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a b s t r a c t

In this paper, we consider a domain decomposition algorithm associated to a finite element method to
approximate a unilateral frictionless contact problem between two elastic bodies. We present a global
error estimator that takes into account of the error introduced by finite element analysis as well as
the error introduced by the iterative resolution of the domain decomposition algorithm. The control of
these error sources is a key point in order to introduce adaptive techniques and we propose error indi-
cators that estimate the contribution of each source of error.

1. Introduction

Multi-body contact problems are frequent in structural analysis.
They are characterized by inequality constraints such as non-
penetration conditions, sign condition on the normal constraints,
and an active contact zone which is unknown a priori. Several
approaches exist for solving the non-linear equations issued from
the finite element discretization of frictionless contact problems
[1,2]. An important point is to evaluate the approximation errors
introduced by the numerical algorithm. For contact problems two
sources of errors are introduced, the first one due to the spatial dis-
cretization (the finite element mesh), the second one due to the
algorithm used to solve the non-linear equations. Here, we con-
sider a natural domain decomposition which consists in adapting
a Neumann–Dirichlet method to a multi-body frictionless contact
problem by preserving the physical decomposition of the structure
[3,4].

Several methods have been developed over many years to eval-
uate the global quality of FE analysis. For linear problems the ear-
lier works have lead to estimators based on the residual of the
equilibrium equation [5], estimators based on the concept of con-
stitutive relation [6], and estimators using the smoothing of the
finite element stresses [7]. For multi-body contact problems there
is much less work [8–14].

The objective of this paper is to present an a posteriori global
error estimator for a frictionless multi-body contact problem
solved by a Neumann–Dirichlet decomposition algorithm [3],
assuming small strains and displacements. Additionally, two error
indicators that allow to estimate the part of the error due to the
spatial discretization and that due to the domain decomposition
algorithm are developed. We present, in this paper, a first applica-
tion for six-node triangular elements with matching meshes on the
contact zone.

The paper is organized as follows: in Section 2, we introduce the
frictionless contact problem to be solved. The domain decomposi-
tion algorithm is described in Section 3. In Section 4, the continu-
ous and the finite element variational formulations are introduced.
Section 5 is devoted to the formulation of the global error estima-
tor, the discretization error indicator and the algorithm error indi-
cator. Finally, in Section 6 the different errors are analyzed through
numerical examples.

2. Reference problem description

We consider the problem of two bidimensional elastic bodies
X1 and X2 under the assumption of small strains and displace-
ments (Fig. 1). The boundaryCa ofXa(a = 1,2) is divided into three
disjoint parts Ca

D; C
a
N and Ca

C with Ca
D – ;. On the first part denoted

by Ca
D we assume homogeneous Dirichlet data. On the second part

denoted by Ca
N a surface density force pa is given. The complemen-

tary part denoted by Ca
C is the boundary region where the contact

between the two bodies is possible. We suppose that C1
C ¼ C2
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which we denote CC. The notation na stands for the unit outward
normal on the boundary of Xa. We choose an orientation for CC

by setting: nc = n1. Furthermore, each body is subjected to a volume
force ba. We assume that the strain tensor e generated by the dis-
placement field u is linearized, and we denote by Ka the elastic
operator associated with Xa.

2.1. Problem formulation

The problem of unilateral contact consists of finding (ua,ra) de-
fined on Xa (a = 1,2) satisfying conditions (1)–(6)

ua ¼ 0 on Ca
D; ð1Þ

divra þ ba ¼ 0 in Xa; ð2Þ
rana ¼ pa on Ca

N ; ð3Þ
ra ¼ KaeðuaÞ in Xa: ð4Þ

The unilateral contact relations are satisfied on CC

tNðr1Þ ¼ %tNðr2Þ ¼ tcN; tTðr1Þ ¼ tTðr2Þ ¼ 0; ð5Þ
ðu1

N % u2
NÞ 6 0; tcN 6 0; ðu1

N % u2
NÞt

c
N ¼ 0; ð6Þ

where

tðraÞ ¼ rana;

and for any vector x we define its normal and tangential compo-
nents by

xN ¼ x & nc; xT ¼ x% xNnc:

The equalities in Eq. (5) express the continuity of the normal
stress between the two elastic bodies, and the absence of friction.
The first inequality in Eq. (6) expresses the non-penetration of the
two bodies: either contact or separation is allowed. The second
inequality states the sign of the normal constraint. The third con-
dition implies that at the possible contact area CC, we have either
zero boundary stress or contact between the two bodies.

3. Domain decomposition algorithm

In this section, we briefly recall the Neumann–Dirichlet domain
decomposition algorithm that we use to solve the unilateral con-
tact problem. According to [3], the basic idea of this algorithm is
to retain the natural interface between the two bodies as numeri-
cal interface for the domain decomposition.

