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Optimization of Piezoelectric Sensors Location and Number
Using a Genetic Algorithm

I. Bruant, L. Gallimard, and Sh. Nikoukar
Laboratoire LEME, EA 4416, Université Paris Ouest, Ville d’Avray, France

In this article, the optimal location and number of piezoelec-
tric sensors is formulated for active vibration control. A modified
criterion is used to ensure good observability of the system by con-
sidering the minimum number of needed piezoelectric elements. A
genetic algorithm is proposed to solve this bi-objective optimization
problem. Simulations are presented for a thin plate.

Keywords vibrations, piezoelectric sensors, optimization of sensors
location and number, genetic algorithm

1. INTRODUCTION
In recent years, a great number of research results has been

produced in active vibration control of flexible structures using
piezoelectric actuators and sensors. It is obvious that misplaced
sensors and actuators lead to problems, such as the lack of
observability or controllability, which decreases strongly the
performance of the control system. Many papers dealing with
the optimization of actuators and sensors location can be found
in the literature. An exhaustive review until 2001 is presented
in Frecker [1].

Several cost functions are used for optimization of sensors
locations. Hac and Liu [2], Jha and Inman [3], Bruant and
Proslier [4] propose to maximize an observability criterion us-
ing the gramian matrice. In Gawronski [5], Qiu et al. [6] and
Halim and Reza Moheimani [7], an optimal placement method
using H2 norm is presented. Hiramoto et al. [8] and Güney and
Eskinat [9] suggest the simultaneous design of a computation-
ally simple H∞ controller and optimization of the location of
sensors and actuators. In most of these papers, it is assumed that
the number of sensors is a priori determined and very few papers
deal with the choice of the number of piezo-electric devices.

In this article, we consider optimal design of the number
and position of sensors. The modified optimization criterion
developed in Bruant et al. [10] is used to optimize the location.
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It ensures good observability of the structures. An observability
index proposed in Bruant and Proslier [4] is introduced in order
to minimize the sensors numbers. The optimal design problem
is reduced to bi-objective non-linear minimization problems.

For such problems, the traditional algorithms (conjugate gra-
dient, Newton-Raphson, etc.) are not applicable or tend to be
trapped in local optima. In order to overcome these limitations,
a stochastic optimization method [11], based on a genetic algo-
rithm, was proposed in several papers, for example in [3,12–15].
One of the main advantages of these algorithms is that they do
not have much mathematical requirements (i.e., gradient infor-
mation) about the optimization problem (only evaluations of
the objective function are needed). The genetic algorithms are
conveniently presented using the metaphor of natural evolution:
a randomly initialized population of individuals (i.e., a set of
points of the search space) evolves following the principle of
the survival of the fittest. New individuals are generated using
simulated genetic operations such as mutation and crossover.
The probability of survival of the new generated solutions de-
pends on their fitness (how well they perform with respect to the
optimization problem): the best are kept with a high probability
and the worst are rapidly eliminated. We propose here an evo-
lution of the Genetic Algorithm developed in Bruant et al. [10]
that takes into account the number of piezoelectric sensors in a
simple way.

In section 2 of this work, we point out the active vibration
control equations and the classical formulation based on state
space form. In section 3, the optimization criterion used for sen-
sors locations is presented, the observability index is introduced
and the bi-objective minimization problem is formulated. Then,
in section 4, the GA method is briefly explained and a GA, op-
timizing the number as well as the location of the piezoelectric
sensors is proposed. Finally in section 5, results are shown for
a rectangular plate.

2. EQUATIONS OF ACTIVE VIBRATION CONTROL
Consider a flexible structure including Na piezoelectric actu-

ators and Ns piezoelectric sensors. According to the analytical
model or finite element analysis, the equations of motion and
the sensor’s output equations of the system in modal coordinates



can be written as:

α̈i + 2ζiωi α̇i + ω2
i αi =

Na∑
l=1

bil�l i = 1 . . . N (1)

y j =
N∑

l=1

c jlαl j = 1 . . . , Ns (2)

where the N first eigenmodes are considered. αi , α̇i , and α̈i

represent modal displacement, velocity, and acceleration, ωi

and ζi are the natural frequency and damping ratio of the i-th
mode, and bil�l is the i-th modal component of the control force
due to the electric potential �l applied to the l-th actuator. y j

is the quantity measured from the j-th sensor. c jl is the sensing
constant of the j-th sensor due to the motion of the l-th mode.
bil , c jl , depend respectively of the l-th actuator location and j-th
sensor location.

