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Local estimation of the error in
the von Mises’ stress and

L2-norm of the stress for linear
elasticity problems

L. Gallimard
Laboratoire de Mécanique de Paris X, France

Abstract

Purpose – This paper aims to focus on the local quality of outputs of interest computed by a finite
element analysis in linear elasticity.

Design/methodology/approach – In particular outputs of interest are studied which do not depend
linearly on the solution of the problem considered such as the L2-norm of the stress and the von Mises’
stress. The method is based on the concept of error in the constitutive relation.

Findings – The method is illustrated through 2D test examples and shows that the proposed error
estimator leads in practice to upper bounds of the output of interest being studied.

Practical implications – This tool is directly usable in the design stage. It can be used to develop
efficient adaptive techniques.

Originality/value – The interest of this paper is to provide an estimation of the local quality of
L2-norm of the stress and the Von Mises’ stress as well as practical upper bounds for these quantities.

Keywords Error analysis, Stress (materials), Linear motion, Elasticity

Paper type Research paper

Introduction
The transformation of a continuous mechanical model into a discretized finite element
model leads to a partial loss of the information contained in the continuous model and,
thus, to the introduction of discretization errors. Methods have been developed over
many years in order to evaluate the overall quality of finite element analysis (Babuška
and Rheinboldt, 1978; Ladevèze and Pelle, 1983; Zienkiewicz and Zhu, 1987). For linear
problems, all these methods provide a global energy-based estimate of the discretization
error. Most of the time, such global information is insufficient for dimensioning
purposes in mechanical design. In many common situations, the dimensioning criteria
involve local values (stresses, displacements, intensity factors . . .). Developments of
error estimators for such quantities were initiated in the 1980s (Babuška and Miller,
1982; Kelly and Isles, 1989). Recently, error estimates and bounds for quantities of
interest have been proposed in numerous works (Babuška et al., 1995; Babuška et al.,
1998; Rannacher and Stuttmeier, 1997, 1998; Peraire and Patera, 1998; Prudhomme and
Oden, 1999; Strouboulis et al., 2000; Ohnimus et al., 2001). In these papers, the quantities
of interest depend linearly on the solution of the problem considered, and the
computation of the error estimator on the quantity of interest involves the approximate
resolution of an auxiliary problem. When the studied quantity not depends linearly on
the solution of the problem, authors (Beckers and Rannacher, 2001; Oden and
Prudhomme, 2002) propose to linearize the functional of interest. For instance, the
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quality of the J-integral was studied in (Heintz et al., 2002; Heintz and Samuelsson, 2004;
Ruter and Stein, 2006). Another approach, based on the local properties of the error on
constitutive relation proposed in (Ladevèze and Rougeot, 1997), was developed in
(Ladevèze et al., 1999; Florentin et al., 2003; Florentin et al., 2003; Gallimard and Panetier,
2006). This approach enables the error in the energy norm to be estimated directly in an
element E of the mesh.

In this paper, we propose a method to evaluate the error in the L2-norm of the
stresses in a given zone of the mesh. This method, which can be extended to other
quantities, such as the Von Mises’ stress, is based on the local properties of the error in
constitutive relation proposed in Ladevèze and Rougeot (1997) and on the approximate
resolution of an auxiliary problem. In practice, it leads to upper bounds of the
quantities being studied.

The paper is structured as follows. In Section 2, the linear elastic problem to be
solved is described. In Section 3, we briefly review the basics of the estimation of
the error in constitutive relation, and in Section 4 we review the main features of the
goal-oriented error estimation. Section 5 focuses on the construction of a local error
in the L2-norm of the stresses and an associated upper bound. Section 6 shows the
extension of this local error estimation to the error in the Von Mises’ stress. Finally,
numerical examples illustrating the good behavior of these upper bounds and error
estimators are proposed in Section 7.

