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A constitutive relation error estimator based on traction-free
recovery of the equilibrated stress

L. Gallimard∗,†

LEME, Université Paris 10, 50 rue de Sèvres-92410 Ville d’Avray, France

SUMMARY

A new methodology for recovering equilibrated stress fields is presented, which is based on traction-free
subdomains’ computations. It allows a rather simple implementation in a standard finite element code
compared with the standard technique for recovering equilibrated tractions. These equilibrated stresses are
used to compute a constitutive relation error estimator for a finite element model in 2D linear elasticity.
A lower bound and an upper bound for the discretization error are derived from the error in the constitutive
relation. These bounds in the discretization error are used to build lower and upper bounds for local
quantities of interest. Copyright q 2008 John Wiley & Sons, Ltd.

KEY WORDS: finite element method; equilibrated stress recovery; constitutive relation error; error
bounds; goal-oriented error estimation

1. INTRODUCTION

The finite element (FE) discretization of a continuous mechanical model leads to a partial loss of
the information contained in the continuous model and, thus, to the introduction of discretization
errors. Methods have been developed over many years to evaluate the global quality of FE analyses
[1–3]. For linear problems, all these methods provide a global energy-based estimate of the
discretization error. Most of the time, such global information is insufficient for dimensioning
purposes in mechanical design. In many common situations, the dimensioning criteria involve local
quantities (stresses, displacements, intensity factors, etc.). The development of error estimators
for such quantities was initiated in the 80s [4, 5]. Recently, numerous works have been published
which provide error estimates and bounds for several local quantities of interest [6–12]. In these
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works, the bounds for the quantities of interest are evaluated starting from the computation of an
estimation of a global energy error.

As far as we know the error estimators based on the recovery of equilibrated stress (or equili-
brated residuals) are the only type of estimators ensuring easily computable bounds for the error
in linear analysis [2, 10, 12–18]. In this paper we consider the approach based on the concept of
constitutive relation error (CRE) introduced in [2]. One difficulty of this approach is the construc-
tion of equilibrated stress fields from the FE solution and the data. The classical technique of
construction proposed [13], which requires equilibrated traction recovery, is difficult to introduce
in a standard FE code because the tractions are expressed on the edges of the elements of the
mesh.

This paper proposes a new technique to recover equilibrated stress fields, which is easier to
introduce in an FE code. This technique is an extension of the CRE estimators in the work of
Machiels et al. [14] on residual error estimators. We propose a new lower bound for the error in
the constitutive relation, as well.

The paper is organized as follows: In Section 2, we briefly recall the basics of constitutive
relation error estimators in linear elasticity. In Section 3 we introduce a new technique to build
equilibrated stress fields. Then, in Section 4, we introduce the approach for obtaining a lower
bound of the energy norm. In Section 5, a procedure to build the bounds for a quantity of interest
is presented. Finally, numerical examples illustrating the behavior of the global and local bounds
are presented in Section 6.

2. THE ERROR IN CONSTITUTIVE RELATION

2.1. The problem to be solved

Let us consider a 2D elastic structure defined in a domain � bounded by ��. The external actions
on the structure are represented by a prescribed displacement ud over a subset �1� of the boundary,
a surface force density T defined over �2�=��−�1�, and a body force density b defined in �.
Hooke’s operator of the material is denoted by K. Thus, the problem can be formulated as: Find
a displacement field u and a stress field r defined in � which verify

• the kinematic constraints:

u∈U and u |�1�=ud (1)

• the equilibrium equations:

r∈S and ∀u∗ ∈U0 −
∫

�
r :ε(u∗)d�+

∫
�
b.u∗ d�+

∫
�2�

T.u∗ d�=0 (2)

• the constitutive relation:

r=Kε(u) (3)

U is the space in which the displacement field is being sought, S=L2[�]3 the space of the
stresses, U0 the space of the fields in U which are zero on �1�, and ε(u) denotes the linearized
deformation associated with the displacement

[ε(u)]i j = 1
2 (ui, j +u j,i ) (4)
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The kinematic’s constraints are taken homogeneous in the developments for the sake of simplicity
(i.e. ud=0). The weak form of the problem reads: find u∈U0 such that

−
∫

�
Kε(u) :ε(u∗)d�+

∫
�
b.u∗ d�+

∫
�2�

T.u∗ d�=0 ∀u∗ ∈U0 (5)

The Galerkin FE method provides an approximation uh to u in an FE space Uh ⊂U. The
finite-dimension space Uh is associated with an FE mesh of characteristic size h. Let Ph denote
a partition of � into elements Ek . This partition is assumed to verify �=⋃k Ek (i.e. the mesh
cover the whole domain) with Ei ∩E j =∅ for any i different from j . The discretized problem is:
find uh ∈Uh

0 such that

−
∫

�
Kε(uh) :ε(u∗

h)d�+
∫
�
b.u∗

h d�+
∫

�2�
T.u∗

h d�=0 ∀u∗
h ∈Uh

0 (6)

where Uh
0 ={uh ∈Uh;uh |�1�=0}.