These equations can be written in a usual state-space form,
using the state vector {x}(size (2N )):

{x} = {ωiαi α̇i }T (3)
d

dt
{x} = [A]{x} + [B]{�} (4)

{y} = [C]{x} (5)

where [A](2N ,2N ), [B](2N ,Na ), and [C](Ns ,2N ) are the state, control,
and output matrices given by:

[A] =
[

[0] [ωi ]
−[ωi ] −[2ζiωi ]

]
(6)

[B]T = [
[0] [bil]

]
(7)

[C] = [
[c jl] [0]

]
(8)

where {�} is the electric potential vector applied to the piezo-
electric actuators. From Eq. (4), several automatic tools can be
used to control the vibrations actively [16].

In order to control the motion of the N first eigenmodes of
the structure, the state of these modes must be well known: they
must be well observed. In order to ensure good observability of
each eigenmode, the best case should be:

c jl >> 0 ∀ j ∈ 1, ..., Ns, ∀l ∈ 1 . . . , N

Hence, before setting up the regulator and observer system,
the active elements’ locations and numbers have to be deter-
mined. The following sections deal with the optimization of the
sensors set.

3. OPTIMIZATION OF THE SENSORS LOCATION AND
NUMBER

3.1. The Optimization Criterion for Sensors Location
In this work, the modified optimization criterion developed

in Bruant and Proslier [4] is used. It deals with observability of
each mode considering them with homogeneity and not globally
as it is usually done: here, each mode is taken into account with
the same magnitude. In this subsection, the number of sensors
is assumed to be established.

The sensors are used to inform the active control system about
the strain of the structure for desired modes. Their locations
should be defined in order to maximize their output given by
{y}. Consequently, most of the papers consider the maximization
of the system output:

∫ ∞

0
{y}T {y}dt .

When the system is released from the initial state {x(0)} =
{x0}, as when it is subjected to a persistent disturbance, Hac and
Liu [2] have shown that maximizing the system output yields
maximizing the gramian observability matrix defined by:

[Wo] =
∫ ∞

0
e[A]T t [C]T [C]e[A]t dt, (9)

where [Wo] tends to a diagonal form:

(Wo)i i = (Wo)i+N ,i+N =
Ns∑
j=1

c2
j i

4ζiωi
= 1

4ζiωi

Ns∑
j=1

c2
j i

i = 1, . . . , N (10)

In fact, each diagonal term (Wo)i i corresponds to the max-
imization of the output energy Ji for the i-th mode obtained
when the state equation is reduced to the i-th mode:

[
ωi α̇i

α̈i

]
=

[
0 ωi

−ωi −2ζiωi

] [
ωiαi

α̇i

]
+

[
[0]

[bil]

]
{�} (11)

{y} = [Ci ]

[
ωiαi

α̇i

]
Ji =

∫ ∞

0
{y}T {y}dt. (12)

Consequently, if the i-th eigenvalue of [Wo] is small, it means
that the i-th mode will not be observed well.

Moreover, as the components of [Wo] do not have the same or-
der of magnitude, to find the sensors locations xs = (S1, ..., SNs ),
maximizing

min
i=1,...,N

(Wo(xs))i i (13)

can induce the study of particular modes instead of each of them.
The obtained locations will not be optimal.



Hence, to establish homogeneity between each term (Wo)i i ,
we have suggested in Bruant and Proslier [4] to divide each of
them by its maximal value obtained when the i-th mode is the
specific mode to be measured. Then, the optimization problem
considered here is to find the sensors locations xs = (S1, ..., SNs )
which maximize

JS(xs) = min
i=1,N

(Wo(xs))i i

max
xs

(Wo(xs))i i
= min

i=1,N

∑Ns

j=1
c2

j i

max
xs

∑Ns

j=1
c2

j i

(14)

with ∀i = 1, ..., N , 0 ≤ (Wo(xs))i i

max
xs

(Wo(xs))i i
≤ 1.