The problem to be solved
Let us consider an elastic structure in a domain V bounded by ›V. The external actions
on the structure are represented by a prescribed displacement _u

d
over a subset ›1V of

the boundary, a surface force density _F
d

over ›2V ¼ ›V 2 ›1V and a body force
density _f

d
in V. K denotes the Hooke’s operator of the material. Thus, the problem can

be formulated as follows: find a displacement field _u and a stress field s defined in V
which verify:

. the kinematic constraints:

_u [ U and _uj›1V ¼ _u
d

ð1Þ

. the equilibrium equations:

s [ S and;_u
*
[ U0

2
R
V
s : 1ð_u

*
ÞdVþ

R
V _f

d
· _u

*
dVþ

R
›2V

_F
d

· _u
*
dG ¼ 0

ð2Þ

. the constitutive relation:

s ¼ K1ð_uÞ ð3Þ

where U denotes the space in which the displacement field is being sought, S the
space of the stresses. U0 the space of the fields in U which are zero on ›1V and 1ð_uÞ the
linearized strain associated with the displacement ½1ð_uÞ�ij ¼ 1=2ðui;j þ uj;iÞ:

The Galerkin finite element method provides an approximation _u
h

of _u defined in a
finite element space Uh [ U: The space Uh; of finite dimension, is associated with a



finite element mesh of characteristic size h. Let Ph denote a decomposition of V into N
elements Ek. This decomposition is assumed to verify �V ¼ <Ek[Ph

�Ek with Ei > Ej ¼ Y
for any i different from j. The discretized problem is:

Find a kinematically admissible finite element displacement field _u
h

such that:

;_u*
h
[ Uh0

2
R
V

K1ð_u
h
Þ : 1ð_u*

h
ÞdVþ

R
V _f

d
· _u*

h
dVþ

R
›2V

_F
d

· _u*
h
dG ¼ 0

ð4Þ

where Uh0 is the space of the displacement fields in Uh:
The corresponding stress field is calculated using the constitutive relation:

sh ¼ K1ð_u
h
Þ ð5Þ

The discretization error _e
h

is the difference between the finite element displacement
and the actual displacement of the problem to be solved _e

h
¼ _u 2 _u

h
: Traditionally, the

energy norm is selected as the error measure.

eh ¼

Z
V

K1ð_u 2 _u
h
Þ : 1ð_u 2 _u

h
ÞdV

� �1=2

ð6Þ

The discretization error can also be defined as the error in the stresses:

eh ¼

Z
V

ðs2 shÞ : K 21ðs2 shÞdV

� �1=2

ð7Þ

The contribution of an element E of the finite element mesh to the global error is:

ehE ¼

Z
E

K1ð_u 2 _u
h
Þ : 1ð_u 2 _u

h
ÞdE

� �1=2

¼

Z
E

ðs2 shÞ : K 21ðs2 shÞdE

� �1=2

ð8Þ

with the relation:

e2
h ¼

E[V

X
e2

hE

Error in constitutive relation
Definition
The approach based on the error in constitutive relation relies on a partition of the
equations of the problem to be solved into two groups. In linear elasticity, the first
group includes the kinematic constraints (1) and the equilibrium equations (2), while
the second group contains the constitutive relation (3). Let us consider an approximate
solution of the problem, denoted ð _̂u; ŝÞ; which satisfies the first group of equations:

The fields ð _̂u; ŝÞ are said to be admissible if:
. the field _̂u verifies equation (1); and
. the field ŝ verifies equation (2)



If ð _̂u; ŝÞ verify the constitutive relation (3) in V then ð _̂u; ŝÞ ¼ ð_u;sÞ: However, if ð _̂u; ŝÞ
do not verify the constitutive relation, the quality of this admissible solution can be
measured through the residual, denoted êð _̂u; ŝÞ; with respect to the verification of the
constitutive relation:

êð _̂u; ŝÞ ¼ ŝ2 K1ð _̂uÞ ð9Þ

The associated constitutive relation error for all the elements E of the finite element
mesh is:

êð _̂u; ŝÞ
2 ¼

E[V

X
êE ð _̂u; ŝÞ

2 ð10Þ

with:

êE ð _̂u; ŝÞ
2 ¼

Z
E

ðŝ2 K1ð _̂uÞÞ : K 21ðŝ2 K1ð _̂uÞÞdE ð11Þ

The relative error 1̂ is then defined by:

1̂ð _̂u; ŝÞ
2 ¼

êð _̂u; ŝÞ2R
V
ŝ*K 21ŝ*dV

ð12Þ

with:

