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In this paper we present an error estimator for unilateral contact problems solved by a Neumann-Neumann Domain Decomposition algorithm. This error estimator takes into account both the spatial error due to the finite element discretization and the algebraic error due to the domain decomposition algorithm. To differentiate specifically the contribution of these two error sources to the global error, two quantities are introduced: a discretization error indicator and an algebraic error indicator. The effectivity indices and the convergence of both the global error estimator and the error indicators are shown on several examples.

Introduction

In mechanical engineering, especially in structural analysis, multi-body contact problems are frequent. Contact is characterized by unilateral inequalities, describing the impossibility of tensile contact tractions, of material interpenetration and by an a priori unknown contact area. Combined with a finite element method (FEM), several approaches exist for solving the nonlinear equations issued from the discretization of frictionless contact problems [START_REF]Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Wriggers | Finite element algorithms for contact problems[END_REF][START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics[END_REF]. An important point is to evaluate the approximation errors introduced by the numerical algorithm. For contact problems two distinct sources of errors are introduced: the first one due to the spatial discretization (the finite element mesh), the second one due to the algorithm used to solve the nonlinear equations. Several methods have been developed over many years to evaluate the global quality of FE analysis. For linear problems the earlier works have lead to estimators based on the residual of the equilibrium equation [START_REF] Babuska | A posteriori estimates for the finite element method[END_REF], estimators based on the concept of constitutive relation [START_REF] Ladevèze | Error estimate procedure in the finite element method and application[END_REF], and estimators using the smoothing of the finite element stresses [START_REF] Zienkiewicz | A simple error estimator and adaptive procedure for practical engineering analysis[END_REF]. For multi-body contact problems there is much less work [START_REF] Wriggers | Different a posteriori error estimators and indicators for contact problems[END_REF][START_REF] Coorevits | Posteriori error estimation for unilateral contact with matching and non matching meshes[END_REF][START_REF] Rieger | Adaptive methods for frictionless contact problems[END_REF][START_REF] Louf | Constitutive error estimator for the control of contact problems involving friction[END_REF][START_REF] Louf | Un estimateur d'erreur en relation de comportement pour les problèmes d'impact[END_REF][START_REF] Bostan | A posteriori error analysis for finite element solutions of a frictional contact problem[END_REF][START_REF] Wohlmuth | An a posteriori error estimator for two-body contact problems on non-matching meshes[END_REF][START_REF] Gallimard | A posteriori error analysis of a domain decomposition algorithm for unilateral contact problem[END_REF]. A global error estimator in constitutive relation, which is an upper bound of the exact error, has been developed in [START_REF] Coorevits | Posteriori error estimation for unilateral contact with matching and non matching meshes[END_REF] for unilateral contact problems without friction. This error estimate has been extended to friction problems in [START_REF] Louf | Constitutive error estimator for the control of contact problems involving friction[END_REF], to dynamic problems in [START_REF] Louf | Un estimateur d'erreur en relation de comportement pour les problèmes d'impact[END_REF] and to a natural Dirichlet-Neumann domain decomposition algorithm in [START_REF] Gallimard | A posteriori error analysis of a domain decomposition algorithm for unilateral contact problem[END_REF] . An error estimate for linear elastic problems solved by FETI method [START_REF] Farhat | FETI-DP : a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method[END_REF] or BDD method [START_REF] Mandel | Balancing domain decomposition[END_REF] was proposed in [START_REF] Parret-Fraud | Fast estimation of discretization error for FE problems solved by domain decomposition[END_REF].

In this paper, we consider a natural Neumann-Neumann Domain Decomposition (NNDD) algorithm, for two elastic bodies in contact, in which each iterative step consists of a Dirichlet problem for one body, a contact problem for the other one and two Neumann problems to coordinate contact stresses [START_REF] Hasslinger | A domain decomposition algorithm for contact problems: analysis and implementation[END_REF]. For the sake of simplicity, we shall here only consider two bodies contact problems where some Dirichlet conditions are imposed on each body.

The main objective of this paper is to present an a posteriori global error estimator for a frictionless contact problem, solved by a NNDD algorithm and two error indicators which allow to estimate the part of the error due to the spatial discretization and the part of the error due to the domain decomposition algorithm.