We define the following algorithm, in which hp is a non-nega-
tive parameter that will be determined in order to ensure the con-

vergence of the algorithm. Let tneu0 , a traction distribution defined
on CC, for pP 1, we built the sequence of functions ðu1

pÞpP1;

ðu2
pÞpP1 and ðtneup ÞpP1 by solving successively, a Neumann problem

PN defined on X2, a Dirichlet problem PD defined on X1, and by
updating the traction tneup on CC:

' ðPNÞ For a given tneup%1 on CC, find a solution ðu2
p ;r2

pÞ such that

u2
p ¼ 0 on C2

D; ð7Þ

divr2
p þ b2 ¼ 0 in X2; ð8Þ

r2
pn

2 ¼ p2 on C2
N; ð9Þ

r2
pn

2 ¼ tneup%1 on CC ; ð10Þ

r2
p ¼ K2eðu2

pÞ in X2: ð11Þ

' ðPDÞ For a given u2
p on CC, find a solution ðu1

p ;r1
pÞ such that

u1
p ¼ 0 on C1

D; ð12Þ

divr1
p þ b1 ¼ 0 in X1; ð13Þ

r1
pn

1 ¼ p1 on C1
N; ð14Þ

r1
p ¼ K1eðu1

pÞ in X1; ð15Þ
tTðr1

pÞ ¼ 0 on CC ; ð16Þ
ððu1

pÞN % ðu2
pÞNÞ 6 0; tNðr1

pÞ 6 0;

ððu1
pÞN % ðu2

pÞNÞtNðr1
pÞ ¼ 0 on CC : ð17Þ

' Update tneup

tneup ¼ hptðr1
pÞ þ ð1% hpÞtneup%1: ð18Þ

The proof of the convergence of the algorithm toward the solu-
tion of the unilateral contact problem (1)–(6) is given for 0 < hp < h*

in [3].

Remarks

1. In practice, we will set hp to a fixed value h. On the studied
numerical examples, a choice of h = 0.5 leads to the convergence
of the algorithm.

2. This algorithm assumes that C2
D – ;, so the Neumann problem

has a solution for every tneup .

4. Variational and discrete formulation of the algorithm

4.1. Variational formulation

In order to obtain the variational formulation of the problems,
we introduce the spaces Va ða ¼ 1;2Þ

Va ¼ fv 2 ðH1ðXaÞÞ2; v ¼ 0 on Ca
Dg

and NðCCÞ the convex cone of negative functions defined on CC in
some dual sense (for a detailed study see for instance [15]).

For v 2 Va and u 2 Va, we set

aaðu;vÞ ¼
Z

Xa
KaeðuaÞ & eðvaÞdX

and

faðvÞ ¼
Z

Xa
ba & v dXþ

Z

Ca
N

pa & v dS
 !

;

where aa(&, &) is the bilinear form in elasticity. The linear form fa(&)
takes into account the external loads ba and pa.

Fig. 1. Contact problem.



4.1.1. Neumann problem PN

The problem PN is a classical linear elastic problem with a pre-
scribed traction on CC. The weak form of Eqs. (7)–(11) is given by a
variational equality

Find u2
p 2 V2 such that a2ðu2

p ;vÞ

¼ f2ðvÞ þ
Z

CC

tneup%1 & v dS 8v 2 V2: ð19Þ

4.1.2. Dirichlet problem PD

The problem PD is a unilateral contact problem on a rigid body.
The convex set of admissible displacement that contains the dis-
placement fields satisfying the non-penetration condition is de-
fined by

V1
ad ¼ fv 2 V1;v & nc % dp 6 0 on CCg;

where dp ¼ u2
p & nc describes the rigid body.

It is well known that the weak form solution of the unilateral
contact problem defined by Eqs. (12)–(17) can be obtained from
a variational inequality

Find u1
p 2 V1

ad such that a1ðu1
p ;v % u1

pÞ P f1ðv % u1
pÞ 8v 2 V1

ad:

ð20Þ

Introducing the surface traction on the contact boundary CC as
additional unknown, the variational inequality (20) can be written
as a saddle point problem: Find ðu1

p; kÞ 2 V1 (NðCCÞ such that

a1ðu1
p; vÞ % f1ðvÞ %

Z

CC

kðv & ncÞdS ¼ 0 8v 2 V1;

Z

CC

ðl% kÞðu1
p & n

c % dpÞdS P 0 8l 2 NðCCÞ:
ð21Þ

4.2. Discretized algorithm

With each subdomain Xa, we associate a regular family of dis-
cretization Tha. Here we use, classical six-node triangular elements.
These triangulations coincide on the contact zone CC. The interface
CC is then associated with one-dimensional triangulation inherited
from Th1 or Th2. We will denote the FE discretization of the space Va

by Va
h and of the space NðCCÞ by N hðCCÞ.

