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Abstract

This paper focuses on an a posteriori error estimator for FE approximations of 3D linear elasticity problems. The

objective is to present the application of the new generation of error in constitutive relation to the calculation of the

local error in classical tetrahedral elements. We show on examples whose solution is known analytically that the local

error estimation gives satisfactory effectivity indexes.
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1. Introduction

Today, the use of numerical simulations in mechan-

ical design is very widespread. Complex finite element

calculations are employed in a routine and daily way.

Quality control of the results provided by finite element

calculations has been a major concern for many years, as

has been the case in industry and in research.

Methods have been developed over many years to

evaluate the global quality of finite element analyses [1–

3]. For linear problems, all these methods provide a

global energy-based estimate of the discretization error.

Most of the time, such global information is totally

insufficient for dimensioning purposes in mechani-

cal design because, in many common situations, the

dimensioning criteria involve local values (stresses, dis-

placements, intensity factors, . . .). Therefore, it is nec-
essary to evaluate also the quality of these local

quantities calculated by finite element analysis. Such an

estimation of the local quality of a finite element nu-

merical model remains a widely open investigation field.
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A first approach, proposed by Babuska and Strouboulis

[4,5], is based on the concept of pollution error. Another

approach is to use extraction operators [6–9], which

depend on the type of local quantity considered. In

general, these extraction operators are determined ap-

proximately using a finite element method. Another

approach to the evaluation of the local quality of

stresses was proposed in [6]. This method takes advan-

tage of the characteristics of a new version of the esti-

mators in constitutive relation for elasticity problems.

An initial implementation for two-dimensional problems

showed the advantage of this new version to be that it

leads to local error estimates which, experimentally, are

upperbounds of the actual local errors on stresses. Other

2D examples can be found in [10].

The object of the present paper is to propose an

application of this approach to 3D elasticity problems

meshed with 10-node tetrahedral element. In Section 2,

we briefly recall the basics of error estimators in con-

stitutive relation in elasticity. The local error measure in

stress we propose is presented in Section 3. In Section 4,

we outline the new version of the estimators in constit-

utive relation.

Several examples of applications for quadratic ele-

ments are presented in Section 5 along with a detailed

analysis of the local effectivity indexes obtained. The

results obtained for these elements confirm the usefulness

of the approach already evidenced in previous works.
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2. Error in constitutive relation

2.1. Reference problem

Let us consider an elastic structure within a domain

X bounded by oX. The external actions on the structure

are represented by

• a prescribed displacement Ud on a subset o1X of the

boundary,

• a volume force density f
d
defined in X,

• a surface force density F d defined on: oX ¼
oX � o1X.

We designate the material�s Hooke�s operator by K.
Thus, the problem can be formulated as follows: find a

displacement field U and a stress field r defined on X
which verify

• the kinematic constraints:

U 2 U U jo1X ¼ Ud ð1Þ

• the equilibrium equations:

r 2 S 8U � 2 Uad;0 ð2Þ
Z
X
Tr½r�ðU �Þ
dX ¼

Z
X
f
d
U � dX þ

Z
o2X

F dU
� dS ð3Þ

• the constitutive relation:

r ¼ K�ðUÞ ð4Þ

U is the space in which the displacement field ðU ¼
½H 0ðXÞ
3Þ is sought, S the space of the stress ðS ¼
½L2ðXÞ
6Þ, U0 the space of the fields in U which are zero

on o1X and where �ðUÞ represents the linearized defor-

mation associated with the displacement

�ðUÞ ¼ 1
2
ðgradU þ gradUtÞ

The solution to the reference problem is designated by

ðU ex; rexÞ.
2.2. Definition of the error in constitutive relation

The approach based on the error in constitutive re-

lation relies on a partitioning of the above equations

into two groups

• the admissibility conditions: Eqs. (1) and (3),

• the constitutive relation: Eq. (4).

In practice, the constitutive relation is often the least

reliable of all the equations of the reference problem.

