality of the
stress field g4 obtained:

(1) The number of integration points 7z used on A; = [¢;_1, ] to evaluate
the function (21).

(2) The criterion chosen to stop the conjugate gradient algorithm used to
solve the optimization problem.

The purpose of the following sections is to study the influence of these
parameters on the quality of the associated error estimator.

Definition of the numerical tests
The numerical tests presented were performed on the structure shown in
Figure 1. This structure is subjected to a prescribed displacement: ii; = ug.t.X
(where u is a scalar quantity).

The material parameters are:

+ Young’s modulus £ = 200.E£3 Mpa,

« Poisson’sratio v = 0.3,

« Initial yield stress o9 = 240 Mbpa,

« Isotropic hardening law R = 500p'/2.
Two calculations were performed: the first on a quasi-regular mesh (Figure 2
(2,028 DoF) with six time increments), the second on a refined mesh (Figure 3

(9,672 DoF) with 16 time increments). The meshes were made of 6-node triangular
elements. The Von Mises stresses at the end of the loading are shown on Figure 4.



A Zone

Figure 1.

Problem to be solved &<\\\\\\\\\\\\\\\\\NN

Figure 2.
Bracket — Calculation 1

The values of the error estimators ¢ and e* (as well as the relative values
5t and e2+%) for Calculations 1 and 2 are summarized in Table L.

Stopping criterion and influence of na
In the examples studied, the function /(R) decreases rapidly during the first
iterations of the conjugate gradient technique. Since our objective is to make
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J(R) decrease and not to determine the best possible value of R, it is not
necessary to iterate until convergence. The stopping criterion of the conjugate
gradient technique is based on the mean variation of J(R) during two
consecutive iterations.

The study of the influence of the stopping criterion was performed on
Calculation 1 (Table II) (The optimization was performed on the whole mesh

Figure 3.

Bracket — Calculation 2

Figure 4.

Bracket — Calculation 1
— Von Mises stress —
Initial yield stress

240Mpa


http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400110403993&iName=master.img-002.jpg&w=208&h=212
http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400110403993&iName=master.img-003.jpg&w=316&h=221

Table I.
Error — Calculations 1
and 2

with na = 8). A stopping criterion of 5 per cent seems sufficient to obtain a
great improvement: the error decreased from e?** = 1.09 to ¢#* = 0.51. The
influence of n for the calculation is shown in Table III. (The optimization was
performed for the whole mesh with a stopping criterion equal to 1.10-4.) We
observe that this parameter has very little influence on the error estimator.

Criterion for choosing the patches
Let us define the error density dg on an element £ of the mesh T3;:

9D
dp = ——— 22
£ mes(E) 22)
where mes(E) is the area of element E.
Let d;,4 be the maximum density:
dmax = sup dE (23)
Ec Th

The simplest criterion to determine the “rough” zones and choose the edges I
where R 1 must be optimized is to calculate the error e?** and to determine the
elements where the error density is greater than a fraction « of d.. The
selected elements with common edges are gathered together into element
patches. It is useful to add one or two layers of elements around each patch in
order to increase the chance of minimizing the error contribution on elements
with a high error density. Then, the patches with common interior edges are
gathered together, yielding 7 patches wj. The standard tractions are prescribed
on the edge of each patch wy; then Jwj 1s minimized.

Calculation 1 2
et 1.32 0.64
gstd 26.3% 15.0%
e th 1.09 0.48
btk 235% 11.6%

Table II. . .

Influence of the Stopping criterion 2.10-1 10-1 5.10-2 10-2 10-3 10-4

stopping criterion:

Calculation 1 et 0.71 0.61 0.51 0.44 0.40 0.39
na 1 2 4 8

Table III.

Influence of #na: e 041 041 0.40 0.39

Calculation 1 g%, 10.2 10.1 10.0 9.8
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The default values considered are o = 0 (all elements are included in the
function to be minimized), the stopping criterion of the minimization algorithm
is 1072 and 7 is taken equal to 1.

Influence of the choice of patches
The results obtained for Calculation 1 with the error estimator ¢ are shown in
Table IV. We observe that, on this coarse mesh with a large plastic region, the
improvement due to the error estimator ¢ is significant, even for a coefficient
a=0.5 (" =1.09 and e = 0.59). The patches chosen are represented on
Figure 5).

On Calculation 2, which was performed on a refined mesh, we observe that
for a coefficient o = 0.5 we again obtain a significant improvement in the error
estimation (Table V). The patches used for o = 0.5 are shown on Figure 6.

Adaptive control technique

The adaptive technique proposed relies on an initial coarse calculation. From
this first calculation, we determine the parameters (mesh, time discretization) of
a second calculation in order to obtain a given precision g, for as little cost as
possible. The error measure ¢ is global in space and time and takes into account

Coef. a 05 04 03 02 0.1 0.0

eonh 0.59 0.55 048 048 0.44 0.44
(b — genh) jgb+ 46% 49% 56% 56% 60% 60%
(estd — gent) Jgstd 55% 58% 64% 64% 67% 67%

Table IV.
Influence of
o — Calculation 1

Figure 5.
Calculation 1
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Table V.
Influence of o on
Calculation 2

the mesh quality, the quality of the time discretization and the precision of the
stopping criterion of the iterative technique used. This global information is not
sufficient to determine the calculation parameters to obtain the required
precision. To determine these parameters, we use tools which we call error
indicators which allow us to evaluate the errors due to the mesh and the errors
due to the time discretization.