4.2.1. Discretized Neumann problem PN;h

The finite element problem PN;h for PN is

Find u2
h;p 2 V2

h such that a2ðu2
h;p;vhÞ

¼ f2ðvhÞ þ
Z

CC

tneup & vh dS 8vh 2 V2
h: ð22Þ

4.2.2. Discretized Dirichlet problem PD;h

The discretized mixed variational formulation is: Find u1
h;p 2 V1

h

and kh 2 N hðCCÞ such that

a1ðu1
h;p;vhÞ %

Z

CC

khðvh & ncÞdS ¼ 0 8vh 2 Vh;

Z

CC

ðlh % kh;pÞðu1
h;p & n

c % dh;pÞdS P 0 8lh 2 N hðCCÞ;
ð23Þ

where dh;p ¼ u2
h;p & nc , describes the shape of the rigid obstacle.

4.2.3. Matrix formulation of the Neumann–Dirichlet algorithm
To build the matrix formulation of the discretized problems

(22) and (23), we need to introduce the expressions of the func-
tions uah ; kh by considering their values at the ith node of the FE
discretization

uah ¼
XNa

i¼1

/a
i q

aðiÞ; kh ¼
XNc

i¼1

wiKðiÞ;

where /a
i ; wi are the basis functions of the spaces Va

h ; N hðCCÞ (i.e.
/a

i are the basis functions for a six-node triangular element, and
wi their restriction to CC).

The normal part of tneup can be expressed on that basis (the tan-
gential part is set to zero as there is no friction)

tneup & nc ¼
XNc

i¼1

wiK
neu
p ðiÞ: ð24Þ

The FE discretization of the domain decomposition algorithm
(12)–(18) leads to the following discretized algorithm: Let
Kneu

0 2 RNc be given, at each iteration p solve the following
problems:

' For a given Kneu
p%1, compute a solution q2

p of the discretized Neu-
mann problem

K2q2
p ¼ F2 þ

C
0

! "
Kneu

p%1: ð25Þ

' For a given q2
p , compute a solution ðq1

p ;K
dir
p Þ of the discretized

Dirichlet problem

K1q1
p %

C
0

! "
Kdir

p ¼ F1;

ðq1
p;N % q2

p;NÞ 6 0; CKdir
p 6 0; ðq1

p;N % q2
p;NÞ

TCKdir
p ¼ 0;

ð26Þ

where qap;N is the vector corresponding to the normal displace-
ments of the nodes of Xa on CC. Ka (a = 1,2) is the stiffness ma-
trix corresponding to Xa, C is the contact matrix and Fa is the
vector representing the external loads.

' Update Kneu
p

Kneu
p ¼ hpK

dir
p þ ð1% hpÞKneu

p%1: ð27Þ

The stopping criterion is defined by

es ¼
kKdir

p %Kneu
p%1k

1=2kKdir
p þKneu

p%1k
:

At each step of the algorithm the elastic linear problem (25) is
solved for a given traction on the contact zone. The problem (26)
is a unilateral contact problem on a rigid body which is solved
by a status method as defined in the finite element code CAS-
TEM2000 [16]. On the studied problems, the status method con-
verges in 2 or 3 iterations toward a solution verifying

q1
p;N % q2

p;N 6 0 and CKneu
p 6 0:

When converged this algorithm gives us two displacements
vectors (q1,q2) and two contact forces vectors (K1 =Kdir,
K2 =Kneu). The solution is computed from the discrete vectors

uah ¼
XN1

i¼1

/a
i q

aðiÞ and ra
h ¼ KaeðuahÞ on Xa;

tah ¼
XNc

i¼1

wiK
aðiÞ on CC :

This algorithm introduces two error sources, the first one is
introduced by the resolution of the FE problems (Eqs. (25) and
(26)), the second one is introduced by the iterative Neumann–
Dirichlet algorithm.



5. Error estimation

The approach based on the constitutive relation error (CRE) re-
lies on a partition of the equations of the reference problem to be
solved into two groups [6]. In elasticity, the first group consists of
the kinematic constraints and the equilibrium equations while the
constitutive relation forms the second group. The quality of an
approximate solution satisfying the first group (i.e. an admissible
solution) is quantified by the non-fulfilment of the second group
of equations (i.e. the constitutive relation).

5.1. Contact modelling and problem formulation

In order to clearly express the error in the constitutive relation,
we follow the presentation proposed in [9] and we consider the
interface CC as a mechanical entity which has its own constitutive
relation. We introduce on the interface CC the functions w1, w2,
representing two displacement fields (one on each side of the
interface), t1, t2, representing two fields of surface density forces
(stresses transmitted toX1 andX2) and tc an ‘‘interior” field of sur-
face density forces.

