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Abstract

This article deals with the local quality on stresses produced during finite element analysis in 3D linear elasticity. We

use an estimation technique based on the concept of error in constitutive relation, which yields excellent estimates of the

local errors without requiring the approximate calculation of Green functions.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The cost of manufacturing actual prototypes and the widespread availability of computer hardware and
numerical tools and methods have led designers to the intensive development of virtual prototyping.
However, in order to be able to make consistent and safe decisions, one must ensure that these virtual
prototypes provide a sufficiently refined representation of physical reality. Methods have been developed
over many years to evaluate the global quality of finite element analyses [1–3]. For linear problems, all these
methods provide a global energy-based estimate of the discretization error. Most of the time, such global
information is totally insufficient for dimensioning purposes in mechanical design because, in many com-
mon situations, the dimensioning criteria involve local values (stresses, displacements, intensity factors, . . .).
Therefore, it is necessary to evaluate also the quality of these local quantities calculated by finite element
analysis. Such an estimation of the local quality of a finite element numerical model remains a widely open
investigation field. A first approach, proposed by Babu�sska and Strouboulis [4,5], is based on the concept of
pollution error. Another approach is to use extraction operators [6–10], which depend on the type of local
quantity considered. In general, these extraction operators are determined approximately using a finite
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element method. In [7], Ladev�eeze et al. proposed an alternative approach in 2D elasticity which enables one
to evaluate on each element E the error in energy krex � rhkE between the exact stress rex and the finite
element stress rh. This approach is based on the concept of error in constitutive relation and on a new
technique of construction of statically admissible stress fields detailed in [11]. We know that for any
statically admissible stress field r̂rh the global error in energy krex � rhkX on the whole structure X is
bounded by kr̂rh � rhkX. The main advantage of the new construction is that it leads to improved statically
admissible fields r̂rh for which, experimentally, the energy over an element kr̂rh � rhkE is an upper bound of
the error in energy krex � rhkE [11]. The aim of this paper is to study the extension of the approach pro-
posed by Ladev�eeze to 3D elastic calculations. In Section 2, we briefly review the basic concepts of error
estimators in constitutive relation for elasticity. The principle of the evaluation of krex � rhkE is presented
in Section 3. In Section 4, we develop the technique of the construction of improved statically admissible
fields r̂rh for 3D elasticity. Currently, it is available for 4-node tetrahedral elements. In Section 5, we study in
detail the local effectivity indexes using several examples

fE ¼ kr̂rh � rhkE
krex � rhkE

:

An analysis of these first 3D examples shows, as had already been pointed out in 2D in [7], that the indexes
fE are such that C6 fE, where C is numerically of the order of 1. In particular, for the dimensioning
zones––i.e., the zones with high stresses––kr̂rh � rhkE is a very good evaluation of krex � rhkE.

2. Error in constitutive relation

2.1. Reference problem

Let us consider an elastic structure within a domain X bounded by oX. The external actions on the
structure are represented by

• a prescribed displacement Ud on a subset o1X of the boundary,
• a volume force density f

d
defined in X,

• a surface force density F d defined on o2X ¼ oX � o1X.

We designate the material’s Hooke’s operator by K. Thus, the problem can be formulated as follows:
find a displacement field U and a stress field r defined on X which verify

• the kinematic constraints

U 2 U Uko1X ¼ Ud; ð1Þ

• the equilibrium equations

r 2 S 8U � 2 Uad;0; ð2ÞZ
X
Tr½reðU �Þ
dX ¼

Z
X
f
d
U � dX þ

Z
o2X

F dU
� dS; ð3Þ

• the constitutive relation

r ¼ KeðUÞ: ð4Þ



U is the space in which the displacement field ðU ¼ ½H 1ðXÞ
3Þ is sought, S the space of the stress
ðS ¼ ½L2ðXÞ
6Þ, U0 the space of the fields in U which are zero on o1X and where eðUÞ represents the lin-
earized deformation associated with the displacement

eðUÞ ¼ 1
2
ðgradU þ gradUTÞ:

The solution to the reference problem is designated by ðU ex; rexÞ.