The corresponding stress field is calculated using the constitutive relation

rh =Kε(uh) (7)

The discretization error eh is the difference between the FE solution for the displacement and the
actual solution of the problem defined by Equation (5)

eh =u−uh (8)

Traditionally, the energy norm is used as the measure of the error

eh =‖u−uh‖u =‖r−rh‖� (9)

where

‖u‖u =
[∫

�
ε(u) :Kε(u)d�

]1/2
and ‖r‖� =

[∫
�
r :K−1rd�

]1/2
(10)

2.2. Definition of the CRE

The approach based on the CRE relies on a partition of the equations of the problem to be solved
into two groups [2]. In linear elasticity, the first group consists of the kinematic constraints (1)
and the equilibrium equations (2); the constitutive relation (3) constitutes the second group. Let us
consider an approximate solution of the problem, denoted by (û, r̂), which verifies the first group
of equations:

• the field û verifies (1) (i.e. û is kinematically admissible),
• the field r̂ verifies (2) (i.e. r̂ is statically admissible).

The fields (û, r̂) are said to be an admissible solution. If (û, r̂) verifies the constitutive relation
(3) in �, then (û, r̂)=(u,r) (i.e. the exact solution is found). If, however, (û, r̂) does not verify the
constitutive relation, the quality of this admissible solution is measured by the CRE error ê(û, r̂),
which is defined with respect to the constitutive relation

ê(û, r̂)=
[∫

�
(r̂−Kε(û)) :K−1(r̂−Kε(û))d�

]1/2
=‖r̂−Kε(û)‖�
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A relative error ε̂ is defined by

ε̂(û, r̂)= ê(û, r̂)

[∫� r̂∗K−1r̂∗ d�]1/2
with

r̂∗ = 1
2 (r̂+Kε(û))

2.3. Application of the CRE to FE computations

A key point to develop a CRE estimator is the construction of an admissible solution (ûh, r̂h)
from the FE solution (uh,rh) and the data.

• Since the FE displacement field verifies the kinematic constraints, one takes

ûh =uh in �

• However, the stress field rh does not verify the equilibrium equations (2). A method to recover
a statically admissible stress field r̂h from rh and the data have been under development for
several years [9, 13, 19, 20]. The main features of the recovery method are described in Section
3.1.

The CRE associated with the admissible solution (uh, r̂h) is denoted as ê(uh, r̂h)

ê(uh, r̂h)=
[∫

�
(r̂h−Kε(uh)) :K−1(r̂h−Kε(uh))d�

]1/2
=‖r̂h−Kε(uh)‖�

2.4. Upper bound estimate of the discretization error in the energy norm

An essential property is that the CRE estimator ê(uh, r̂h) is an upper bound of the discretization
error measure eh . The Prager–Synge theorem [21] leads to the following inequality:

eh�ê(uh, r̂h) (11)

The proof of this property is easily obtained by introducing the exact solution r=Kε(u) in the
expression of the CRE estimator

ê(uh, r̂h)2 = ‖r̂h−Kε(uh)‖2�
= ‖r̂h−r+Kε(u)−Kε(uh)‖2�

= ‖r̂h−r‖2�+‖Kε(u)−Kε(uh)‖2�+2
∫

�
(r̂h−r) :ε(u−uh)d�

= ‖r̂h−r‖2�+‖u−uh‖2u+2
∫

�
(r̂h−r) :ε(eh)d� (12)

As r̂h is an equilibrated stress, and eh belongs to U0, the following relation holds:∫
�
r̂h :ε(eh)d�=

∫
�
r :ε(eh)d�
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and hence ∫
�
(r̂h−r) :ε(eh)d�=0 (13)

The proof is completed by introducing Equation (13) and the definition of discretization error
in the energy norm in Equation (12)

ê(uh, r̂h)2=‖r̂h−r‖2�+e2h (14)

3. RECOVERY OF AN EQUILIBRATED STRESS FIELD

3.1. Standard method

This method has been first introduced in [2], and further developed in several papers [9, 13, 19, 20].
It is based on a prolongation condition used to link r̂h to the FE stress rh

∀E ∈ Ph

∀i ∈ I

∫
E
(r̂h−rh) grad (�i )dE=0

where E denotes an arbitrary element, I is the set of the mesh nodes, and �i the FE scalar shape
function associated with the node i . It involves two steps:

• The first step consists of constructing, on the element edges, surface force densities T̂h that
represent the vector fields r̂hnE as

[r̂hnE ]|� =�E T̂h with �∈�E

where �E is a function that is constant on each edge and whose value is either 1 or −1, so that
on the common edge of two adjacent elements E and E ′: �E +�E ′ =0. Moreover, these force
densities are generated in such a way that the volume load b and the surface loads �E T̂h are in
equilibrium on each element E of the mesh. More details of this procedure can be found in [13].