The kinematic conditions on the interface are expressed by

w1 ¼ u1 and w2 ¼ u2 on CC : ð28Þ

The equilibrium of the interface is expressed by

tc ¼ t1 and tc ¼ %t2 on CC : ð29Þ

Let us define the jump of displacement wc which, for the inter-
face, plays a similar role as a strain

wc ¼ w1 %w2 on CC : ð30Þ

Coulomb’s constitutive law in a frictionless case, can be formu-
lated as follows:

wc
N 6 0; tcN 6 0; tcNw

c
N ¼ 0 and tcT ¼ 0 on CC ; ð31Þ

Following [17,18], the Coulomb’s constitutive law in a friction-
less case defined by Eq. (31) is equivalent to the condition

/ð%wcÞ þ /)ðtcÞ þ tc &wc ¼ 0 on CC ; ð32Þ

where the convex potentials / and /* are defined by

/ðvÞ ¼ 0 if vN P 0;
þ1 otherwise;

#
and

/)ðgÞ ¼
0 if gN 6 0 and gT ¼ 0;
þ1 otherwise;

#
ð33Þ

moreover for any pair (w, t) defined on CC, the Legendre–Fenchel
inequality leads to

/ð%wÞ þ /)ðtÞ þ t &w P 0: ð34Þ

The problem of unilateral contact defined by conditions (1)–(6)
is formulated as follows: Find (ua,ra) defined on Xa (a = 1,2) and
(w1,w2, t1, t2, tc) defined on CC such that

' (ua,wa) satisfy the kinematic conditions
ua ¼ 0 on Ca

D and ua %wa ¼ 0 on CC : ð35Þ

' (ra, ta, tc) satisfy the equilibrium equations

divra þ ba ¼ 0 in Xa;

rana ¼ pa on Ca
N;

rana ¼ ta on CC ;

tc % t1 ¼ 0 and tc þ t2 ¼ 0 on CC :

ð36Þ

' (ua,ra) satisfy the elastic constitutive relation

ra ¼ KaeðuaÞ in Xa: ð37Þ

' (wc = w1 % w2, tc) satisfy the contact constitutive relation

/ð%wcÞ þ /)ðtcÞ þ tc &wc ¼ 0 on CC : ð38Þ

The solution of the unilateral contact problem is denoted
s = (u,c) with u = (u1,u2,w1,w2) and c = (r1,r2, t1, t2, tc).

5.2. Definition of the global error estimator

The reference problem is defined by equations (35)–(38). Let us
consider an approximate solution of the problem, denoted by
ŝ ¼ ðû; ĉÞ; û ¼ ðû1; û2; ŵ1; ŵ2Þ and ĉ ¼ ðr̂1; r̂2; t̂1; t̂2; t̂cÞ that satisfies
the first group of equations:

' The fields ðû1; û2; ŵ1; ŵ2Þ satisfy Eq. (35).
' The fields ðr̂1; r̂2; t̂1; t̂2; t̂cÞ satisfy Eq. (36).

The solution ŝ ¼ ðû; ĉÞ is then said to be an admissible solution.
If ŝ satisfies the constitutive relations Eqs. (37), (38) inX, then ŝ ¼ s
(i.e. the exact solution is found). However, if ðû; ĉÞ does not satisfy
the constitutive relation, the quality of this admissible solution is
measured by the CRE estimator eCREðŝÞ

eCREðŝÞ ¼
X2

a¼1

kr̂a % KaeðûaÞk2r;Xa þ 2
Z

CC

ð/ð%ŵcÞ þ /)ð̂tcÞ þ t̂cŵcÞdS

" #1=2

ð39Þ

with ŵc ¼ ŵ1 % ŵ2 and krkr;Xa ¼
R
Xa ðKaÞ%1r & rdX.

eCREðŝÞ is the constitutive relation error estimator for the admis-
sible solution ŝ. This CRE estimator is equal to zero if and only if the
solution ŝ is the exact solution s of the unilateral contact problem.
It takes into account the accuracy of both the finite element dis-
cretization and the iterative resolution of the algorithm. In [9]
the authors show that the Prager–Synge’s theorem in elasticity
[19] can be extended to the more general unilateral contact case
and that this error estimator is an upper bound of a solution error,
i.e.

eCREðŝÞ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

a¼1

ðkua % ûak2u;Xa þ kr̂a % rak2r;Xa Þ

vuut

with kuku;Xa ¼
R
Xa KaeðuÞ & eðuÞdX.

5.3. Computation of the global error estimator

The first step for the computation of the error estimator is to re-
cover admissible fields from the FE solution. We need to build an
admissible solution ŝh ¼ ðûh; ĉhÞ such that

' the fields ûh ¼ ðû1
h; û

2
h; ŵ

1
h; ŵ

2
hÞ satisfy Eq. (35),

' the fields ĉh ¼ ðr̂1
h; r̂2

h; t̂
1
h; t̂

2
h; t̂

c
hÞ satisfy Eq. (36),

' moreover, the admissible fields must satisfy /ð%ŵc
hÞ ¼ 0 and

/)ðt̂chÞ ¼ 0 on CC to obtain a finite error estimator.