2.2. Definition of the error in constitutive relation

The approach based on the error in constitutive relation relies on a partitioning of the above equations
into two groups:

• the admissibility conditions Eqs. (1) and (3),
• the constitutive relation Eq. (4).

In practice, the constitutive relation is often the least reliable of all the equations of the reference
problem. Therefore, it is natural to consider approximate solutions which verify the admissibility condi-
tions exactly and to quantify quality by the extent to which the constitutive relations are verified. This leads
us to the introduction of the following definition:

We say that fields ŝs ¼ ðÛU ; r̂rÞ are admissible if

• field ÛU verifies (1) (ÛU is kinematically admissible),
• field r̂r verifies (3) (r̂r is statically admissible).

One can then define a measure of the error in constitutive relation by

êehðŝsÞ ¼ kr̂r � KeðÛUÞkX ð5Þ
with k � kX ¼

R
X Tr½�K�1�
dX and a relative error by

êeh ¼
kr̂r � KeðÛUÞkX

kr̂r þ KeðÛUÞkX

: ð6Þ

2.3. Errors in finite element discretization

Classically, if one discretizes the reference problem using a displacement-type finite element method, one
obtains the following problem:

Find the kinematically admissible finite element displacement field Uh such that

8U �
h 2 Uh0

Z
X
Tr½eðUhÞKeðU �

hÞ
dX ¼
Z

X
f
d
U �

h dX þ
Z
o2X

F dU
�
h dS; ð7Þ

where Uh0 is the space of finite element displacement fields which are zero on o1X.
The corresponding stress field is

rh ¼ KeðUhÞ: ð8Þ

The method to evaluate the errors due to the finite element discretization consists of reconstructing, starting
from the finite element data and solution, an admissible pair ŝs ¼ ðÛUh; r̂rhÞ. Since the finite element field is
kinematically admissible, one takes

ÛUh ¼ Uh: ð9Þ



On the contrary, the stress field rh is not statically admissible. Techniques to reconstruct admissible stress
fields have been under development for several years [2,12]. They enable one to obtain a field r̂rh which
verifies the equilibrium equations exactly (3). We will discuss these techniques in the next section.

The error in constitutive relation associated with the admissible pair ŝs ¼ ðÛUh; r̂rhÞ is

êeh ¼ kr̂rh � KeðUhÞkX ¼ kr̂rh � rhkX: ð10Þ

2.4. Property of the global error in constitutive relation

Using the Prager–Synge theorem [13], one shows easily that

krex � rhkX 6 êeh: ð11Þ

Thus, the error in constitutive relation is an upperbound of the discretization error. In other words, the
global effectivity index (ratio of the estimated error to the true error) is always greater than 1. If one in-
troduces the stress field:

r�
h ¼ 1

2
ðr̂rh þ rhÞ; ð12Þ

one also obtains

krex � r�
hkX ¼ 1

2
êeh: ð13Þ

3. Estimation of the local errors on stresses

For an element E of the mesh, the local error in energy on E can be defined as

eenr;E ¼ krex � rhkE
mesðEÞ

1
2

ð14Þ

with k � kE ¼
R
E Tr½�K

�1�
dE.
One way of evaluating this quantity is to consider the similar quantity calculated from the admissible

stress field r̂rh:

êeenr;E ¼ kr̂rh � rhkE
mesðEÞ

1
2

: ð15Þ

This strategy was proposed by Ladev�eeze in [7]. For 2D elastic calculations, êeenr;E was shown to be a very
good evaluation of eenr;E provided that r̂rh be constructed using the improved technique proposed in [11].
Furthermore, with this new construction one can observe experimentally that

eenr;E 6Cêeenr;E; ð16Þ
where C is numerically close to 1. It is important to point out that the use of the improved construction of
statically admissible fields described in [11] is the crucial feature of the proposed method because the as-
sociated error estimator in constitutive relation has excellent local behavior. To illustrate this point, let us
reexamine one of the examples presented in [7], i.e., the test case represented in Fig. 1. For this example, the
global effectivity index is f ¼ 2:99. Fig. 2 shows the histogram of the local effectivity indexes. One can



observe that the local effectivity indexes all lie between 1.76 and 8.1. For the purpose of comparison, the
same example was treated using the ZZ2 estimator, which provides an excellent global effectivity index:
f ¼ 0:968.