In this approach, all modes are normalized. max
xs

(Wo(xs))i i

represents the maximal output energy, which could be measured
by the sensors for the i-th mode.

In the case where Ni eigenmodes must be more observable
than No other ones (because for example, they are the most
excited modes), a weighting constant (0 < γ < 1) can be used
in JS:

JS(xs) = min
i=1,N

∑Ni

j=1
c2

j i

max
xs

∑Ni

j=1
c2

j i

+ γ min
i=1,N

∑No

j=1
c2

j i

max
xs

∑No

j=1
c2

j i

. (15)

In the same way, residual modes can be considered in the crite-
rion (see, for example, [10]).

3.2. Optimization of the Sensors Number
Usually, the user fixes the number of patches. In this sub-

section, we suggest a simple tool that allows to automatically
determine the number of sensors. Following the approach pro-
posed in Bruant and Proslier [4], we introduce an observability
index on the i-th mode:

Oi (xs) = Wo(xs)i i

maxS W o(S)i i

with Oi (xs) ≥ 1 if the i-th mode is better observed by the Ns

sensors than by one sensor S ideally located for this eigenmode.
To correctly observe each mode, we look for a sensor configu-
ration xs , such that

∀i ∈ 1, . . . , Ns Oi (xs) ≥ η,

with η ∈]0, 1]. The coefficient η is set by the user to
choose the minimum degree of observability allowed for each
mode.

3.3. The Optimization Problem
The optimization problem consists in finding the number Ns

and the location of the sensors xs , which minimize the number

TABLE 1
Geometrical characteristics of the plate and the piezoelectric

patch

Plate Piezoelectric

Length (m) 0.3 0.02
Width (m) 0.2 0.0133
Thickness (m) 0.002 0.0001

of sensors and maximize the function JS (Eq. (15)) subject to the
constraint Oi (xs) ≥ η. A priori, this problem is a bi-objective
optimization problem and its solution is a set of Pareto points.
However, it seems reasonable to choose a solution in the Pareto
front that minimizes the number of sensors. This choice leads to
a much simpler problem to solve than the complete bi-objective
problem.

The new optimization problem is:

1. Find the minimum sensors number Ns such that

max
xs

min
i

Oi (xs) ≥ η. (16)

2. For the number of sensor’s Ns found in step 1, find the sen-
sor’s locations xs = {S1, S2, . . . , SNs } ∈ C, which maximize

JS(xs) = min
i=1,N

(Wo(xs))i i

max
xs

(Wo(xs))i i
, (17)

with the following inequality constraints:

C = {xs such that ∀i ∈ 1, . . . , Ns Oi (xs) ≥ η}.

The verification of condition (16) ensures that C is not an
empty set.

4. OPTIMIZATION IMPLEMENTATION USING
GENETIC ALGORITHMS

To solve the optimization problem defined by Eqs. (16) and
(17), we use a modified version of the Genetic Algorithm pro-
posed in Bruant et al. [10] for a fixed number of sensors. GAs are
a family of optimization algorithms that evolve in an analogous
manner as the Darwinian principle of natural selection. Several
authors have used them for optimal location of sensors (see, for
example, [3, 12–15]).

4.1. Genetic Algorithms
Here, the use of a GA for the sensor’s location optimization is

recalled. The optimization variables are the coordinate of each
sensor’s center (xs, ys).

GAs are derived from the mechanics of natural selection
and genetics. They are an effective numerical method to



TABLE 2
Mechanical characteristics of piezoelectric patch Zirconate P1

88

ρ (kg/m3) 7650
C11 = C22 (GPa) 132.2
C12 = C21 (GPa) 82.3
C13 = C23 = C31 = C32 (GPa) 83.7
C33 (GPa) 120
C44 = C55 (GPa) 29.5
C66 (GPa) 25
ε0 (F/m) 8.85 e−12

ε11 = ε22 1440 ε0

ε33 837 ε0

e31 = e32 (Cm−2) −4.3
e33 (Cm−2) 16.7
e15 (Cm−2) 11.8
Maximal value of (qφ)(V ) 150

find an optimal (or sub-optimal) solution to a complicated
multi-parameter optimization problem, without calculating
the derivatives of the function to be optimized. Basically, GA
finds the optimal solution through iterating the GA operations
on a population, which consists of a number Ni of candidate
solutions to the optimization problem.