The admissible displacements fields are easily built, since the fi-
nite element fields satisfy the kinematic constraints

ûah ¼ uah and ŵa
h ¼ wa

h in Xa:

However the tractions forces computed by the algorithm do not
satisfy the equilibrium conditions on the interface (36) (i.e.
t1h ¼ %t2h) nor the condition /)ð̂tchÞ ¼ 0 (i.e. t1hN 6 0 and %t2hN 6 0
on CC). Hence, we propose to built the traction t̂ch in two steps:

' In a first step, a traction ~tch ¼ ðt1h % t2hÞ=2 is computed on CC.
' In a second step t̂ch is computed by solving the following mini-
mization problem: Find t̂ch ¼

PNc
i¼1wiK̂cðiÞ such that



t̂ch;N 6 0; t̂ch;T ¼ 0 on CC ; and t̂ch minimize
Z

CC

ðt̂ch % ~tchÞ
2dC:

The values of t̂1h and t̂2h are then easily computed by setting
t̂1h ¼ t̂ch and t̂2h ¼ %t̂ch.

Remark. As specified in Section 3, we assume C2
D – ;. However, if

C1
D ¼ ; a supplementary condition arises: t̂ch must satisfy the global

equilibrium for each rigid body motion u1
rb defined on X1. In that

case we must add this constraint in the minimization problem
defined in the second step.

To build the admissible stress fields ðr̂1
h; r̂2

hÞ we use the tech-
niques developed in [20]. These techniques allow to recover an
equilibrated stress field from a stress field that satisfy the FE equi-
librium. As the FE stress fields ra

h ¼ KaeðuahÞ are equilibrated in the
FE element sense with tah but not with t̂ah , we compute two interme-
diate stress fields ~ra

h ¼ Kaeð~uahÞ on each subdomain Xa (a = 1,2)
such that ~uah 2 Va

h and
Z

Xa
Kaeð~uahÞeðvÞdX ¼

Z

Xa
ba & v dXþ

Z

CaN

pa & v dS

þ
Z

CC

t̂ah & v dS 8v 2 Va
h : ð40Þ

The recovery of the stress fields r̂a
h on each subdomainXa start-

ing from the stress fields ~ra
h can then follow the classical procedure

(see, e.g., [6,21,22,20]). Once the fields ŝh are computed, the error
estimate gglob

h is readily obtained from (39) by

gglob
h ¼ eCREðŝhÞ: ð41Þ

The contribution of each element E of the mesh is computed as
follows:

gglob
h;E ¼ kr̂a

h % KeðûahÞk
2
r;E þ 2

Z

CC\E
ð/ð%ŵc

hÞ þ /)ðt̂chÞ þ t̂cŵc
hÞdS

% &1=2
;

ð42Þ
where krkr;E ¼

R
E K

%1r & rdE.

5.4. Error indicators definition

In view of an efficient mesh adaptation technique, it is impor-
tant to separate contributions to the global error eCREðŝÞ due to
the FE discretization from that due to the iterative resolution of
the algorithm. The later can in fact not be controlled by a mesh
adaptation technique. Following the method proposed in [23,24],
we propose here two simple error indicators that allow us to esti-
mate separately the part of the error due to the FE discretization
and that due to the Neumann–Dirichlet iterative algorithm. The
discretization error is defined as the limit of the global error when
the convergence criterion of the iterative algorithm tends to zero.
The Neumann–Dirichlet iterative algorithm error is defined as
the limit of the global error as the mesh size h tends to zero.

5.4.1. Discretized contact constitutive relation
In order to express the Neumann–Dirichlet algorithm error

indicator, we need to reformulate the continuous version of the
contact constitutive relation Eq. (32) on the discretized problem.
Let qaN denote the vector of the normal displacement of the nodes
of Xa on CC and qaNðiÞ its values on the ith node. From Eq. (26),
the discretized contact constitutive relation on CC reads:

for i ¼ 1; . . . ;Nc;

ðq1
NðiÞ % q2

NðiÞÞ 6 0; ðCKÞi 6 0; ðq1
NðiÞ % q2

NðiÞÞðCKÞðiÞ ¼ 0:
ð43Þ

Then, the discretized Coulomb constitutive law defined by Eq.
(43) is equivalent to

for i ¼ 1; . . . ;Nc;

/ð%q1
NðiÞ % q2

NðiÞÞ þ /)ððCKÞðiÞÞ þ ðq1
NðiÞ % q2

NðiÞÞðCKÞðiÞ ¼ 0;
ð44Þ

where / and /* are the convex potentials defined in Eq. (33).