• The second step consists of constructing on each element E a stress field r̂E = r̂h |E solution of
the equilibrium equations:

div r̂E +b = 0 in E

r̂EnE = �E T̂h on �E
(15)

For a given set of surface force densities, among all the solutions of (15) the best field r̂E is the
one that is the solution to the minimization problem:

min
r̂Everifying(15)

1

2

∫
E
(r̂E −rh) :K−1(r̂E −rh)dV

By duality, this is equivalent to seeking a displacement field uE ∈U(E) such that

∀u∗ ∈U(E)

∫
E
Kε(uE ) :ε(u∗)dE−

∫
E
bu∗ dE−

∫
�E

�E T̂hu∗ d�=0 (16)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:460–482
DOI: 10.1002/nme



where U(E) designates the space of the restriction to E of the fields in U. The stress field r̂E
is given by

r̂E =Kε(uE )

Thus, one can obtain an approximation of r̂E by solving the problem (16) by a classical FE
method on E . In practice, it is sufficient, in order to obtain a good approximation, to consider
either a discretization of E with a single element but an interpolation of degree p+k, where p
is the degree of the interpolation used in the FE method and k a positive integer, or a subdivision
of the element E along with an interpolation of degree p. A complete study can be found in
[22]. However, provided the loading is sufficiently smooth, it is possible to recover rigorously
equilibrated stresses [13, 18].
The main drawback of this technique is to require, for the construction of the surface force

densities T̂h , a data structure that is not natural in a classical FE code (i.e. nodes and integration
points defined on the edges of the elements). In the next subsection we present a method to build
an equilibrated stress field that requires only the knowledge of the classical integration points and
the nodes of the mesh.

3.2. Method based on traction-free recovery

This method is based on the partition of unity and uses local subdomains different from the mesh
elements. It has been used for the residual error estimators [14, 17, 23, 24]. The principles of this
method, associated with a new prolongation condition, can be used to recover statically admissible
stress fields without computing the surface loads �E T̂h on the edges of the elements of the mesh.
Let Iv be the set of vertices of Ph and �i the corresponding piecewise linear (or bilinear for
square elements) shape functions. The support of �i is the set of the mesh elements that contains
the vertice i and is denoted by �i (see Figure 1). The sum of the functions ki is a partition of
unity ∑

i∈Iv
�i =1 (17)

Now, the statical stress field r̂h is sought as a sum of stress fields r̂ih =�i r̂h computed in each
subdomain �i such that r̂ih vanishes in �−�i . Moreover, r̂h is linked to the FE stress rh by the

i

i

Figure 1. �i : support of a linear shape function �i .
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following prolongation condition defined in �i :∫
�i

((r̂h−rh)grad�i )u∗ d�=0 ∀u∗ ∈U0(�i ) (18)

where U0(�i ) is the local restriction of the set U0 on the support �i .
Using Equation (17), the following equality holds:

r̂h =
(∑
i∈Iv

�i

)
r̂h = ∑

i∈Iv
(�i r̂h)= ∑

i∈Iv
r̂ih

and r̂ih satisfies the following equilibrium equation in �i :

div r̂ih = div(�i r̂h)

= �idiv r̂h+ r̂h grad�i

= −�ib+ r̂h grad�i (19)

as well as the following boundary conditions on ��i :

r̂ihn = �iT on �i2�

r̂ihn = 0 on ��i −(�i1�∪�i2�)

(20)

where

�i2�=��i ∩�2�, �i1�=��i ∩�1�

The weak solutions of the problem defined by Equations (19) and (20) are the fields r̂ih verifying∫
�i

r̂ihε(u
∗)d�=

∫
�i

(�ib− r̂h grad�i )u∗ d�+
∫

�i2�
�iTu∗ d� ∀u∗ ∈U0(�i ) (21)

Note that if �i2�=∅ the corresponding term disappears from the equation.
Introducing the prolongation condition (18) in Equation (21), one obtains

∀u∗ ∈U0(�i )

∫
�i

r̂ihε(u
∗)d� =

∫
�i

(�ib−rh grad�i )u∗ d�+
∫

�i2�
�iTu∗ d�

=
∫

�i

(�irhε(u∗)−rh :ε(�iu∗))d�

+
∫

�i

b(�iu∗)d�+
∫

�i2�
T(�iu∗)d� (22)
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Equation (22) is solvable on �i if, for any rigid body motion urb of �i , the right-hand term is
equal to zero

−
∫

�i

rh :ε(�iurb)d�+
∫

�i

b(�iurb)d�+
∫

�i2�
T(�iurb)d�=0 (23)

As rh satisfies the equilibrium equations in the FE sense, Equation (23) is satisfied if �iurb
belongs to the FE space Uh

0. If �iurb does not belong to the FE space Uh
0 (for instance, for linear

triangular elements), it is necessary to add forces Fi (M) to the loading such that the right-hand
term is equal to zero for any rigid body motion of �i and that

∑
i∈Iv Fi (M)=0. This point will

be developed in the Appendix.