Therefore, it is natural to consider approximate solu-

tions which verify the admissibility conditions exactly

and to quantify quality by the extent to which the con-
stitutive relations are verified. This leads us to the in-

troduction of the following definition:

We say that fields ŝs ¼ ð bUU ; r̂rÞ are admissible if

• field bUU verifies (1) ( bUU is kinematically admissible),

• field r̂r verifies (3) (r̂r is statically admissible).

One can then define a measure of the error in con-

stitutive relation by

êehðŝsÞ ¼ kr̂r � K�ð bUU ÞkX ð5Þ

with k � kX ¼
R

X Tr½�K
�1�
dX and a relative error by

�̂�h ¼
kr̂r � K�ð bUU ÞkX

kr̂r þ K�ð bUU ÞkX

ð6Þ
2.3. Errors in finite element discretization

Classically, if one discretizes the reference problem

using a displacement-type finite element method, one

obtains the following problem:

Find the kinematically admissible finite element dis-

placement field Uh such that

8U �
h 2 Uh0

Z
X
Tr½�ðUhÞK�ðU �

hÞ
dX

¼
Z

X
f
d
U �

h dX þ
Z
o2X

F dU
�
h dS ð7Þ

where Uh0 is the space of finite element displacement

fields which are zero on o1X.
The corresponding stress field is

rh ¼ K�ðUhÞ ð8Þ

The method to evaluate the errors due to the finite

element discretization consists of reconstructing, start-

ing from the finite element data and solution, an ad-

missible pair ŝs ¼ ð bUUh; r̂rhÞ. Since the finite element field is
kinematically admissible, one takesbUUh ¼ Uh ð9Þ

On the contrary, the stress field rh, is not statically

admissible. Techniques to reconstruct admissible stress

fields have been under development for several years

[2,11]. They enable one to obtain a field r̂rh which verifies

the equilibrium equations exactly (3). We will discuss

these techniques in the next section.

The error in constitutive relation associated with the

admissible pair ŝs ¼ ð bUUh; r̂rhÞ is
êeh ¼ kr̂rh � K�ðUhÞkX ¼ kr̂rh � rhkX ð10Þ
2.4. Property of the global error in constitutive relation

Using the Prager–Synge theorem [12], one shows

easily that



krex � rhkX 6 êeh ð11Þ

Thus, the error in constitutive relation is an upperbound

of the discretization error. In other words, the global

effectivity index (ratio of the estimated error to the true

error) is always greater than 1. If one introduces the

stress field

r�
h ¼ 1

2
ðr̂rh þ rhÞ ð12Þ

one also obtains,

krex � r�
hkX ¼ 1

2
êeh ð13Þ

3. Estimation of the local errors on stresses

By construction, the square of the error in constitu-

tive relation is the sum of contributions on each element

of the mesh

êe2h ¼
X
E2E

êe2h;E ð14Þ

with

êeh;E � kr̂rh � rhkE ¼
Z
E
Tr½ðr̂rh � rhÞK�1ðr̂rh � rhÞ
dE

A priori, it was not possible to prove, on the local

level, an inequality of the type (11)

krex � rhkE 6 kr̂rh � rhkE ð15Þ

Nevertheless, in 2D, if one generates field r̂rh using the

method introduced in [13], and for linear tetrahedral

element [10] one observes experimentally that

krex � rhkE 6Ckr̂rh � rhkE ð16Þ

where C is a constant numerically close to 1.

One should point out that this type of local property

can be completely lacking for ZZ2 estimators [6], in spite

of the fact that these estimators have excellent global

behavior. In the next section, we will extend to three-

dimensional 10-nodes elements calculations the tech-

niques developed in 2D in [13] for the construction of

admissible fields. We will see in Section 5 that the esti-

mator thus obtained has excellent local characteristics.
4. Construction of admissible fields in 3D

4.1. Principle of the construction

The technique to build stress fields r̂rh, which verify

the equilibrium equation (3) exactly has become a classic

[2,11]. It involves two stages:

The first stage consists of constructing on the sides of

the elements surface force densities bFF h to represent the

stress vectors r̂rhnE as
½r̂rhnE
jC ¼ gE
bFF h avec C 2 oE ð17Þ

where gE is a function, constant on each side, whose

value is either 1 or )1 and such that on the side common
to two adjacent elements E and E0: gE þ g0

E ¼ 0.