5.4.2. Neumann–Dirichlet algorithm error indicator
The Neumann–Dirichlet algorithm error (NDA error) is esti-

mated though a quantity called NDA error indicator. To define this
error indicator, we consider a new reference problem Ps,h obtained
from the reference problem (1)–(6) by the FE spatial discretization:
Find ðu1

s;h;r1
s;hÞ defined in X1; ðu2

s;h;r2
s;hÞ defined in X2 and

ðw1
s;h;w

2
s;h; t

1
s;h; t

2
s;h; t

c
s;hÞ defined on CC such that (for a = 1,2)

' ðuas;h;wa
s;hÞ satisfy the kinematic conditions

uas;h ¼ 0 on Ca
D; uas;h %wa

s;h ¼ 0 on CC ; ð45Þ

' ðra
s;h; t

a
s;h; t

c
s;hÞ satisfy the equilibrium equations of the finite ele-

ment model

tcs;h % t1s;h ¼ 0 and tcs;h þ t2s;h ¼ 0 on CC ; ð46Þ
Z

Xa
ra

s;heðvÞdX ¼
Z

Xa
ba & v dXþ

Z

Ca
N

pa & v dSþ
Z

CC

tas;h & v dS 8v 2 Va
h ;

ð47Þ

' ðuas;h;ra
s;hÞ satisfy the elastic constitutive relation

ra
s;h ¼ Kaeðuas;hÞ in Xa; ð48Þ

' ðwc
s;h ¼ w1

s;h %w2
s;h; t

c
s;hÞ satisfy the discretized contact constitu-

tive relation

for i ¼ 1; . . . ;Nc;

/ð%ðq1
NðiÞ % q2

NðiÞÞÞ þ /)ððCKÞðiÞÞ þ ðq1
NðiÞ % q2

NðiÞÞðCKÞðiÞ ¼ 0;
ð49Þ

where wc
s;h ¼

PNc
i¼1/iðq1

NðiÞ % q2
NðiÞÞ and tcs;h ¼

PNc

i¼1wiKðiÞ.

The solution of the problem Ps,h is denoted ss,h = (us,h,cs,h) with
us;h ¼ ðu1

s;h;u
2
s;h;w

1
s;h;w

2
s;hÞ and ch ¼ ðr1

s;h;r2
s;h; t

1
s;h; t

2
s;h; t

c
s;hÞ. The only

approximation introduced, between the reference solution ss,h
and the approximate solution sh, is the resolution of the Neu-
mann–Dirichlet algorithm. This error can be measured by a CRE
estimator computed on problem Ps,h. Hence, this CRE estimator is
used as an error indicator to measure the contribution of the Neu-
mann–Dirichlet algorithm to the global error. Let ŝs;h ¼ ðûs;h; ĉs;hÞ be
an admissible solution for the problem Ps,h (i.e. ûs;h satisfies the
kinematic constraints (45) and ĉs;h satisfies the FE-equilibrium
(46, 47)). The NDA error indicator is then defined by

gNDA
h ¼

X2

a¼1

kr̂a
s;h % Keðûas;hÞk

2
r;Xa þ 2

XNc

i¼1

ð/ð%q̂c
NðiÞÞ þ /)ððCbKcÞðiÞÞ

þ q̂c
NðiÞðCbK

cÞðiÞÞ; ð50Þ

where q̂c
NðiÞ and bKcðiÞ are defined by ŵc

s;h ¼ ŵ1
s;h % ŵ2

s;h ¼
PNc

i¼1/iq̂c
NðiÞ

and t̂ch ¼
PNc

i¼1wi
bKcðiÞ. This admissible solution can be easily built

from sh by setting

ûas;h ¼ ûah in Xa and ŵa
s;h ¼ ŵa

h on CC ;

r̂a
s;h ¼ ~ra

h in Xa and t̂as;h ¼ t̂ah t̂
c
s;h ¼ t̂ch on CC ;

where the three traction forces ðt̂ch; t̂1h; t̂2hÞ and the stress fields
ð~r1

h; ~r2
hÞ satisfy the FE-equilibrium and have been already computed

to build the global error eCREðshÞ (Section 5.3).

5.4.3. Discretization error indicator
The discretization error is estimated through a quantity called a

discretization error indicator. To compute the discretization error



indicator, we consider that the reference problem is the problem
defined, for a given tneup%1, by Eqs. (7)–(17). We will denote this prob-
lem by Pc,p. Let us denote by sp the solution of the problem Pc,p and
by sh,p the associated finite element solution (computed from Eqs.
(25), (26)). The only approximation introduced between sp and sh,p
is the FE discretization. A CRE estimator computed on problem Pc,p
can be used as an indicator to measure the contribution of the dis-
cretization error to the global error. To define a CRE estimator on
Pc,p, the problem Pc,p is written as follows: For a given tneup%1, find
sp = (up,cp) such that