ŝ
*
¼

1

2
ðŝþ K1ð _̂uÞÞ

The pair ð_u
h
;shÞ is not an admissible solution. In order to develop an error estimator

based on the concept of error in constitutive relation, we construct an admissible pair
ð _̂uh; ŝhÞ from the finite element solution and from the data:

. Since, the finite element displacement field verifies the kinematic constraints, one
takes:

_̂uh
¼ _u

h
inV ð13Þ

. Conversely, the stress field sh does not verify the equilibrium equations (2).
Techniques to reconstruct equilibrated stress fields from sh and the data have
been under development for several years and are described in Ladevèze et al.
(1991), Ladevèze and Rougeot (1997) and Florentin et al. (2002).

Relation with the discretization error
The error in constitutive relation can be related to the discretization error through the
Prager and Synge (1947) theorem:



ê2
h ¼ êð _U

h
; ŝhÞ

2

¼
R
V
ðŝh 2 K1ð_u

h
ÞÞ : K 21ðŝh 2 K1ð_u

h
ÞÞdV

¼
R
V
ðŝh 2 shÞ : K 21ðŝh 2 shÞdV

¼
R
V
ðŝh 2 sÞ : K 21ðŝh 2 sÞdVþ

R
V
ðs2 shÞ : K 21ðs2 shÞdV

ð14Þ

This theorem leads to the following inequalities:

eh ¼

Z
V

ðs2 shÞ : K 21ðs2 shÞdV

� �1=2

# êh ð15Þ

and:

Z
V

ðŝh 2 sÞ : K 21ðŝh 2 sÞdV

� �1=2

# êh ð16Þ

A priori, the Prager-Synge theorem cannot be used on the local level. However, in
practical situations, when the admissible stress field is built using the techniques
developed in Ladevèze and Rougeot (1997), one observes that:

ehE ¼ ks2 ŝhkE # Ckŝ2 shkE ¼ CêhE ð17Þ

where C is numerically close to 1 (Ladevèze et al., 1999; Florentin et al., 2002; Florentin
et al., 2003).

Goal-oriented error estimation
Rather than estimating the numerical error using the energy norm, it would be
preferable to calculate the error in terms of physically meaningful quantities of interest.
In this section, we briefly review the techniques described in the literature for the case
where the quantity of interest is a linear functional L of the displacement. Now, the
objective of the calculation is to assess the quality of I h ¼ Lð_u

h
Þ by estimating I 2 Ih,

where I ¼ Lð_uÞ: We refer the reader to references (Prudhomme and Oden, 1999;
Ladevèze et al., 1999; Strouboulis et al., 2000; Ohnimus et al., 2001; Prudhomme et al.,
2003) for a detailed description of the approach. Because of linearity, one has: I 2 I h ¼
Lð_uÞ2 Lð_u

h
Þ ¼ Lð_u 2 _u

h
Þ ¼ Lð_e

h
Þ: Therefore, the estimation of I 2 Ih is equivalent to

the estimation of Lð_e
h
Þ:

Definition of the auxiliary problem
Let us consider the following auxiliary problem: find _z [ U0 and s aux ¼ K1ð_zÞ such
that:

;_u
*
[ U0

Z
V

K1ð_u
*
Þ : 1ð_zÞdV ¼ Lð_u

*
Þ ð18Þ

Replacing _u
*

by _e
h
; one obtains:



Lð_e
h
Þ ¼

Z
V

K1ð_e
h
Þ : 1ð_zÞdV ð19Þ

This relation is the starting point of the goal-oriented error estimates developed in
Kelly and Isles (1989), Rannacher and Stuttmeier (1997), Peraire and Patera (1998),
Ladevèze et al. (1999), Prudhomme and Oden (1999), Strouboulis et al. (2000), Ohnimus
et al. (2001) and Prudhomme et al. (2003). The approach proposed here differs in two
aspects:

(1) the technique developed to approximate _z; and

(2) the technique used to obtain an upper bound of jLð_e
h
Þj:

Approximate solution of the auxiliary problem
Let us denote _z

h
the finite element approximation of _z in the finite element space Uh0 :