Moreover, these force densities are generated in such

a way that, on each element E in the mesh, the volume

loads f
d
and the surface loads gE

bFF h are in equilibrium

on E. The detail of this construction procedure can be

found in [11].

The second stage consists of constructing, element by

element, a solution to the equilibrium equations

div r̂rE þ f
d
¼ 0 in E

r̂rEnE ¼ gE
bFFh on oE

(
ð18Þ

Then, field r̂rh is obtained by: 8Er̂rhjE ¼ r̂rE.

For a given set of densities, of all the solutions of (18)

the best field r̂rhjE is the one which is solution to the

minimization problem

min
r̂rE verifying ð18Þ

kr̂rE � rhkE ð19Þ

By duality, this is equivalent to seeking a displacement

field V E defined on E such that

V E 2 UðEÞ and 8V � 2 UðEÞZ
E
Tr½ð�ðV EÞK�ðV �Þ
dE ¼

Z
E
f
d
V � dE þ

Z
oE

gE
bFF hV

� dC

ð20Þ

where UðEÞ designates the space of restrictions to E of

the fields in U. Then r̂rE is given by

r̂rE ¼ K�ðV EÞ ð21Þ

Thus, one can obtain an approximation of r̂rE by solving

Problem (20) by a classical finite element method on E.
In practice, it is sufficient, in order to obtain a good

approximation, to consider either a discretization of E
with a single element but an interpolation of degree

p þ k, where p is the degree of interpolation used in the

finite element analysis and k a positive integer, or a

subdivision of element E along with an interpolation of

degree p þ k0 (generally, k < k0).
The essential step is the construction of densities bFF h,

as this conditions the quality of the resultant field r̂rh

and, consequently, the quality of the error estimator in

constitutive relation.
5. Study of the quality of the local estimations

We present examples modeled with quadratic tetra-

hedral (p ¼ 2). In order to measure the local quality of

our estimator, we have introduced a local effectivity

index fE



fE ¼ kr̂rh � rhkE
krex � rhkE

ð22Þ

Here, we work on a simple test case where rex is known

analytically. This enables us to define fE exactly and to

measure the quality of our estimator.
5.1. Cube example

We consider an elastic cube fixed on face o1X and

subjected to second-degree polynomial forces on the five

other faces o2X (Fig. 1). There are no external body

forces. The structure was meshed with forty TET10

elements (Fig. 2).

On this example, we found the exact solution. In-

deed, the surface force densities were chosen such that

the exact solution is
δ1Ω

δ2Ω

Fig. 1. Cube example.

Fig. 2. Corresponding mesh.
rex ¼

�2xy y2 � z2

2
� x2

1� m
yz
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xy
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0
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The global error estimate for this structure was

êeh ¼ 7%, whereas the exact error was � ¼ 2:7%, which
corresponds to a global effectivity index f ¼ 2:6. Using
the finite element solution and the exact solution, local

indexes fE can be calculated. For each element, one can

plot the stresses krhk2=mesðEÞ (Fig. 3). The local error
density (Fig. 4) and the local effectivity indexes fE (Fig.

5); all these results are given element by element in order

of increasing stresses.