3.3. Practical implementation

The construction of an admissible stress r̂h requires the resolution of local problems (22). The
stress field r̂ih is sought as the sum of the FE stress field and a correction stress field

r̂ih =�irh+Kε(dûi )

Equation (22) becomes: find dûi in U0(�i ) such that

∀u∗ ∈U0(�i )

∫
�i

Kε(dûi ) :ε(u∗)d� =
∫

�i

(�ib−rh grad�i )u∗ d�

−
∫

�i

�irhε(u∗)d�+
∫

�i2�
�iTu∗ d� (24)

In practice the resolution is performed in the same way as problem (16) in the second step of the
standard method (see Section 3.1). An approximation of dûi is computed by solving the problem
(24) by a classical FE method on �i . A subdivision of the initial FE mesh on �i is introduced:
Ph,S(�i ) where S is the subdivision per edge in all directions. Let Uh,S(�i ) be the associated FE
space, Uh,S

0 (�i ) the space of the fields in Uh,S(�i ) which are equal to 0 on �1�. The problem

(24) becomes: find dûi ∈Uh,S
0 (�i ) such that

∀u∗ ∈Uh,S
0 (�i )

∫
�i

Kε(dûi ) :ε(u∗)d� =
∫

�i

(�ib−rh grad�i )u∗ d�

−
∫

�i

�irhε(u∗)+
∫

�i2�
�iTu∗ d� (25)

The main advantage of the traction-free recovery method over the standard method is the
simplicity of its implementation. The traction-free error estimator requires only one additional
information to the standard data structure of an FE code. This information is the set of the elements
that surround a given vertex node, and is easily determined from the connection table. Moreover,
it does not require the computation of the flux along the edges of the elements. By comparison
the standard method needs a data structure to express the flux on the edges of the elements and
a connection between the edges, the elements and the nodes of the mesh, as well as integration
points and weight on these edges. Finally, the boundary conditions of the local problems are easy
to introduce in the standard structure of an FE code.
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4. LOWER BOUND

4.1. Definition of the lower bound

Let us consider a displacement field ũh that satisfy the kinematic constraints (Equation (1)).
Then, as the admissible stress field built to compute the upper bound r̂h satisfies the equilibrium
equation (2) ∫

�
r̂h :ε(ũh−uh)d�=

∫
�
r :ε(ũh−uh)d�

By subtracting on each side of the equation the quantity
∫
�rh :ε(ũh−uh)d� and by using the

Cauchy–Schwarz inequality, we obtain the following relation:∣∣∣∣
∫

�
(r̂h−rh) :ε(ũh−uh)d�

∣∣∣∣�‖r−rh‖�‖ũh−uh‖u =eh‖ũh−uh‖u (26)

where ‖·‖� and ‖·‖u are the classical energy norms defined in Equation (10). From Equation (26)
a lower bound ẽ(ũh−uh, r̂h−rh) of the discretization error eh can be derived

ẽ(ũh−uh, r̂h−rh)�eh (27)

with

ẽ(ũh−uh, r̂h−rh)= |∫�(r̂h−rh) :ε(ũh−uh)d�|
‖ũh−uh‖u

4.2. Practical construction of the lower bound

To compute the lower bound, it is sufficient to construct an admissible displacement field ũh . This
displacement field can be decomposed as the sum of the FE displacement field and a correction
displacement field �ũh , where �ũh belongs to U0:

ũh =uh+�ũh

Following the method proposed in Section 3.2 to compute the admissible stress r̂h , �ũh is
sought as a sum of displacement fields �ũih computed on each subdomain �i

�ũh = ∑
i∈Iv

�ũih

To ensure the continuity of �ũh , a simple way is to search �ũih such that �ũih is equal to zero
on ��i . Then �ũih is built in the same FE space as �ûi , and �ũih is the solution of the following

FE problem defined on �i : find �ũih ∈Uh,S
0,��i

(�i ) such that

∀u∗ ∈Uh,S
0,��i

(�i )