The paper is organized as follows: In Sect. 2, we introduce the frictionless contact problem to be solved. The domain decomposition algorithm is described in Sect. 3. In Sect. 4, the finite element variational formulations are introduced. Section 5 is devoted to the formulation of the global error estimator, the discretization error indicator and the algorithm error indicator. Finally, in Sect. 6, the different errors are analyzed through numerical examples.

Contact Problem

Let two elastic bodies, represented by Ω 1 and Ω 2 , be in unilateral contact along an interface Γ c . Some displacements u α D are imposed on the boundaries Γ α D whereas some surface forces F α are applied on Γ α N . For the sake of simplicity, body forces are not considered. We choose the orientation of the contact zone Γ c by setting: n c = n 1 , see Fig. 1.

We introduce, on the interface Γ c , the functions w 1 and w 2 representing two displacement fields defined on each side of the interface and w c an interior displacement field. We also define t 1 and t 2 , representing two fields of surface density forces (stresses transmitted to Ω 1 and Ω 2 ) and t c an interior field of surface density forces.

Let V α denote the Sobolev spaces H 1 (Ω α ) and let us define the sets of admissible displacement fields defined on Ω α , the trace of which, on the interface Γ c , is equal to a given displacement u α D :

V α (u α D ) = v ∈ H 1 (Ω α ); u = u α D on Γ α D .
The associated vector spaces are then defined as

V α (0) = v ∈ H 1 (Ω α ); u = 0 on Γ α D .
Let us introduce the n-uplets

d = (u 1 , u 2 , w 1 , w 2 , w c ) and s = (σ 1 , σ 2 , t 1 , t 2 , t c
). The problem of unilateral contact consists on finding (d, s) such that (u α , w α , w c ) satisfy the kinematic conditions (1), (σ α , t α , t c ) satisfy the equilibrium equations ( 2), (u α , σ α ) satisfy the elastic constitutive relation [START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics[END_REF] with the stiffness or elasticity tensors K α and the strain tensor ε(u), (w c , t c ) satisfy the contact constitutive relation [START_REF] Babuska | A posteriori estimates for the finite element method[END_REF]. For α = 1, 2:

u α ∈ V α (u α D ), u α = w α , w c = w 1 -w 2 on Γ c . ( 1 
)
∀ v ∈ V α (0), - Ω α σ α ε(v)dV + Γ α N F α vd S + Γ c t α vd S = 0, (2) 
t c -t 1 = 0 and t c + t 2 = 0 on Γ c . σ α = K α ε(u α ) in Ω α . (3) φ(-w c ) + φ * (t c ) + t c .w c = 0 on Γ c , ( 4 
)
where for any vector v, the normal and the tangential components are defined according to v n = v.n c and v t = v -v n n c and the convex potentials φ and φ * are defined by

φ(v) = 0 ifv n ≥ 0 +∞ otherwise and φ * (t) = 0 ift n ≤ 0 and t t = 0 +∞ otherwise . ( 5 
)
Moreover, for any pair (w c , t c ) defined on Γ c , the Legendre-Fenchel inequality, see [START_REF] De Saxcé | A generalisation of Fenchel's inequality and its applications to the constitutive laws[END_REF], leads to φ(-

w c ) + φ * (t c ) + t c .w c ≥ 0. ( 6 
)
Remark 1 Following [START_REF] De Saxcé | A generalisation of Fenchel's inequality and its applications to the constitutive laws[END_REF], the relation defined by Eq. ( 4) is equivalent to the Coulomb's constitutive law [START_REF] Wriggers | Different a posteriori error estimators and indicators for contact problems[END_REF] in a frictionless case:

w c n ≤ 0, t c n ≤ 0, t c n w c n = 0 and t c t = 0 on Γ c , ( 7 
)

Domain Decomposition Algorithm

In this section, we recall the Neumann-Neumann Domain Decomposition (NNDD) algorithm used to solve the unilateral contact problem defined by Eqs. ( 1)-( 4). Given a non-negative parameter θ and an initial arbitrary normal displacement λ 1 belonging to Sobolev space H 1/2 (Γ c ), we define two sequences of displacements u α p on each solid Ω α , α = 1, 2. Each iteration p of the NNDD algorithm is divided in two successive steps in which the problems can be independently solved.