For example,

The results illustrate two characteristic properties of

the estimator. On the one hand, in this example, all ef-

fectivity indexes are greater than one: this means that the

local error estimation overestimates the actual error

Element #40 (the most

highly loaded)

Element #18

Stress krhk2=mesðEÞ ¼ 289

MPa

Stress krhk2=fmesðEÞ
¼ 24 MPa

Estimated local
error: 1%

Estimated local

error: 14%

Exact local error: 0.7% Exact local error: 8%
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Fig. 3. Local stress density per element in order of increasing

stresses.
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Fig. 5. Local effectivity indexes in elements in order of in-

creasing stresses.
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Fig. 4. Local error density in order of increasing stresses.
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Fig. 7. Cylinder example.
made in each element of the structure. On the other

hand, all effectivity indexes are relatively close to 1: this

means that the overestimation is not severe. It is also

worth mentioning that the latter property is all the more

true for elements whose stress (in the energy norm sense)

is high. Besides, these results confirm the results ob-

tained on examples meshed using four-node tetrahedral

elements.

Fig. 6 shows the histograms of the effectivity indexes.

The horizontal axis represents local effectivity index

levels while bar heights represent the number of elements

having the corresponding level. This graph shows clearly

that a majority of elements have a local effectivity index

close to 2.
5.2. Cylinder example

The second example is an elastic crown subjected to a

set of internal and external pressures (Fig. 7). There are

no external body forces. The structure was meshed with

648 10-node tetrahedral elements (Fig. 8). This is an

axisymmetric problem; however, the whole structure

was meshed and, therefore, did not benefit from the

periodicity in h. This enabled us to check that the esti-

mation remained periodic, except for the inaccuracies

of the mesh.



Fig. 8. Corresponding mesh.
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The solution was expressed in cylindrical coordi-

nates.

rex ¼
A� B

r2 0 0

0 Aþ B
r2 0

0 0 2k
kþ2lA

24 35
ðer ;eh ;ezÞ

ð24Þ
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Fig. 10. Local effectivity indexes in the elements in order of

increasing stresses.
U ex ¼
A

kþ2l r þ B
2lr

0
0

24 35
ðer ;eh ;ezÞ

with

A ¼ p1R2
1 þ p2R2

2

ðR2
2 � R2

1Þ

and

B ¼ p1 þ p2
ðR�2

1 � R�2
2 Þ

The numerical values used in this example were: p1 ¼ 0

MPa, p2 ¼ 2:5 MPa, R1 ¼ 10 mm and R2 ¼ 25 mm.

The global error estimate for this structure was

�h ¼ 9:5%, whereas the exact error was � ¼ 3:3%, which
corresponds to a global effectivity index f ¼ 2:8. Using
the finite element solution and the exact solution, local

indexes fE can be calculated. For each element, one can

plot the local density error (Fig. 9) and the local effec-

tivity indexes fE (Fig. 10); all these results are given el-

ement by element in order of increasing stresses.

The results are given for a 10-degree section, which

corresponds to the period of the mesh Fig. 10.
For example,

In this example, the results illustrate again the two

properties of the estimator mentioned earlier. On the

one hand, all effectivity indexes are greater than one: this

Element #648 (the most

highly loaded)

Element #110

Stress krhk2=mesðEÞ
¼ 170 MPa

Stress krhk2=mesðEÞ ¼ 85

MPa

Estimated local

error: 8.4%

Estimated local

error: 15.5%

Exact local error: 3.3% Exact local error: 9.7%
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means that for each element in the structure the local

error estimation overestimates the actual error made. On

the other hand, all effectivity indexes are relatively close

to 1: this means that the over-estimation is not severe. It

is also worth mentioning that the latter property is all

the more true for elements whose stress (in the energy

norm sense) is high.

In the same way as on the preceding example, one

can observe on the histogram, that a majority of

elements have a local effectivity index close to 1.5 (Fig.

11).
6. Conclusions

In this paper, we extended the results presented in

[10] to the case of structures meshed with 10-node tetra-

hedral elements. We showed on the examples considered

that the new generation of error in constitutive relation

enables us to obtain locally a good estimation of the

actual error on the stress. Indeed, the estimated error is

close to the actual error. Moreover, we observed nu-

merically on all the structures tested that this estimate is

an upperbound of the actual error.
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