Vocabulary of natural genetics is used in GA:

• The considered population contains Ni individuals.
• One individual represents a candidate solution of the

optimization problem. In our work, it consists of the
set of Ns sensors. Each individual is defined by Ns

chromosomes.
• A chromosome here is the location of one sensor.
• Each chromosome is defined with a sequence of two

genes: the coordinates of the sensor’s center.

Several representations for genes can be used (binary or real-
encoded). Here, we use the real-encoded GA [13].

The GA method starts with a randomly generated population.
At each iteration, a new population is created by repeating the
following steps:

• Selection: Select two parent individuals from the pop-
ulation according to their fitness value: the better the
fitness, the bigger the chance to be selected. Here, the
fitness is the criteria JS .

• Crossover: Using arithmetical crossover [13], the two
selected parents give two children.

TABLE 4
The eight first frequencies of the structure

Number of frequency 1 2 3 4 5 6 7 8
Value (H z) 175.57 337.57 539.97 607.55 701.90 971.83 985.71 1146.7

TABLE 3
Mechanical characteristics of the elastic plate

ρ (kg m−3) 7870
E (GPa) 207
ν 0.292
ζi 0.0001

• Mutation: With a mutation probability, some genes of
the children are changed randomly.

• The new offspring are placed in the new population.

The crossover makes the GA process move in a desirable
direction, and the mutation helps to prevent the process from
getting trapped in a local optimal solution.

A conservation step (or elitism) is added and applied to the
new generation: it consists of keeping the best parent (i.e., the
greatest fitness value) in this new generation.

In practice, a convergence criterion must be specified. In this
article, the GA is stopped if the best individual in the population
does not change in continuous Ntol operations.

Of course, the results obtained from the GA process might be
a suboptimal solution. To get a result with higher confidence, one
has to run the GA process several times, each with a randomly
generated initial location [14].

4.2. A Semi-Genetic Algorithm
The algorithm proposed in this article is a semi-genetic al-

gorithm (SGA). In a first step, the observability index is used to
estimate the minimum number of sensors to obtain:

Oi (xs) ≥ η for each i ∈ {1, . . . , N }. (18)

In a second step, the optimal solution for this number of
sensors is computed. The flowchart of this algorithm is detailed
in Figure 1. The proposed SGA performs several runs of the
GA for a fixed number of sensors. The initial number of sensors
Ns is set to N (the number of modes to be observed) and the
GA is run with a number of sensors fixed to Ns . However, the
algorithm stops as soon as condition (18) is obtained for one
set of sensors. The number of sensors is then decreased by
one. This procedure continues until we obtain convergence of
the GA before condition (18) is verified. The optimal number of
sensor’s is set to Nopt,s = Ns+1, and the GA is until convergence
occurs.



FIG. 1. Flowchart of the semi-genetic algorithm.



FIG. 2. Values of the observability index condition: min
i=1,N

Oi (Color figure

available online).

Remark
In practice, we randomly choose the initial population in each

step of the SGA, except in the last step where the population
conserved at the end of the step Nopt,s is used to start the final
GA search.

5. APPLICATION
In this section, the optimization process is applied in the

case of a simply supported elastic plate equipped with piezo-
electric sensors. In order to consider only pure bending mo-
tion, each sensor is made up of a pair of the same piezoelec-
tric material attached symmetrically. They are assumed to be
perfectly bonded to the surface of the plate. The geometri-
cal and mechanical properties of the system are detailed in
Tables 1–3.

The plate is modeled using a new piezoelectric FE (Finite
Element), which has been developed and validated in Polit and
Bruant [17] and used for active vibration control in Bruant
et al. [18]. The plate is discretized in 15 × 15 elements. The

FIG. 4. Value of the criteria JS for each sensor’s number (Color figure avail-
able online).

eigenfrequencies are given in Table 4. The parameters of the
GA are as follows: the population size, the crossover probability,
the mutation probability, and the number Ntol are as 16, 100%,
10% and 20, respectively. The value of parameter η is fixed
to 1.

The validation of the GA for optimization of the sensor’s
location and its convergence have been shown in Bruant et al.
[10].