∫
�i

Kε(�ũih) :ε(u∗)d�=
∫

�i

(�ib−rh grad�i ).u∗ d�−
∫

�i

�irh :ε(u∗)d� (28)

whereUh,S
0,��i

(�i ) is the space fields inU
h,S
0 (�i ), which are equal to zero on ��i . This FE problem

is similar to the FE problem solved to compute the stress field r̂ih (25), but the Neumann boundary
conditions have been replaced by Dirichlet boundary conditions.
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5. APPLICATION TO THE COMPUTATION OF A GOAL-ORIENTED
ERROR ESTIMATOR

In this section the global upper and lower bounds in the energy norm (defined, respectively, in
Sections 2 and 4) are used to obtain bounds for quantities of interest. We briefly recall the techniques
developed in the literature for the case where the quantity of interest is a linear functional L of the
displacement. In this case, the objective of the calculation is to assess the quality of Ih = L(uh) by
estimating |I − Ih |, where I = L(u) (an example of quantity of interest is proposed in Section 6.2).
We refer the reader to References [8–11, 25] for a detailed description of this approach and to
[26–29] for the extension to non-linear quantities of interest.

Owing to the linearity assumption, one has

I − Ih = L(u)−L(uh)= L(u−uh)= L(eh)

thus, the estimate of |I − Ih | is equivalent to the estimate of |L(eh)|.

5.1. Definition of the auxiliary problem

Let us consider the following auxiliary problem: find uaux∈U0 and raux=Kε(uaux) such that∫
�
Kε(u∗) :ε(uaux)d�= L(u∗) ∀u∗ ∈U0 (29)

Replacing u∗ by eh , one gets

L(eh)=
∫

�
Kε(eh) :ε(uaux)d� (30)

The function uaux indicates how the discretization error affects the quantity L(eh). If uaux could
be exactly computed, one could determine L(u) directly from the input data, as from (2), (29) and
because uaux belongs to U0, one would have

L(u)=
∫

�
b.uaux d�+

∫
�2�

T.uaux d�

Unfortunately, the problem for the function uaux is as complicated to solve as the reference problem
for the solution u. However, we can compute an approximate value for uaux.

The relation (30) is the starting point of the goal-oriented error estimators developed in [5–10].
The approaches proposed in these papers differ on three points:

• the technique developed to approximate uaux,
• the technique used to obtain lower and upper bounds of |L(eh)|,
• the error estimators used to calculate the bounds.

5.2. Approximate solution of the auxiliary problem

Let uauxh be the FE approximation of uaux defined in the FE space Uh
0:∫

�
Kε(u∗

h) :ε(uauxh )d�= L(u∗
h) ∀u∗

h ∈Uh
0 (31)
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Because of the orthogonality property, one has∫
�
Kε(eh) :ε(u∗

h)d�=0 ∀u∗
h ∈Uh

0

Replacing u∗
h by uauxh the above relation transforms to∫

�
Kε(eh) :ε(uauxh )d�=0 (32)

By combining (30) and (32), one obtains the following relation for the error estimate:

I − Ih = L(eh)=
∫

�
Kε(eh) :ε(eauxh )d� (33)

where eauxh =uaux−uauxh is the discretization error of the auxiliary problem.

5.3. Bounds of the quantity of interest

Following [11], the error in the quantity of interest can be written as

I − Ih =
∫

�
Kε(eh) :ε(eauxh )d�

= 1

4
‖seh+s−1eauxh ‖2u− 1

4
‖seh−s−1eauxh ‖2u (34)

where s is a scaling factor. The value of s is chosen so that ‖seh‖u and ‖s−1eauxh ‖u have the same
amplitude. This implies that

s=
√

‖eauxh ‖u/‖eh‖u
However, in practice, the discretization errors ‖eauxh ‖u and ‖eh‖u will be replaced by the

computed error estimators in the constitutive relation.

Replacing eh by (u−uh) and eauxh by (uaux−uauxh ) in Equation (34) one easily obtains

I − Ih = 1
4‖u+−u+

h ‖2u− 1
4‖u−−u−

h ‖2u (35)

where

u± =su±s−1uaux and u±
h =suh±s−1uauxh

In order to determine bounds for the error in the quantity of interest, the error estimates of
both the initial and the auxiliary problem are necessary. The methodology proposed in Sections 3
and 4 can be used to build a statically admissible stress field r̂auxh and a kinematically admissible
displacement field ũauxh for the auxiliary problem. Taking advantage of the linearity of the problems,
and introducing the global lower and upper bounds defined, respectively, in Equations (27) and
(11), bounds for ‖u+−u+

h ‖u and ‖u−−u−
h ‖u can be built

ẽ(ũ+
h −u+

h , r̂+h −r+h ) � ‖u+−u+
h ‖u�ê(u+

h , r̂+h )