' up ¼ ðu1
p ;u

2
p ;w

1
p ;w

2
pÞ; cp ¼ ðr1

p;r2
p; t

1
p; t

2
p; t

c
pÞ,

' ðuap ;wa
pÞ satisfy the kinematic conditions

uap ¼ 0 on Ca
D and uap %wa

p ¼ 0 on CC ; ð51Þ

' ðra
p ; t

a
p ; t

c
pÞ satisfy the equilibrium equations

divra
p þ ba ¼ 0 in Xa;

ra
pn

a
p ¼ pa on Ca

N;

ra
pn

a
p ¼ ta on CC ;

tcp % t1p ¼ 0 and tneup%1 þ t2p ¼ 0 on CC ;

ð52Þ

' ðuap ;ra
pÞ satisfy the elastic constitutive relation

ra
p ¼ Ka

peðuapÞ in Xa; ð53Þ

' ðwc
p ¼ w1

p %w2
p ; t

c
pÞ satisfy the contact constitutive relation

/ð%wc
pÞ þ /)ðtcpÞ þ tcpw

c
p ¼ 0 on CC : ð54Þ

Let ŝp ¼ ðûp; ĉpÞ be a pair that satisfies the kinematic constraints
(51) and the equilibrium equations (52) (i.e. ŝp is an admissible
solution for Pc,p). If ŝp satisfies the constitutive relations (53), (54)
then it is the exact solution of Pc,p. The discretization error indica-
tor gdis

h;p is defined by

gdis
h;p ¼ eCREðŝpÞ ð55Þ

with

eCREðŝpÞ ¼
X2

a¼1

kr̂a
p % KeðûapÞk

2
r;Xa þ 2

Z

CC

ð/ðŵc
pÞ þ /)ðt̂cpÞ þ t̂cpŵ

c
pÞdS

" #1=2
:

The reference problem Pc,p can be split into two problems, i.e. a
classical elastic problem onX2 and a unilateral contact problem on
a rigid foundation on X1. Therefore, we can use the techniques
developed in [21,20] to build the admissible solution ŝp.

Remarks

1. The discretization error indicator gdis
h;p is an error estimator for

the reference problem Pc,p (i.e. it is an upper bound of the solu-

tion error for the problem Pc,p), but it is only an error indicator
for what we call the discretization error of the contact problem.

2. gdis
h;p can be decomposed into two parts. A first part defined on
X2 is the classical CRE estimator in linear elasticity for a solid
subjected to Dirichlet boundary conditions on C2

D and Neumann
boundary conditions on C2

N \ CC . A second part defined on X1 is
the CRE estimator for the contact problem of an elastic body on
a rigid foundation described by w2

p on CC.

6. Numerical results

In this section, we study by means of two examples the behav-
iour of the proposed error estimator and the error indicators for a

Fig. 2. Punch problem.

Fig. 3. Punch problem: coarse mesh.

Fig. 4. Punch problem: refined mesh.

Table 1
Punch-problem: error estimator and error indicators.

NDOF 114 230 446 734 1484 2992 5864

gglob
h ) 102 10.7 7.59 6.50 5.52 4.96 4.61 4.39

gdis
h ) 102 9.89 6.59 5.34 4.04 3.05 2.32 1.65

gnda
h ) 102 4.02 4.06 4.06 4.07 4.07 4.08 4.08

eref ) 102 10.1 6.99 6.12 5.29 4.80 4.39 4.09



finite element solution obtained with the Neumann–Dirichlet iter-
ative algorithm. In general, multi-body contact problems do not
admit an analytical solution. Therefore, in order to evaluate the
discretization error, we compute a reference solution uref by using
a finer mesh associated with a global resolution of the contact

problem. To obtain a reliable reference solution we choose the
mesh size href equal to 1

23
hmin; hmin being the mesh size used to

compute the most refined FE solution. The reference error will be
denoted eref with

eref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

a¼1

kuah % uaref k
2
u;Xa

vuut :

6.1. Punch problem

In the first example we consider two elastic bodiesX1 andX2 as
depicted in Fig. 2. The upper body X1 is submitted to an uniform
load, and the lower body X2 is clamped. Due to the symmetry only
one half of the structure is meshed. Both bodies are meshed with
6-node triangular elements. We start with a coarse mesh (Fig. 3)
and we progressively refine the mesh (Fig. 4). The coefficient h,
of the Neumann–Dirichlet algorithm, is set to 0.5 and the stopping
criterion es is chosen very large by setting it to 0.10.

Table 1 presents the evolution of the global error estimator gglob
h and

of the error indicators gdis
h and gNDA

h as a function of the number of de-
grees of freedom. We have also computed eref on these meshes. Fig. 5
shows that the ratio between the global error estimator and the refer-

ence error c ¼ gglob
h
eref

is very sharp and around 1.1. As expected, the global

error (and the reference error) tends to an horizontal asymptote as the
mesh is refined whereas the discretization error indicator has a con-
vergence rate of about 0.9 (see Fig. 6).

The spatial distributions of the global error estimator gglob
h and

of the discretization error indicator gdis
h are displayed in Fig. 7.