;_u*
h
[ Uh0

Z
V

K1ð_u*
h
Þ : 1ð_z

h
ÞdV ¼ Lð_u*

h
Þ ð20Þ

Because of the orthogonality property, one has:Z
V

K1ð_e
h
Þ : 1ð_u*

h
ÞdV ¼ 0 ;_u*

h
[ Uh0 ð21Þ

Replacing _u*
h

by _z
h
: Z

V

K1ð_e
h
Þ : 1ð_z

h
ÞdV ¼ 0 ð22Þ

By combining equations (19) and (22), one gets:

I 2 I h ¼ Lð_e
h
Þ ¼

Z
V

K1ð_e
h
Þ : 1ð_z 2 _z

h
ÞdV ¼

Z
V

ðs aux 2 s aux
h Þ : 1ð_e

h
ÞdV ð23Þ

Let us denote ŝaux
h an equilibrated stress associated with saux

h : The following property
is verified: Z

V

ðŝ aux
h 2 sauxÞ : 1ð_u

*
ÞdV ¼ 0 ;_u

*
[ U0 ð24Þ

In particular, replacing _u
*

by _e
h
:Z

V

ðŝ aux
h 2 s auxÞ : 1ð_e

h
ÞdV ¼ 0 ð25Þ

By combining equations (25) and (23), one gets:

I 2 I h ¼ Lð_e
h
Þ ¼

Z
V

ðŝ aux
h 2 s aux

h Þ : 1ð_e
h
ÞdV ð26Þ



Upper bound property
Let us denote êaux

h the error in constitutive relation measured on the auxiliary problem:

ðêaux
h Þ2 ¼

E[V

X
ðêaux

hE Þ2 ð27Þ

with:

ðêaux
hE Þ2 ¼

Z
E

ðŝaux 2 s aux
h Þ : K 21ðŝ aux 2 s aux

h ÞdE ð28Þ

The Cauchy-Schwartz inequality applied to relation (26) leads to the following two
upper bounds:

jI 2 I hj # êaux
h eh

or:

jI 2 I hj #
E[V

X
êaux

hE ehE ð29Þ

Other bounds were developed in Prudhomme and Oden (1999).

Upper bound of the L2-norm of the stress in a zone v
Let us focus on the quality of the L2-norm of the stress in a zone v of the structure. (In
the following discussion, we will assume that v is the union of some elements E of the
finite element mesh.)

J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mesðvÞ

Z
v

ðs : sÞdv

s
ð30Þ

The quantity obtained through the finite element calculation is:

J h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mesðvÞ

Z
v

ðsh : shÞdv

s
ð31Þ

The quantity being studied does not depend linearly on the finite element solution of
the initial problem. The objective is to express the quantity dJ ¼ J 2 Jh as a function
of the discretization error eh with respect to the initial problem and of the error in
constitutive relation êaux

h calculated for the auxiliary problem. First, we choose to
express the difference between the squared quantities J 2 ¼ J 2

h:

J 2 2 J 2
h ¼

1

mesðvÞ

Z
v

ðs : s2 sh : shÞdv

� �
ð32Þ

Thus:

J 2 2 J 2
h ¼

1

mesðvÞ

Z
v

ðs2 shÞ : ðs2 shÞdvþ 2

Z
v

sh : ðs2 shÞdv

� �
ð33Þ



The difference is the sum of two quantities:

J 2 2 J 2
h ¼ elin þ equa ð34Þ

with:

elin ¼
1

mesðvÞ

Z
v

2sh : ðs2 shÞdv ¼

Z
v

2

mesðvÞ
Ksh : 1ð_e

h
Þdv ð35Þ

and:

equa ¼
1

mesðvÞ

Z
v

ðs2 shÞ : ðs2 shÞdv ð36Þ

elin ¼ Lð_e
h
Þ ¼ I 2 I h depends linearly on the solution of the initial problem and, thus,

elin can be estimated using the techniques described in Section (5). The quantities I and
Ih are defined by:

I ¼
2

mesðvÞ

Z
v

Ksh : 1ð_uÞdv and I h ¼
1

mesðvÞ

Z
v

Ksh : 1ð_u
h
Þdv ð37Þ

The loading of the associated auxiliary problem (18) is:

Lð_u
*
Þ ¼

Z
V

S : 1ð_u
*
ÞdV with

S ¼ 2
mesðvÞ Ksh inv

S ¼ 0 inV2 v

(
ð38Þ

The auxiliary problem is defined as: find _z [ U0 such that:Z
V

K1ð_zÞ : 1ð_u
*
ÞdV ¼

Z
V

S : 1ð_u
*
ÞdV ;_u

*
[ U0 ð39Þ

with:

s aux ¼ K1ð_zÞ inV ð40Þ

Let ð_z
h
;saux

h Þ be the finite element solution of the auxiliary problem associated with the
finite element space Uh0; and let ŝaux

h be an equilibrated stress field built from s aux
h and

the data (Ladevèze et al., 1991). Furthermore, let êaux
h be the error in the constitutive

relation associated with this auxiliary problem. From Property (26), elin is a function
of _e

h
:

elin ¼ Lð_e
h
Þ ¼

Z
V

ðŝ aux
h 2 s aux

h Þ : 1ð_e
h
ÞdV ð41Þ

Using the Cauchy-Schwartz inequality, elin is bounded by:

jelinj #
E[V

X
êaux

hE ehE ð42Þ

The second part of the error equa is an L2-norm which can be bounded by the energy
norm:



equa ¼
1

mesðvÞ

Z
v

ððs2 shÞ : ðs2 shÞdv

#
1

mesðvÞ

Z
v

ððs2 shÞ : K 21ðs2 shÞdv ¼
k

mesðvÞ
E[v

X
e2

hE

ð43Þ

Where

k21 ¼ mins–0
s : K 21s

s : s

The upper bound obtained for J 2 2 J 2
h is a function of the local contributions ehE of

each element E of the mesh to the global discretization error eh.

J 2 2 J 2
h # h2

upp;L2 ð44Þ

where:

h2
upp;L2 ¼

E[V

X
êaux

hE ehE þ
k

mesðvÞ
E[v

X
e2

hE ð45Þ

J #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2

h þ h2
upp;L2

q
ð46Þ

Error estimator and evaluation of an upper bound
The quantities to be estimated are:

h2
upp;L2 ¼

E[V

X
êaux

hE ehE þ
k

mesðvÞ
E[V

X
e2

hE ð47Þ

In this expression the only unknowns are the local contributions ehE from each
element E.

Property (16) can be used to build a simple, but crude, upper bound:

e2
upp;L2 # êaux

h êh þ
k

mesðvÞ
ê2

h

Of course, this upper bound is of little practical interest.
To obtain a better estimate of hupp,L2, on can use the heuristic property, from

equation (17):

h2
upp;L2 # C

E[V

X
êaux

hE êhE þ C 2 k

mesðvÞ
E[v

X
ê2

hE

Numerical tests show that C is close to 1 (Ladevèze et al., 1999; Florentin et al., 2002;
Florentin et al., 2003). Thus, hupp,L2 can be estimated by the quantity êupp;L2 :



ê2
upp;L2 ¼

E[V

X
êaux

hE êhE þ
k

mesðvÞ
E[v

X
ê2

hE ð48Þ

An estimate of the upper bound of the L2-norm of the stress is:

Ĵupp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2

h þ ê2
upp;L2

q
ð49Þ

In order to define an error estimator expressed in the quantity of interest, let us observe
that in practical situations dJh ¼ J 2 Jh is small compared to J and Jh, and that we have
J 2 2 J 2

h < 2dJ h J h: The error in the quantity of interest is:

1̂ ¼
ê2

upp;L2

2J h

¼

P
E[Vêaux

hE êhE þ k
mesðvÞ

P
E[vê2

hE

2J h

ð50Þ

This expression, in which the error in the quantity of interest is a sum of element
contributions, can be used to develop adaptivity procedures through the techniques
proposed in (Ladevèze et al., 1991). It is easy to calculate a relative local error by
introducing the relative quantity: 1̂rel ¼ 1̂=J h:

Extension to the estimation of the local error in the Von Mises’ stress
The Von Mises’ stress at a point M of the structure is defined by:

sVM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sD : sD

r
ð51Þ

where s D is the deviatoric part of the stress.
The approximate value of the Von Mises’ stress at any point M of the structure is:

sVM
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
s D

h : s D
h

r
ð52Þ

The objective is to estimate the quality of the calculated Von Mises’ stress in a part v of
the structure. Several quantities of interest can be defined:

ksVMk1 ¼ supM[vjs
VMðM Þj

ksVMkL2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
M[v

ðsVMÞ2ðM Þdv
q

ksVMkL1 ¼
R

M[v
jsVMðM Þjdv

ð53Þ

The classical relations involving the norms are:

1

mesðvÞ
ksVMkL1 #

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mesðvÞ

p ksVMkL2 # ksVMk1 ð54Þ

If s VM(M) is constant throughout v, the inequalities are replaced by equalities. Here,
we consider the quantity of interest based on the L2-norm of the Von Mises’ stress,
which is:



JVM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mesðvÞ

Z
v

3

2
ðsD : sDÞdv

s
ð55Þ

The approximate quantity calculated from the finite element solution is:

JVM;h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mesðvÞ

Z
v

3

2
ðs D

h : s D
h Þdv

s
ð56Þ

We can follow the same approach as in the previous section by replacing s by s D in
the equations. The upper bound used for equa is the same because the L2-norm of the
stresses is an upper bound of the L2-norm of the Von Mises’ stresses. The upper
bound for jelinj is obtained with a modified auxiliary problem. The expressions of elin

and equa are:

elin ¼
3

mesðvÞ

Z
v

s D
h : ðs2 shÞdv ¼

Z
v

3

mesðvÞ
Ks D

h : 1ð_e
h
Þdv ð57Þ

and:

equa ¼
1

mesðvÞ

Z
v

3

2
ðsD 2 s D

h Þ : ðsD 2 s D
h Þdv ð58Þ

The loading of the auxiliary problem is:

Lð_u
*
Þ ¼

Z
V

S : 1ð_u
*
ÞdV with

S ¼ 3
mesðvÞ inv

S ¼ 0 inV2 v

(
ð59Þ

Let hupp,VM be:

h2
upp;VM ¼

E[V

X
êaux

hE ehE þ
3k

2mesðvÞ
E[v

X
e2

hE ð60Þ

where êaux
hE are the local contributions to the error in constitutive relation calculated for

the auxiliary problem (20) with the loading defined by equation (59).

The average Von Mises’ stress in v, JVM, is bounded by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2

VM;h þ h2
upp;VM

q
;

and hupp,VM is estimated by following the approach developed in Section 5.1
by replacing ehE by êhE : Then, the error estimator is calculated through equation (50).

Examples
In the numerical example of a plane frame under plane stress (Figure 1), the average
norm of the stress and the average Von Mises’ stress were calculated in a part v of the
structure. The Young’s modulus was E ¼ 2 £ 105 Mpa and the Poisson’s ratio was
n ¼ 0.3 (the coefficient k is equal to 0.769 105). The loading and the boundary
conditions are described in Figure 1. The initial mesh was made of six-node triangular
elements (Figure 2). Two refined meshes were deduced from the initial mesh through



Figure 1.
The problem to be solved

Figure 2.
The initial mesh
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two successive uniform refinements. Upper bounds were estimated for the L2-norm of
the stress and for the Von Mises’ stress on these 3 meshes. The reference stress was
calculated with the fifth refinement of the initial mesh. The results are shown in
Figures 3 and 4. Figure (5) shows the displacements for the auxiliary problem defined
in equation (39). Figures 6 and 7 show the ratio between the reference stress and the
estimated upper bound. On the second mesh, the stress was overestimated by less than
10 percent. The evolutions of the estimated errors against the reference error (Figures 8
and 9) show that the local estimators overestimate the reference errors by an order of
magnitude, which matches the results obtained by Stein et al. in (Ohnimus et al., 2001).
The evolution of the local relative errors against the global energy error estimator for
the initial problem (Figure 10) shows that the local error estimators converge better
than the energy error estimator.