ẽ(ũ−
h −u−

h , r̂−h −r−h ) � ‖u−−u−
h ‖u�ê(u−

h , r̂−h )
(36)
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where

r̂+h = sr̂h+s−1r̂auxh and r̂−h =sr̂h−s−1r̂auxh

ũ+
h = sũh+s−1ũauxh and ũ−

h =sũh−s−1ũauxh

From Equations (34) and (36), the classical upper and lower bounds are derived [11]
�low�I − Ih��upp (37)

where

�low = 1
4 ẽ(ũ

+
h −u+

h , r̂+h −r+h )2− 1
4 ê(u

−
h , r̂−h )2

�upp = 1
4 ê(u

+
h , r̂+h )2− 1

4 ẽ(ũ
−
h −u−

h , r̂−h −r−h )2

The bounds for the quantity of interest I are easily derived from (37)

I upph = Ih+�upp and I lowh = Ih+�low

The introduction of lower bounds in the energy ẽ(ũ+
h −u+

h , r̂+h −r+h ) and ẽ(ũ−
h −u−

h , r̂−h −r−h )

leads to much sharper bounds than the classical approach based on the error estimator in the
constitutive relation, where the ‘local’ lower and upper bounds are constructed with only the CRE
estimator computed on the initial and auxiliary problem.

�CRElow = − 1
4 ê(u

−
h , r̂−h )2

�CREupp = 1
4 ê(u

+
h , r̂+h )2

In this case, the bounds for the quantity of interest I are

I upp,CREh = Ih+�CREupp and I low,CRE
h = Ih+�CRElow

6. NUMERICAL EXAMPLES

This section is devoted to the study of the error estimates and bounds presented above. In the first
example, we analyze the behavior of the global lower and upper bounds in the energy norm on a
plate with two holes. The next examples deal with the study of the goal-oriented error estimation
for a crack opening problem. In all the cases studied the exact solutions are unknown. The estimates
and the error bounds are then verified by comparing results with solutions obtained on fine meshes,
which are believed to provide accurate solutions. The quality of the global CRE estimator ê(uh, r̂h)
and of the global lower bound ẽ(ũh−uh, r̂h−rh) is estimated by an effectivity index:

�u = ê(uh, r̂h)
eref

and �L = ẽ(ũh−uh, r̂h−rh)
eref

where eref=eh when the exact error is available and eref is computed from a refined mesh when
the exact error is not available.
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6.1. Behavior of the global energy error

In this section, the study of the effectivity indexes and the convergence rate of the global errors
estimators ẽ and ê shows the quality of the global lower and upper bounds presented in Sections 2
and 4. Two structures are studied. The first structure is a thin elastic plate with two holes proposed
in [30], this is an in-plane stress linear elastic problem loaded with an unit tension along the
vertical edges (see Figure 2). The symmetry of the problem allows us to study only one-fourth of
the plate. The structure is meshed with 6-nodes triangular elements (as shown in Figure 3). The
second structure is a holed plate submitted to bending. The plate clamped on the left edge and
loaded with an uniform load is depicted in Figure 4. The initial coarse mesh (6-nodes triangular
elements) is shown in Figure 5. The material properties are E=100GPa and �=0.3. Owing to
the lack of analytical solution for these problems, we use a reference solution computed on a fine
mesh. The reference solution is then used to compute the reference error eref. The behavior of the

Figure 2. Model problem of the elastic plate with two holes.

Figure 3. Plate with two holes: one-fourth of the plate is meshed.
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p=1
F=1

Figure 4. Model problem of the elastic plate submitted to bending.

Figure 5. Elastic plate submitted to bending: coarse mesh.

global CRE estimator (the upper bound) and global lower bound is analyzed by refining the initial
mesh. The local problems (25) defined on �i are solved on a subdivision of the initial FE mesh
Ph,3(�i ).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:460–482
DOI: 10.1002/nme



102 103
0.5

1

1.5

Number of DoF

E
ffe

ct
iv

ity
 In

de
x

Upper bound ηU
Lower bound ηL

Figure 6. Plate with two holes: upper and lower bound as a function of DoF.
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Figure 7. Plate with two holes: convergence rates for the upper bound, the lower
bound and the reference error.

Figure 6 presents the evolution of the effectivity indexes for the CRE estimator and for the
global lower bound. In this example, the mean effectivity index of the CRE estimator is �U=1.08.
The mean effectivity index of the lower bound is not as sharp: �L=0.73. Figure 7 presents the
convergence rates of ê, eref and ẽ. The three quantities have similar convergence rates, which are
equal to 1. We do not obtain the theoretical convergence rate p=2 of bilinear elements because
of the presence of the corner singularities. Table I presents the numerical results for the second
example, a function of the number of dof: the relative error estimator ε̂, the global upper bound ê,
the global lower bound ẽ, the reference error eref, the effectivity indices �L and �U. The evolutions
of the effectivity indices are represented in Figure 8. The results obtained for this problem are
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Table I. Elastic plate submitted to bending.