Error indicators
We use the time error indicator developed in Gallimard et al. (1996), which is
common to the three global error estimators. The calculation of the space error
indicator depends on the construction technique of the admissible stress field.
We use the definition of the space error indicator given in Ladevéze and Moés
(1999). Basically, this indicator is constructed by choosing as the reference
problem the problem which is discrete in time and continuous in space. The
error occurring between this new reference problem and the finite element
solution is due only to the space discretization. _ o
An admissible solution for this problem is the set of pairs s!; = (#% 4, 0%,)
fori € {1,...,n}.
Let us define:

) 1 +IN\T +1 +1
Nspace(Sqa) = (054 — 0n)" (Aegy — Aeiy) (24)
Coef. o 05 0.4 0.3 0.2 0.1 0.05
eenh 0.267 0.255 0.192 0.167 0.160 0.158
(el th — gl /gbtk 57.2% 59.1% 69.2% 73.2% 74.3% T47%
(5t — ooy /g5t 58.4% 60.3% 70.1% 74.0% 75.1% 75.4%

Figure 6.
Calculation 2 — 5 patches
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where

Ar = - (25)
and

ol — o = Ay(eT = &) (26)
A, is the discretized operator of the constitutive relation obtained by an

implicit Euler integration scheme.
A new space error mdlcator may be defined with the enhanced admissible

palrssfl’;hl = (uKA,aeS’i1 Niorie{1,...,n}:
k
gy = s 3 / e (55112 (27)
kef0,...n-1} ‘=5 Ja

It is possible, like for the global error to define a relative space error indicator:

enh enh ;
Iepace- The space error indicators g tspm and gy, are calculated in the same way.

Relation between €, tspace aNd Ui,
Let us consider the quantity 4;,; defined by:

.2 .2 .2
Lot = Zspace + Yime (28)
In Ladevéze and Moés (1998), it is shown numerically that:
. 2 p
it =\ (50" + 12, ~ (29)

The same property is observed for the “enhanced” and “p+k” quantities. On
Table VI, we increase the quality of the mesh for a given time discretization. On
Table VII, we increase the number of time steps for a given mesh.

mesh 1 mesh 2 mesh 3 mesh 4 mesh 5
elements 160 220 567 1,692 4,312
e (%) 22.02 14.53 9.95 521 4.68
% (%) 2241 14.29 892 3.06 1.42 Table VL
Ltime (%) 3.96 4.38 4.57 4.39 4.53 Error indicators as a
zf}}f (%) 22.76 14.94 10.01 5.35 4.75 function of the mesh
Time steps 1 2 4 8
g% 19.55 14.79 14.39 14.55
Table VII.
zﬁ}}fw% 12.44 13.48 14.30 14.80 Error indicators as a
Ltime Y0 17.94 5.72 291 1.29 function of the time

%, 21.83 14.64 14.59 14.86

discretization




Adaptation of the calculation parameters
In the following section, since the adaptive technique proposed is the same for
the three error estimators, we will omit the exponents std, p + k and enh.

For a prescribed global error ey, the following procedure may be defined:

« An initial analysis over the time interval [0, 7] is performed on a coarse
mesh T}, for a time discretization A. Then, the global error ¢, the time
indicator 7, and the space indicator i, are calculated.

+ A new mesh 7} and a new time discretization A* are determined in
order to minimize a cost function f(N*,M*) = (M*)”.(N*)" with the
restriction:

. 2 . 2 2
(Z:pace) + (Z;me) =&

where N* is the number of elements in 7} and M* is the number of time
steps in A*.

This minimization problem is solved by using techniques introduced in
Ladeveze et al. (1991) and later in Coorevits ef al. (1994) and Ladeveze
and Moés (1999).

Remarks:

- For the 6-node triangular elements that we use in the examples, the
value of 3 is set to 1 and the value of v is set to 2.

« If the prescribed global error & is too small compared to the global error
¢ obtained in the initial calculation, it is, in practice, difficult to
determine the parameters of the optimized calculation directly. One or
more intermediate calculations must be performed with target errors
equal to 0 e (where, for instance, 8 = 0.25).

Examples

To illustrate this procedure, we reexamine the example of the structure
subjected to a prescribed horizontal displacement 1. The initial analysis
(Figure 7) 1s performed with two time steps (this calculation is referred to as
Calculation 0).

The three error estimators presented in the previous section are used in
succession with the adaptive procedure. The parameters chosen for the
calculation of e are: na = 1, stopping criterion = 5.10 — 2and o = 0.5.

The prescribed global error £ is 5 per cent.

In Table VIII, we show the error, the number of nodes and the number of
time steps obtained for the optimized calculation. Figures 8-10 show the
resulting discretizations.