However, Figs. 3 and 4 show that the local effectivity indexes are much more scattered, since they vary
between 0.3 and 35.3. Furthermore, for a large number of elements, these indexes are much less than 1.

One should note that the good local behavior of the estimator of the error in constitutive relation is due
to the improved method of building admissible fields, described in [11] for 2D problems, which includes an
essential step of optimization.

In order to show this last point clearly, let us consider the simple example of a fixed–fixed beam in
traction (Fig. 5) and focus on the local errors in zone x.

Let us perform a finite element analysis with the mesh represented on (Fig. 6).
In order to evaluate the discretization errors, let us use the classical estimator of the error in constitutive

relation, which is strictly identical to the residual estimators of the ‘‘ErpBp þ k’’ family developed in [14–16].
In this case, the resulting local effectivity index on x is

kr̂rh � rhkx

krex � rhkx

¼ 0:19; ð17Þ

which is unsatisfactory, while on the overall structural level one gets a global effectivity index of 3.2, which
is quite good.

Fig. 1. 2D test case.

Fig. 2. Histogram for the error in constitutive relation.



Conversely, if one uses the improved method proposed in [11], one gets

kr̂rh � rhkx

krex � rhkx

¼ 2:9; ð18Þ

leading to an effectivity index equal to 2.1. Thus, clearly, the technique for improving the construction of
the admissible fields described in [11] for the 2D case is the key feature of the method we are proposing.

Fig. 3. Histogram for the ZZ2 estimator.

Fig. 4. Comparison for values close to 1.

Fig. 5. Fixed–fixed beam.



In the next section, we propose the extension of this improved construction to the case of 3D elastic
calculations. The local properties of the associated estimator will be studied in Section 5 using several
examples.

4. Construction of admissible fields in 3D

4.1. Principle of the construction

The technique to build stress fields r̂rh which verify the equilibrium equation (3) exactly has become a
classic [2,12]. It involves two stages: the first stage consists of constructing on the sides of the elements
surface force densities F̂F h to represent the stress vectors r̂rhnE as

½r̂rhnE
jC ¼ gEF̂F h with C 2 oE; ð19Þ
where gE is a function, constant on each side, whose value is either 1 or �1 and such that on the side
common to two adjacent elements E and E0: gE þ gE0 ¼ 0.

Moreover, these force densities are generated in such a way that, on each element E in the mesh, the
volume loads f

d
and the surface loads gEF̂F h are in equilibrium on E. The detail of this construction pro-

cedure can be found in [12].
The second stage consists of constructing, element by element, a solution to the equilibrium equations:

divr̂rE þ f
d
¼ 0 in E;

r̂rE nE ¼ gEF̂F h on oE:

(
ð20Þ

Then, field r̂rh is obtained by 8E r̂rhjE ¼ r̂rE.
For a given set of densities, of all the solutions of (20) the best field r̂rhjE is the one which is solution to the

minimization problem:

min
r̂rE verifying ð20Þ

kr̂rE � rhkE: ð21Þ

By duality, this is equivalent to seeking a displacement field V E defined on E such that

V E 2 UðEÞ and 8V � 2 UðEÞ
Z
E
Tr½eðV EÞKeðV �Þ
dE ¼

Z
E
f
d
V � dE þ

Z
oE

gEF̂F hV
� dC; ð22Þ

where UðEÞ designates the space of restrictions to E of the fields in U. Then, r̂rE is given by

r̂rE ¼ KeðV EÞ: ð23Þ

Fig. 6. Mesh of the beam.