Here, the number and locations of piezoelectric sensors are
optimized to observe well the 8 first eigenmodes. For this ap-
plication, the SGA is run 20 times. The mean value, standard
deviation, and best and worst values of JS are given Table 5.
In conclusion, the best value of JS equals to 0.349 and the
value of the observability criteria condition equals to 1.046
with 3 sensors. It means that the observability of the 8 first

FIG. 3. Optimal location for each optimization step shown in Figure 2. CN: column number; LN: line number (Color figure available online).



TABLE 5
Results about JS for 20 times running

Standard
Mean value deviation value Best value Worst value
0.346 4.26e−3 0.349 0.335

eigenmodes, using 3 sensors, is good as in the case where each
mode is observed by one sensor located optimally for itself. In
the following paragraph, the results are detailed for one run.

According to the considered algorithm, the research process
starts by running the GA with 8 sensors (the initial number of
sensors equal to the number of eigenmodes). During the GA
steps, as soon as the value of the observability index condition
is greater or equal to η = 1, the sensor’s number is decreased by
one. From NS = 8 to NS = 3, this condition value is verified (see
Figure 2). For NS = 2, no optimal location is found ensuring
the observability condition. Then, the number of sensors is fixed
to Nopt,s = 3, and the second part of the algorithm is applied to
optimize the last configuration of 3 sensors. The optimal con-
figurations at each step of the optimization process (from step
NS = 4) are shown in Figure 3, the location of each sensor is
defined by its column number CN and line number LN. The max-
imal value of the optimization criteria JS is plotted in Figure 4.

6. CONCLUSIONS
This work deals with the optimization of the sets of sensors.

Usually, the number of sensors is fixed, but here it is consid-
ered as an optimization variable. A modified optimization cri-
terion and an observability index condition are used to ensure
good observability of all desired eigenmodes. A semi-genetic
algorithm optimization is developed giving the optimal num-
ber and locations of sensors. Hence, in the studied application
where the 8 first eigenmodes of a simply supported plate have
to be observable, the number of piezoelectric sensors decreases
from 8 to 3. With only 3 sensors optimally located, each 8 first
modes is well observed as with one sensor ideally located for
him.
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9. M. Güney and E. Eskinat, Optimal actuator and sensor placement in flexible
structures using closed-loop criteria, J. Sound Vibra., vol. 312, pp. 210–233,
2007.

10. I. Bruant, L. Gallimard, and S. Nikoukar, Optimal piezoelectric actuator
and sensor location for active vibration control, using genetic algorithm, J.
Sound Vibra., 2010, online.

11. Z. Michalewicz, D. Dasgupta, R. Le Riche, and M. Schoenauer, Evolution-
ary algorithms for constrained engineering problems, Comput. Engineer.,
vol. 30, no. 4, pp. 851–870, 1996.

12. J.-H. Han and I. Lee, Optimal placement of piezoelectric sensors and ac-
tuators for vibration control of a composite plate using genetic algorithms,
Smart Mat. Struct., vol. 8, pp. 257–267, 1999.

13. Y. Yang, Z. Jin, and C. Kiong So, Integrated optimal design of vibration
control system for smart beams using genetic algorithms, J. Sound Vibra.,
vol. 282, pp. 1293–1307, 2005.

14. W. Liu, Z. Hou, and M.A. Demetriou, A computational scheme for the
optimal sensor/actuator placement of flexible structures using spatial H2
measures, Mech. Syst. Signal Process., vol. 20, pp. 881–895, 2006.

15. K. Ramesh Kumar and S. Narayanan, Active vibration control of beams
with optimal placement of piezoelectric sensors/actuator pairs, Smart Mat.
Struct., vol. 17, no. 5, p. 055008, 2008.

16. A. Preumont, Vibration control of active structures, Kluwer Academic Pub-
lishers, Dordrecht, 1999.

17. O. Polit and I. Bruant, Electric potential approximations for an eight node
plate finite element, Compos. Struct., vol. 84, pp. 1480–1493, 2006.

18. I. Bruant, F. Pablo, and O. Polit, Active Control of laminated plates using
piezoelectric finite element, Mech. Adv. Mat. Struct., vol. 15, pp. 276–290,
2008.