A zoom is performed on Zone A to study the mesh more precisely. The error
measure ¢ is very large in the presence of a high stress gradient and that
leads to an overrefinement of Zone A (Figure 11). Moreover, the high error
gradient in this zone leads to the creation by the mesh generator of deformed
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elements. For the error estimator ?**, the overrefinement is, again, important
(Figure 12). For the error ¢ (Figure 13), the minimization performed in the
zones where the error is overestimated enables this phenomenon to be
corrected, resulting in a more balanced mesh. Thus, the size variations of the
elements are more easily dealt with by the mesh generator.

The evolutions of some quantities of interest were also studied during the
evolution of the adaptive procedure. Calculation 1 corresponds to the
discretization obtained after one iteration of the adaptive technique. Calculation
2 corresponds to the discretization obtained when the global error reaches
approximately 10 per cent.

In Table IX, we represented the evolution of the plastic work calculated from
the finite element solution. The three calculations converge toward the same result.

In Table X we represented the evolution of the plastic work calculated from
the statically admissible solution. The three calculations converge toward an
identical result. But we observe that for calculations 0 and 1, which are very

Calculation estd obth oh
0 2.66 2.66 2.66
1 251 249 251
2 234 2.34 234
3 2.33 2.33 2.33

Figure 12.
Optimized calculation
e’+t* — mesh zone A

Figure 13.
Optimized calculation
e”" — mesh zone A

Table IX.
Plastic work during the
loading (KA solution)
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coarse, the admissible solution is not good and the improvement due to the
optimization technique is very significant.

In Table XI, we show the evolution of the size of the plastic zone (calculated
from the finite element solution). Once again, the three calculations converge
toward similar values and the values calculated during the initial analysis are
very inaccurate.

Conclusion

In this paper, we have proposed a study of the enhanced error ¢ on the
constitutive relation in plasticity and shown that the calculation of this error
estimator in order to estimate the global quality of the calculation may be
restricted to the zones which create difficulties. We have shown that the use of
this error estimator and associated error indicators in an adaptive procedure
allows us to end up with less refined and more regular meshes while preserving
the precision and the quality of the calculation.

Calculation et ebtk eh
0 7715 368.0 202.0
Table X. 1 46.1 23.0 12.7
Plastic work during the 2 2.87 2.89 2.78
loading (SA solution) 3 2.45 2.45 2.46
Calculation et etk e
0 38.40 38.40 38.40
Table XI. 1 22.09 20.95 22.20
Size of the plastic zone 2 19.09 19.51 19.14
m % 3 18.90 18.81 18.84
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Appendix. Standard recovery method
The construction of the balanced stress field is performed at each time step. For the sake of
simplicity, we will omit the exponent std, i.

Prolongation condition
The admissible stress os4 is linked to the finite element stress field by the “strong” prolongation
condition defined by the relation (15). This can be written using the equilibrium of og4:
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Figure Al.
Vertex nodes

/ (0sa.n)" ¢jdl’ = / o’ e(¢y) — /de &dE = Qp(j) (30)
OF o E

This relation introduces the element tractions on the element boundaries. The element traction
on element £ is designated by ngFj,.

« [ is defined on the element edges.

* ng is a scalar function defined on E such that y = £1 and 1z + nj; = 0 on the common
edge 'y of two adjacent elements E and E'.

With the expression:
ﬂEFlz = 0osq.n on oF (31)

Equation (30) becomes:

[ Bl sar = [ a7 <o) - [ 17 6t = el (32)
OFE E E

Remark: On anedge I" € 0,2 we impose 77EF n=F;
In Ladevéze and Pelle (1983), it is shown that if nz Fj, satisfies the prescribed loading on 9-£2
and Equation (32), then the element tractions Fj, are balanced.

Standard construction of Fy
The complete construction can be found in Ladeveze et al. (1991). We will consider only the case
where the nodes are internal to 2.

Non-vertex node:j € I'gzr common edge to £ and E'.

The prolongation condition (32) leads to:

[ e B ar = @0 (3)
Dy
| B odr = @40 (34)
Writing the finite element equilibrium leads to:
Qe() + Q) =0 (35)
Therefore,
| E gdT = 1y @) = me Qe () (36)
Vertex node j: We write (cf Figure Al):
b= [ e BT oyt (37)
Ty




Equation (32) for the elements connected to node j leads to the following linear system:

bi—by = Qg()
by—b3 = Q)
by —by = Q) (38)
bn - bl = QEn (])

This system has an infinity of solutions if Zii’f Qr,(j) = 0, a property which occurs if o,
satisfies the finite element equilibrium. In practice, b; are chosen in order to minimize:

2
k=n (bk _ b;:’t,h)

f(blﬂb27-“7bn)_> L2 (39)
3

=1
where Ly = mes(Uy) and B =) [ (o — o sl
The element tractions are then recovered by assuming that F}, is a linear combination of the
shape functions on the element edges:
Fy=AL ¢o+ALgs+ ) Algy (40)
jel