Thus, one can obtain an approximation of r̂rE by solving Problem (22) by a classical finite element method
on E. In practice, it is sufficient, in order to obtain a good approximation, to consider either a discretization
of E with a single element but an interpolation of degree p þ k, where p is the degree of interpolation used in
the finite element analysis and k a positive integer, or a subdivision of element E along with an interpolation
of degree p þ k0 (generally, k0 < k).

The essential step is the construction of densities F̂F h, as this conditions the quality of the resultant field r̂rh

and, consequently, the quality of the error estimator in constitutive relation.

4.2. Construction of densities

The new version of the error estimators in constitutive relation was introduced for two dimensions in
[11]. It consists of constructing better quality densities. The object of this section is to present the extension
of this method to 3D calculations.

Let us consider tetrahedral elements with an interpolation of degree p described using hierarchical shape
functions. On a side C, these shape functions are designated by k1, k2, k3 for the linear part and xi

(i 2 4; 5; . . . ;N ) for terms up to degree p ðN ¼ ðp þ 1Þðp þ 2Þ=2Þ.
Let us introduce the three functions w1, w2, w3 such that

wa ¼ ka �
PN

i¼4 a
i
axiR

C waxi dC ¼ 0 ða ¼ 1; 2; 3 and i ¼ 4; 5; . . . ;NÞ:

(
ð24Þ

On a side C, a density of degree p:

F̂F hjC ¼
X3

a¼1

F̂F aka þ
XN
i¼4

F̂F ixi ð25Þ

has a unique decomposition of the form

F̂F hjC ¼ ĤH jC þ R̂RjC ð26Þ

with R
C R̂RjCxi dC ¼ 0 if i ¼ 4; . . . ;N ;R
C ĤH jCka dC ¼ 0 if a ¼ 1; 2; 3:

(
ð27Þ

Because of (24) and (27), ĤH jC has zero resultant and moment on C and R̂RjC is of the form

R̂RjC ¼
X3

a¼1

Rawa where Ra are constant vectors: ð28Þ

Using the weak prolongation condition:
For any element E and for any shape function /k not associated with a vertex EZ

E
ðr̂rh � rhÞgrad ð/kÞdX ¼ 0; ð29Þ

we determine part ĤH jC using the classical techniques described in [2,12].
Part R̂RjC, which, in practice, consists of three constant vectors Ra per side C, can be determined by

minimizing the error in constitutive relation. We designate by R the set of R̂R such that



(1) for any side C included in o2X: gEðĤH jC þ R̂RjCÞ ¼ F d,
(2) for any element E of the mesh, R̂R is in equilibrium with the volume forces f

d
.

Then, for R̂R 2 R, there is at least one admissible stress field r̂r such that ½r̂rjEnE
jC ¼ gEðĤH jC þ R̂RjCÞ.
Let us call SR the set of these admissible stress fields. The best field achievable, r̂r, is solution to the

problem:

min
r̂r2SR

êehðUh; r̂rÞ; ð30Þ

which is equivalent to

min
r̂r2SR

1

2

Z
X
Tr½r̂rK�1r̂r
dX

�
�
Z
o1X

r̂rnUd dC

�
: ð31Þ

This problem is a global problem defined on domain X. It can be solved at reasonable cost by introducing
local problems defined on each element E [11]. Here, in order to simplify the presentation, we will limit
ourselves to the case where f

d
is constant on each element of the mesh, but the method can be extended to

the general case.
Let us consider the densities R̂RjC on the sides C of oE.
We write

f R
E
¼ � 1

mesðEÞ

Z
oE

gER̂RdC �I�1
G

Z
oE
GM ^ gER̂RdC

� 	
^ GM ; ð32Þ

where I�1
G is the inertia operator for element E.