As in the NNDD algorithm some displacement fields λ are imposed on the contact Γ c , we define the corresponding displacements spaces

V α (λ) = u ∈ V α (u α D ) and u.n c = λ on Γ c , V α 0 = u ∈ V α (0) and u.n c = 0 on Γ c .
-Step 1 Two independent elasticity problems are solved on Ω 1 and Ω 2 :

1. In Ω 1 , the variational problem writes: Find (u 1 p , σ 1 p ) defined on Ω 1 and (w 1 p , t 1 p ) defined on Γ c such that

u 1 p = u 1 D on Γ 1 D , u 1 p -w 1 p = 0 and w 1 p n 1 = λ p on Γ c , ( 8 
)
∀ v ∈ V 1 0 , - Ω 1 σ 1 p : ε(v) dV + Γ 1 N F 1 v d S = 0, (9) 
t 1 p = σ 1 p n 1 on Γ c , σ 1 p = K 1 ε(u 1 p ) in Ω 1 . ( 10 
)
2. In Ω 2 , with the given λ p normal displacement defined on Γ c , we solve the following variational problem corresponding to a unilateral frictionless contact problem on Γ c . Find (u 2 p , σ 2 p ) defined on Ω 2 and (w 2 p , t 2 p ) defined on Γ c such that

u 2 p = u 2 D on Γ 2 D , u 2 p -w 2 p = 0 and w c p = λ p n 1 -w 2 p on Γ c , (11) 
∀ v ∈ V 2 0 , - Ω 2 σ 2 p : ε(v) dV + Γ 2 N F 2 v d S + Γ c t 2 p v d S = 0, (12) 
t c p + t 2 p = 0 on Γ c , σ 2 p = K 2 ε(u 2 p ) in Ω 2 , ( 13 
) φ(-w c p ) + φ * (t c p ) + t c p .w c p = 0 on Γ c . ( 14 
)
-Step 2 With t 1 p and t 2 p obtained from Step 1, we solve two independent "Neumann type" problems:

In Ω 1 , we solve

⎧ ⎨ ⎩ Find w 1 ∈ V 1 (0) such that Ω 1 K 1 ε(w 1 ) : ε(v) dV = - Γ c 1 2 (t 1 p + t 2 p ).(v) ∀v ∈ V 1 (0). ( 15 
)
In Ω 2 , we solve

⎧ ⎨ ⎩ Find w 2 ∈ V 2 (0) such that Ω 2 K 2 ε(w 2 ) : ε(v) dV = Γ c 1 2 (t 1 p + t 2 p ).(v) ∀v ∈ V 2 (0). ( 16 
)
Let ε τ be the precision of the algorithm,

ε τ = (w 1 -w 2 ).n H 1/2 (Γ c )
we have the alternative:

1. If ε τ is small enough, the algorithm stops.

2. Else, on Γ c , the normal displacement λ p is updated:

λ p+1 := λ p + θ(w 1 -w 2 ).n
and we return to Step 1 for iteration p + 1.

At the end of each iteration this algorithm yields an approximate solution (d p , s p ) of the contact problem ( 1)-( 4), with

d p = (u 1 p , u 2 p , w 1 p , w 2 p , w c p ) and s p = (σ 1 p , σ 2 p , t 1 p , t 2 p , t c p ). The convergence is obtained when λ p+1 -λ p -→ 0, that is when (w 1 -w 2 ).n -→ 0 on Γ c . Proposition 1 (w 1 -w 2 ).n = 0 on Γ c ⇒ (d p , s p ) = (d, s) the solution of the contact problem (1)-(4).
Proof Suppose (w 1w 2 ).n = 0 on Γ c , replacing respectively w 1 and w 2 in ( 15) and ( 16), we obtain the following equalities:

Ω 1 K 2 ε(w 1 ) : ε(w 1 ) dV = - Γ c 1 2 (t 1 p + t 2 p ).(w 1 ) Ω 2 K 2 ε(w 2 ) : ε(w 2 ) dV = Γ c 1 2 (t 1 p + t 2 p ).(w 2 )
Summing up, we obtain, since the stress vectors t 1 p and t 2 p have no tangential component:

Ω 1 K 2 ε(w 1 ) : ε(w 1 ) dV + Ω 2 K 2 ε(w 2 ) : ε(w 2 ) dV = 0.
As the quadratic forms are positive, this means that w 1 ≡ 0 and w 2 ≡ 0, and thus, t 1 p +t 2 p = 0 on Γ c . In other words, at this point, the solutions u α p from the NNDD algorithm satisfy the unilateral contact problem (1)-( 4).

As, in the NNDD algorithm, the solution of the unilateral contact problem (1)-( 4) is obtained when the sequence λ p is convergent. The convergence of the NNDD algorithm can be proved by showing that the mapping T θ for any λ ∈ H 1/2 (Γ c ) and its associated respective solutions w 1 and w 2 of ( 15) and ( 16),

T θ (λ) = λ + θ(w 1 -w 2 ).n is a contraction in H 1/2 (Γ c
) for any θ small enough, see [START_REF] Bayada | A Neumann-Neumann Domain Decomposition algorithm for the Signorini problem[END_REF][START_REF] Hasslinger | A domain decomposition algorithm for contact problems: analysis and implementation[END_REF]: Proposition 2 There is a θ 0 > 0 such that for any 0 < θ ≤ θ 0 , the NNDD algorithm for unilateral frictionless contact converges.

Finite Element Approximation

At each step p, approximate solution of problems ( 8)-( 10), ( 11)-( 14) and ( 15)-( 16) are computed using a classical FE method. The problem ( 8)-( 10) and the problems ( 15)-( 16) lead to standard linear variational problems and the problem ( 11)-( 13) is solved as a variational problem with affine inequality constraint.

Let V α h be some finite element spaces respectively discretizing the Sobolev spaces V α = H 1 (Ω α ). We define

V α h (u α D ) = V α (u α D ) ∩ V α h V α h (0) = V α (0) ∩ V α h , V 1 h (λ) = V 1 (λ) ∩ V 1 h , V 1 h (0) = V 1 (0) ∩ V α h ,
and

K 2 h (λ) = {v ∈ V 2 h (u 2 D ) and v.n c ≥ λ on Γ c }.
The approximate solutions of ( 8)-( 10), ( 11)-( 14), ( 15) and ( 16) are respectively given by

⎧ ⎪ ⎨ ⎪ ⎩ Find u 1 p,h ∈ V α h (λ p ) such that Ω 1 K 1 ε(u 1 p,h )ε(v)dV = Γ 1 N F 1 v d S ∀v ∈ V α h (0), (17) 
⎧ ⎪ ⎨ ⎪ ⎩ Find u 2 p,h ∈ K α h (λ p ) such that Ω 2 K 2 ε(u 2 p,h )ε(v)dV ≥ Γ 2 N F 2 v d S ∀v ∈ K α h (λ p ), (18) 
⎧ ⎪ ⎨ ⎪ ⎩ Find w 1 p,h ∈ V α h (u 1 D ) such that Ω 1 K 1 ε(w 1 p,h )ε(v)dV = Γ c - 1 2 (t 1 p,h + t 2 p,h ).v d S ∀v ∈ V 1 h (0), (19) 
⎧ ⎪ ⎨ ⎪ ⎩ Find w 2 p,h ∈ V α h (u 2 D ) such that Ω 2 K 2 ε(w 2 p,h )ε(v)dV = Γ c 1 2 (t 1 p,h + t 2 p,h ).v d S ∀v ∈ V 2 h (0), ( 20 
)
where 

t i p,h = σ i p,h n i on Γ i where σ i p,h = K i ε(u i p,h ) for i = 1, 2 and 
w c p,h = λ p n c -w 2 p,h on Γ c .
We shall denote

d p,h = (u 1 p,h , w 1 p,h , u 2 p,h , w 2 p,h , w c p,h ) (21) 
s p,h = (σ 1 p,h , t 1 p,h , σ 2 p,h , t 2 p,h , t c p,h ). ( 22 
)
Remark 2 For the sake of simplicity, the Finite Element formulations ( 17)-( 20) are written here for matching meshes at the interface, however, the extension to non matching meshes is straightforward (see [START_REF] Coorevits | Posteriori error estimation for unilateral contact with matching and non matching meshes[END_REF]).