Figure 3.
Upper bound estimate of
the L2-norm of the stress
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As the second example in plane stress, let us consider the average Von Mises’ stress in
the part v of the structure described in Figure (11) for various
prescribed displacements. Time angle a is equal to {08 458 908}. The estimated
upper bounds were calculated for the 3 angles (Figure 12). The ratio of the upper bound
to a reference Von Mises’ stress remained relatively constant (around 1.05) for the 3
loading cases (Figure 13). The comparison between the local relative error estimator
and the global error estimator is shown in Figure 14.

Conclusion
We presented a simple local error estimator in the L2-norm of the stresses in
linear elasticity and we used this error estimator to derive a local error estimator

Figure 4.
Upper bound estimate of

the Von Mises’ stress
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Figure 6.
Ratio of the upper bound
to the reference L2-norm of
the stress

Figure 5.
Calculated displacements
for the L2 auxiliary
problem
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Figure 7.
Ratio of the upper bound

to the reference Von Mises’
stress

Figure 8.
Von Mises: evolution of

the estimated local error
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for the Von Mises’ stress. The main idea is to combine the classical framework of
error estimation for quantities of interest and the practical local properties of the
error in constitutive relation. Numerical experiments showed that in practice the
proposed error estimators lead to upper bounds of the error and that the behavior
of the error estimators is similar to that of the reference errors. Other error
estimators can be developed by using the bounds developed in (Prudhomme and
Oden, 1999). The error estimators described here can be used in the framework of
an adaptive strategy: such a development will be presented by the author in the
very near future.

Figure 9.
L2-norm: evolution of the
estimated local error
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Figure 10.
Evolution of the estimated

local errors vs the global
energy error estimator for

the initial problem

Figure 11.
Problem definition and

mesh
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Figure 12.
Upper bound estimate of
the Von Mises’ stress

Figure 13.
Ratio of the upper bound
to a reference Von Mises’
stress
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propres de structures élastiques”, Comptes Rendus Acad. Sci. Paris, Série II, Vol. 296,
pp. 1757-60.
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Strouboulis, T., Babuška, I., Datta, D., Copps, K. and Gangaraj, S. (2000), “A posteriori estimation
and adaptative control of the error in the quantity of interest part 1: a posteriori estimation
of the error in the Von Mises stress and the stress intensity factor”, Comp. Meth. in Applied
Mech. and Engrg., Vol. 180, pp. 261-74.

http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1002%2Fnme.609&isi=000181270200006&citationId=p_21
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1002%2Fcnm.1630050803&isi=A1989CD55100001&citationId=p_11
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0922-5382%2898%2980011-1&citationId=p_18
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0922-5382%2898%2980011-1&citationId=p_18
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0922-5382%2898%2980015-9&citationId=p_23
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0045-7825%2897%2900089-3&isi=A1997YF26200015&citationId=p_13
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0922-5382%2898%2980015-9&citationId=p_23
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0045-7825%2899%2900077-8&isi=000084887500012&citationId=p_25
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0045-7825%2899%2900077-8&isi=000084887500012&citationId=p_25
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0045-7825%2898%2900339-9&isi=000081684600014&citationId=p_15
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2FS0045-7825%2898%2900343-0&isi=000081684600018&citationId=p_20
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2Fj.compstruc.2003.10.013&isi=000220109300002&citationId=p_10
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1002%2Fnme.228&isi=000171562700005&citationId=p_17
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1002%2Fnme.228&isi=000171562700005&citationId=p_17
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1007%2Fs004660050191&isi=A1997XB01600010&citationId=p_22
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1016%2Fj.cma.2004.05.032&isi=000233329300005&citationId=p_24
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&system=10.1108%2Feb023827&citationId=p_14
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F02644400610707775&crossref=10.1006%2Fjcph.2002.7183&isi=000179681700006&citationId=p_16


Zienkiewicz, O. and Zhu, J. (1987), “A simple error estimator and adaptive procedure for practical
engineering analysis”, Int. J. for Num. Meth. in Engrg., Vol. 24, pp. 337-57.

Further reading

Florentin, E., Gallimard, L. and Pelle, J. (2003), “Etude de la qualité locale de différentes versions
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