By construction, we have
For any solid motion US on EZ

oE
gER̂RUS dC þ

Z
E
f R
E
US dE ¼ 0: ð33Þ

Because of (24) and (27) we have
For any solid motion US on EZ

oE
gEðR̂Rþ ĤHÞUS dC þ

Z
E
f R
E
US dE ¼ 0: ð34Þ

Therefore, the set of stress fields r̂rE which are in equilibrium on E with loads gE ðR̂Rþ ĤHÞ and f R
E
is non-

empty. We call it SR
adjE and r̂rE belongs to SR

adjE if
For any displacement field U � regular on EZ

E
Tr½r̂rEeðU �Þ
dE ¼

Z
E
f R
E
U � dE þ

Z
oE

gEðR̂RjoE þ ĤH joEÞU � dC: ð35Þ

Thus, problem pRE becomes:
Find r̂rR

E solution to the minimization problem

min
r̂rE2SR

adjE

1

2

Z
E
Tr½r̂rEK

�1r̂rE
dE: ð36Þ

The solution to (36) is designated by r̂rR
E. This field is of the type

r̂rR
E ¼ r̂r0

E þ REðREÞ; ð37Þ
where RE is the column of constant vectors Ra defined on oE by relation (28) and where REðREÞ is a linear
term in RE.



Field r̂r defined by r̂rjE ¼ r̂rR
E is statically admissible if and only if f R

E
has the same moment and resultant as

f
d
jE.
This relation, which expresses the equilibrium between R̂RjC on oE and f

d
on E, can also be written:

LE RE ¼ bE ð38Þ

or, for the whole mesh

LR ¼ b: ð39Þ
Therefore, in order to find the solution to (31), one needs only to minimize the complementary energy for

all stress fields: r̂rR
E ¼ r̂r0

E þ REðREÞ.
Except for terms which are independent of R, Eq. (31) is of the form

min
LR¼b

1
2
RtAR



þ BtR

�
; ð40Þ

where matrices A, L and B are obtained by assembling elementary matrices. The introduction of Lagrange
multipliers leads to the resolution of the linear system

A L

Lt 0

� �
R
K

� �
¼ B

b

� �
: ð41Þ

4.3. Practical implementation

The construction of matrices A and B requires the resolution of local problems (36). In practice, this
resolution is performed in the same way as for problem (20): by duality on E, one reverts to a displacement
problem which can be solved approximately by a finite element method. For tetrahedra of degree p, one
may consider a discretization of E with either a single element but an interpolation of degree p þ k, where
p is the degree of interpolation used in the finite element analysis and k a positive integer, or a subdivision
of element E along with an interpolation of degree p þ k0 (generally k0 < k). The resolution of the
global problem (40) is performed by an iterative method of the conjugate gradient type. In order to
initialize the process, one first determines the set of densities using the standard procedure [12,17,18].
Furthermore, numerical experiments have shown that the optimization of densities needs to be per-
formed only in the zones where this initialization is deficient: zones with large gradients or very ill-shaped
elements.

5. Study of the quality of local estimations

We show examples modeled with linear tetrahedra (p ¼ 1). The resolution of the local problems de-
scribed in Section 4.2 was performed by subdividing each element E and increasing by 1 the degree of
interpolation. In order to measure the local quality of our estimator, we introduced a local effectivity index
fE:

fE ¼ kr̂rh � rhkE
krex � rhkE

: ð42Þ

For problems for which rex cannot be obtained analytically, we performed an analysis on an extremely fine
mesh in order to obtain a good approximation of rex.



5.1. Test case 1

The structure is a beam with square cross-section, built-in at one end and subjected to traction at the
other end (Fig. 7). The mesh (Fig. 8) is coarse and consists of 38 linear tetrahedral elements.

The relative global error estimate for this calculation is 10%. On Fig. 9, we show the contributions
associated with the error calculation versus the element number. The local effectivity index is shown on Fig.
10. For this example, the local effectivity indexes ranged between 0.98 and 1.3.