The distribution of the values shows that the computed solution
is not accurate in the structure X2. This error is mainly due to
the large stopping criterion (es = 0.10) in the iterative Neumann–
Dirichlet algorithm, which leads to an incorrect computation of
the contact forces. A second computation is performed with a
smaller value for the stopping criterion (es = 0.01). In Fig. 8, the
values of the nodal contact forces are displayed for es = 0.1, for
es = 0.01 and for a reference computation performed on the same
mesh with a classical global resolution of the contact problem.
The nodal contact forces computed with es = 0.1 are clearly too
small when compared with the reference solution whereas the val-
ues computed with es = 0.01 seem accurate. The spatial distribu-
tion of the global error estimator (Fig. 9) shows that employing a
more tight tolerance in the Neuman–Dirichlet algorithm (es =
0.01) produces much more accurate solution in X2. Moreover, note
that this spatial distribution is very similar to the distribution of
the discretization error displayed in Fig. 7.

Fig. 5. Punch problem: c as a function of the number of degree of freedom.
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Reference error

Discretization error indicator

Fig. 6. Punch problem: computed errors as a function of the number of degree of
freedom.

Fig. 7. Punch problem: spatial error distribution.



6.2. Punch problem with partial contact loss

In the second example, we analyze the behaviour of the global
error and of the error indicators as either the mesh or the stopping
criterion is modified. The studied problem is shown in Fig. 10. The
two bodies are initially in contact but the loading leads to a partial
contact loss. The structure is meshed with 6-node triangular ele-
ments. In the Neumann–Dirichlet iterative algorithm, the coeffi-
cient h is set to 0.5.

Table 2 shows the influence of the quality of the mesh for a
stopping criterion es set to 0.2. The meshes 1 and 6 are shown in
Figs. 11, 12. As we refine the mesh, we observe that the global error
gglob
h initially decreases but then tends to stabilize toward what we

have called the iteration error. The iteration error indicator gNDA
h

depends barely on the mesh discretization and approximates very
well the iteration error.

Fig. 8. Punch problem: nodal forces distribution on the contact zone.

Fig. 9. Punch problem: spatial error distribution with es = 0.01.

Fig. 10. Punch problem with contact loss.

Table 2
Punch-problem with contact loss: error estimator and error indicators as a function of
the mesh.

NDOF 712 1510 1850 3390 5534 6800

gglob
h ) 102 9.348 7.978 5.981 5.146 4.576 4.406

gdis
h ) 102 8.442 6.737 4.222 2.880 1.706 1.394

gnda
h ) 102 4.156 4.263 4.263 4.266 4.255 4.243



Table 3 shows the influence of the stopping criterion for a fixed
mesh (see Fig. 11), Nnda is the number of iterations of the Neu-
mann–Dirichlet domain decomposition algorithm. We observe
that the global error gglob

h tends rapidly to stabilize toward what
we have called the discretization error, and that the discretization
error indicator gdis

h seems to approximate well the discretization
error.

7. Conclusion and future prospects

This paper introduces global error estimator based on the con-
stitutive relation to control a domain decomposition algorithm
for a two-body frictionless contact problem. This error measure
takes into account all the errors due to discretization, i.e. both
the errors due to the spatial discretization and those due to the do-
main decomposition algorithm.

Two error indicators are developed to estimate the contribu-
tions of each source of error. They are defined in the same way
as the error, except that the reference problem is different. On
the first tests, these indicators seem to behave well.

With these tools, it would be possible to adapt the quality of the
mesh during the iterations of the Neumann–Dirichlet algorithm
and to control the final quality of the computation.

The next step is the generalization of Dirichlet–Neumann
method to contact problems with more than two domains which

requires a specific treatment of floating subdomains by adding a
global coarse problem with one or a few unknowns (rigid motions)
for each subdomain [25]. It should be noted that domain decompo-
sition algorithms for contact problem using ideas related to [25]
was recently developed, for example, by Dostàl and Hòrak using
scalable FETI method [26], Kronhuber and Krauss [27] gave exper-
imental evidence of numerical scalability of algorithm based on
monotone multigrid. Another approach consists to extend the bal-
ancing domain decomposition proposed in [25] by adding a coarse
problem to an earlier method known as the Neumann–Neumann
method [28]. This work is under consideration.

Table 3
Punch-problem with contact loss: error estimator and error indicators as a function of
the stopping criterion.

Stopping
criteria

2 & l0%1 1 & l0%1 1 & 10%2 1 & 10%3 1 & 10%4 1 & 10%8

Nnda 4 5 9 11 15 28

gglob
h ) 102 9.348 8.804 8.657 8.657 8.657 8.657

gdis
h ) 102 8.442 8.546 8.653 8.656 8.657 8.657

gnda
h ) 102 4.156 2.279 0.3812 0.2237 0.0593 0.0066

Fig. 12. Punch problem with contact loss: mesh 6 – 6800 DoF.

Fig. 11. Punch problem with contact loss: mesh 1 – 712 DoF.
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