Number of Dof 62 122 224 476 784 1572

ε̂ (%) 43.03 21.27 15.48 11.92 8.618 6.887
ê 0.3708 0.1988 0.1490 0.1165 8.4690E−02 6.7958E−02
ẽ 0.1271 0.1241 9.8705E−02 7.1684E−02 5.7886E−02 4.4531E−02
eref 0.2952 0.1881 0.1375 0.1010 7.9173E−02 6.2185E−02
�U 1.256 1.056 1.083 1.153 1.069 1.092
�L 0.430 0.659 0.717 0.709 0.731 0.716
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Figure 8. Elastic plate submitted to bending: upper and lower bound as a function of DoF.

similar to those obtained in the first example, with an upper bound sharper than the lower bound
(mean effectivity indexe: �U=1.11 for the upper bound, �L=0.66 for the lower bound).

6.2. Application to goal-oriented error estimation in a crack opening problem

This section illustrates the behavior of the goal-oriented error estimator presented in Section 5
compared with the simpler version proposed in [12]. The first example shows that for a simple
tension state we obtain an improvement of the lower bound, but not for the upper bound. The
second example illustrates that for a more complex state of tension, the upper bound is also greatly
improved.

For a crack opening problem, a classical quantity of interest is the mean vertical displacement
along the crack boundaries

I = 1

a

(∫
�1

u·(−y)d�+
∫

�2

u.(y)d�
)

(38)

where a is the crack length and y is the normal unit vector along the crack edge.
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Figure 9. Horizontal crack opening problem.

Figure 10. Horizontal crack opening problem: coarsest mesh.

The computed quantity is:

Ih = 1

a

(∫
�1

uh ·(−y)d�+
∫

�2

uh .(y)d�
)

The material properties are E=100GPa and �=0.3. The structure is studied in plane stress and
meshed with 6-nodes triangular elements. The reference solution uref is computed on a very refined
mesh. A reference quantity of interest Iref is computed by replacing u by uref in Equation (38). The
local problems (25) defined on �i are solved on a subdivision of the initial FE mesh Ph,3(�i ).

The first example is a thin plate with a single edge horizontal crack subjected to a tension state
represented in Figure 9. Four meshes are considered; the coarsest mesh is represented in Figure 10.
On each mesh, the quantities Ih , �upp and �low as well as �CRElow and �CREupp have been computed and
are reported in Table II.

A first observation is that the lower bound �low for I − Ih is greater than zero. This means
that the lower bound for the quantity of interest Ih+�low is greater than the computed quantity
of interest Ih . The second observation is that the upper bound obtained directly with the CRE
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Table II. Horizontal crack opening problem: upper and lower bounds for I − Ih .

Number of Dof 154 316 590 1168

Ih 2.9816E−05 3.2939E−05 3.4195E−05 3.4771E−05
�low 2.8459E−06 1.3049E−06 6.8234E−07 3.8664E−07
�upp 6.1811E−06 3.1367E−06 1.7428E−06 1.1824E−06

�CRElow −4.048E−06 −2.004E−06 −1.108E−06 −0.731E−06

�CREupp 6.398E−06 3.236E−06 1.796E−06 1.215E−06

Table III. Horizontal crack opening problem: upper and lower bounds for the quantity of interest.

Number of Dof 154 316 590 1168

I
upp
h − I lowh 3.34E−06 1.83E−06 1.06E−06 7.96E−07

I
upp,CRE
h − I low,CRE

h 6.80E−06 3.44E−06 1.91E−06 1.29E−06

I upp,CREh −I low,CRE
h

I upph −I lowh
2.04 1.88 1.80 1.62
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Figure 11. Horizontal crack opening problem: upper and lower bounds for I .

estimator �CREupp is close to the improved local upper bound �upp defined in Section 5. However,
if the lower bound is considered then the introduction of the improved lower bound �low leads
to really sharper bounds compared with �CRElow (see Table II). This improvement is illustrated in

Table III, where we have computed the size of the intervals (I upp,CREh − I low,CRE
h ) and (I upph − I lowh )
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Figure 12. Oblique crack opening problem.

Figure 13. Oblique crack opening problem: coarsest mesh.

and their ratio. In Figure 11 we have represented the evolution of the bounds for the quantity of
interest as a function of the number of DoF.

The second example is a thin plate with a single edge oblique crack subjected to a tension
state represented in Figure 12. Four meshes are considered, the coarsest mesh is represented in
Figure 13. On each mesh the quantities Ih , �upp and �low as well as �CRElow and �CREupp have been
computed and are reported in Table IV. Both the upper bound �upp and the lower bound �low
are sharper than �CREupp and �CRElow . The range obtained for the quantity of interest is divided by a
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Table IV. Oblique crack opening problem: upper and lower bounds for I − Ih .