For dimensioning purposes in mechanical design, only the high-stress zones are significant. We are in-
terested only in the error affecting such zones. The stress intensity in an element E is defined by

IE ¼ krhkE
max
E0

krhkE0
: ð43Þ

Let Sa be the set of elements of the mesh with a stress intensity greater than a:

Sa ¼ fE; IE P ag: ð44Þ
The minimum corresponding effectivity index is

ma ¼ min
E2Sa

fE: ð45Þ

The evolution of ma with a is shown on Fig. 11. In this example, the local error in constitutive relation is an
upperbound of the exact local error in the zones where the stress is the highest.

Fig. 7. Beam: loading.

Fig. 8. Beam: mesh.



Fig. 9. Local contributions to the error.

Fig. 10. Local effectivity indexes.



5.2. Test case 2

In this example, the loading was less simple and the global error estimation was higher. The structure
was subjected to uniform surface forces on one side (Fig. 12). The mesh, which consists of 194 elements, is
given in Fig. 13. The global relative error was 34%. The measured global effectivity was 1.14.

Remark. As examples become more complex, one can observe that in the elements where the error is very
small numerical perturbations can be significant (of the same order of magnitude as the quantities in the
ratio), thus leading to inconsistent effectivity indexes. In order to overcome this difficulty and eliminate the
elements with virtually no error, we adopted the following procedure: first, the elements in the mesh are
sorted in the order of decreasing error (E1;E2; . . .) with êeh;E1

P êeh;E2
P . . .; then, we determine the integer q

such that
Pq

i¼1 êe
2
h;Ei

¼ 0:95êe2h. Local effectivity indexes are calculated on these elements alone.

In this example, the local effectivity indexes ranged between 0.77 and 1.70. The evolution of the mini-
mum effectivity index ma with a (Fig. 14) shows that in the zones where the stress is high the minimum
effectivity index is close to 1 and greater than 1 in the most highly stressed zones.

5.3. Test case 3

Now we will present the more elaborate example of a flange, which can be used to fasten a part during
machining. The flange was clamped along the lower surface to represent its connection to the machine tool.
It was subjected to a pressure load along the perpendicular side to represent the cutting load. We considered
two dimensioning zones, one corresponding to the reinforcements (Zone R) and the other to the clamping
(Zone E) (Fig. 15).

Fig. 11. ma versus a.



The mesh comprised 2828 elements (Fig. 16). The estimated global error was 41%. The ‘‘exact’’ global
error was calculated and is equal to 36% (in order to obtain the ‘‘exact’’ solution, we generated a mesh with
22,624 10-node tetrahedral elements).

Fig. 12. Arch: loading.

Fig. 13. Arch: mesh.



Fig. 14. Arch: ma versus a.

Fig. 15. Flange: Zones E and R.



The study of Zones R and E gave the following results:

• in the most highly-loaded zone, corresponding to the reinforcements:
actual error: 7.79%
estimation: 8.62%
effectivity index: 1.1065

• in the zone near the clamping:
actual error: 27.57%
estimation: 29.70%
effectivity index: 1.0769.

In all the cases studied, we observed that one can use the upperbound defined by Eq. (16), with C on the
order of 1 in the zones where the stress intensity is highest.

6. Conclusions

In this paper, we have showed that the construction of improved statically admissible fields proposed in
[11] can be extended to the case of 3D calculations in elasticity.

The examples presented here along with many other examples calculated by Ladev�eeze’s team in Cachan
show experimentally that, in many common situations, the local contributions associated with the new
version of the estimator of the error in constitutive relation provide good estimates of the local quality of
the stresses calculated by finite element analysis. In these situations, from a practical standpoint, these
contributions can be used to evaluate the local errors.

Obviously, there can still be situations [19] in which an extraction technique must be used. Of course, this
is also the case if one wishes to evaluate the local quality of other quantities, such as displacements or stress
intensity factors.

Fig. 16. Flange: mesh.
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