Number of Dof 230 580 1152 2048

Ih 0.1461E−05 0.1493E−05 0.1541E−05 0.1564E−05

�low −0.0708E−06 −0.1162E−06 −0.0391E−06 −0.0259E−06

�upp 0.5977E−06 0.3164E−06 0.1755E−06 0.0907E−06

�CRElow −0.5220E−06 −0.4589E−06 −0.1922E−06 −0.0956E−06

�CREupp 0.8387E−06 0.5510E−06 0.2779E−06 0.1385E−06

I upp,CREh −I low,CRE
h

I upph −I lowh
2.04 2.33 2.19 2.01
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Figure 14. Oblique cracked plate problem: upper and lower bounds for I .

factor 2 as shown in Table IV. In Figure 14 we have represented the evolution of the bounds for
the quantity of interest as a function of the number of DoF.

7. CONCLUSION

This paper has introduced a construction for the admissible stress fields used in the CRE estimator,
which is more simple than the classical techniques proposed in previous papers. This technique
leads to very good effectivity indexes. Based on these admissible stress fields, a lower bound for
the energy error is defined. This lower bound can be combined with the CRE estimator (which
is an upper bound for the energy error) so as to obtain lower and upper bounds for quantities of
interest by a classical approach. This combined approach allows to obtain sharper bounds for a
quantity of interest in comparison with alternative works based only on the constitutive relation
approach.
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APPENDIX A

When �iurb does not belong to Uh it is necessary to add forces Fi to the loading on each domain
�i such that the resultant and the moment vanish on that domain and such that the sum of Fi over
the whole structure is zero. To simplify the presentation, we will limit ourselves to the case where
T is equal to zero on �2�. The forces are added on the vertices of the initial mesh Ph . Each vertex
i ∈Iv is associated with a domain �i , the position of the vertex j is denoted by Mj . In a domain
�i , the force added on the vertex j is defined by

gi j =
∫

�i

(rh(� j grad�i +�i grad� j )−�i� jb)d�

Let us denote the set of vertices of the FE mesh belonging to �i by Iv(�i ). Equation (22)
is modified and the admissible stress r̂ih in �i is sought as a solution of the following modified
problem: ∫

�i

r̂ihε(u
∗)d�=Rmod(u∗) ∀u∗ ∈U0(�i )

with

Rmod(u∗)=
∫

�i

(�ib−rh grad�i )u∗ d�+ ∑
j∈Iv(�i )

gi ju∗
j

where u∗
j =u∗(Mj ).

Proposition A.1
The nodal forces gi j do not modify the global equilibrium on the structure � (i.e.

∑
i∈Iv gi j =0).

Proof
Let us consider the sum of the nodal forces over the set of the vertices Iv. As �i =0 in �−�i we
have the following relations:

∑
i∈Iv

gi j = ∑
i∈Iv

(∫
�i

(rh(� j grad�i +�i grad� j )−�i� jb)d�

)

= ∑
i∈Iv

(∫
�
(rh(� j grad�i +�i grad� j )−�i� jb)d�

)

=
∫

�

(
rh

(
� j grad

(∑
i∈Iv

�i

)
+
(∑
i∈Iv

�i

)
grad� j

)
−
(∑
i∈Iv

�i

)
� jb

)
d�

The set (�i )i∈Iv is a partition of unity:
∑

i∈Iv �i =1 and grad
(∑

i∈Iv �i
)=0. The global force

applied to the vertex j is:

∑
i∈Iv

gi j =
∫

�
(rh grad� j −� jb)d�

= 0(rh because it is in equilibrium in the FE sense)

�
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Proposition A.2
Rmod(urb)=0 for any rigid body motion of �i .

Proof
On a domain �i the rigid body motion is written on the basis of the linear shape functions

urb= ∑
j∈Iv(�i )

� jq
j
rb

where q j
rb is the displacement of the vertice j

Rmod(urb)=
∫

�i

(�ib−rh grad�i )urb d�+ ∑
j∈Iv(�i )

gi jq
j
rb

and

∑
j∈Iv(�i )

gi jq
j
rb = ∑

j∈Iv(�i )

(∫
�i

(rh(� j grad�i +�i grad� j )−�i� jb)d�

)
·q j

rb

=
∫

�i

( ∑
j∈Iv(�i )

� jq
j
rb

)
(rh grad�i −�ib)d�

+
∫

�i

�irh

( ∑
j∈Iv(�i )

grad� jq
j
rb

)
d�

=
∫

�i

urb ·(rh grad�i −�ib)+�irh (gradurb)d�

as urb is a rigid body motion gradurb=0 and Rmod(urb)=
∫
�i

(�ib−rh grad�i )urb d�+∫�i
urb ·

(rh grad�i −�ib)d�=0. �
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conforming stress approximations. IMA Journal for Numerical Analysis 2008; 28(2):331–353.
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