Error in the Constitutive Relation

To develop an error estimation for a contact problem we use a method based on the constitutive relation error [START_REF] Ladevèze | Error estimate procedure in the finite element method and application[END_REF]. We recall here the error measure proposed in [START_REF] Coorevits | Posteriori error estimation for unilateral contact with matching and non matching meshes[END_REF] for a global unilateral contact problem. Let us consider an approximate solution of problem defined by Eqs. ( 1 

e C RE ( d, ŝ) = 2 α=1 σ α -K α ε( ûα ) 2 σ ,Ω α + 2 Γ c tc ŵc d S 1/2 , ( 23 
)
with

σ 2 σ ,Ω α = Ω α σ : (K α ) -1 σ .
Note that factor 2 before the integral of expression [START_REF] Gallimard | Error estimation and time-space parameters optimization for FEM non linear computation[END_REF] will prove sufficient to obtain the upper bound property of Proposition 6.

Remark 3 It should be noted that as φ( -w c ) = 0 and φ * ( tc ) = 0, from (6), the quantity tc ŵc is greater that zero on Γ c . As an extension of the Prager-Synge theorem [START_REF] Prager | Approximation in elasticity based on the concept of functions space[END_REF], it was shown in [START_REF] Coorevits | Posteriori error estimation for unilateral contact with matching and non matching meshes[END_REF] that

e C RE ( d, ŝ) ≥ 2 α=1 σ α -σ α 2 σ ,Ω α + ûα -u α 2 u,Ω α 1/2 , ( 24 
)
with ad (λ p ) = {ŝ 2 = ( σ 2 , t2 , tc )/ŝ 2 satisfies Eq.( 12) and φ * ( tc ) = 0}.

û 2 u,Ω α = Ω α K α ε( û) : ε( û).

Proposition 3

The pair ( d1 p , ŝ1 p ) ∈ U 1 ad (λ p ) × S 1 ad is the solution of problem (8)-( 10) if

e 1 C RE ( d1 p , ŝ1 p ) = σ 1 p -K 1 ε( û1 p ) 2 σ ,Ω 1 1/2 = 0. ( 25 
)
Proof Since ( d1 p , ŝ1 p ) belongs to U 1 ad (λ p ) × S 2 ad (λ p ), Eqs. ( 8) and ( 9) are satified. Eq. ( 10) then follows from the condition [START_REF] Pelle | An efficient adaptive strategy to master the global quality of viscoplastic analysis[END_REF]. 

Proposition 4 The pair ( d2 p , ŝ2 p ) ∈ U 2 ad (λ p ) × S 2 ad (λ p ) is the solution of problem (11)-(14) if e 2 C RE ( d2 p , ŝ2 p ) = σ 2 p -K 2 ε( û2 p ) 2 σ ,Ω 2 + 2 Γ c tc p ŵc p d S 1/2 = 0. ( 26 
)
Γ c tc p ŵc p d S ≥ 0. (27) 
It follows then from (26) that σ 2 p -K 2 ε( û2 p ) = 0 on Ω 2 , hence that ( d2 p , ŝ2 p ) satisfy Eq. ( 13), and tc p . ŵc p = 0 on Γ c . (28)

Morover, as d2 p ∈ U 2 ad (λ p ) and ŝ2 p ∈ S 2 ad (λ p ), we have φ(-ŵc ) = 0 and φ( tc p ) = 0, hence Eq. ( 14) is satisfied.

Remark 4

We emphasize that the pair ( dp = ( d1 p , d2 p ), ŝp = (ŝ 1 p , ŝ2 p )) is not, a priori, an admissible solution for the unilateral contact problem (i.e. / ∈ U ad × S ad ) because the equilibrium equation ( 2) is not necessarily satisfied since tc p -t1 p = 0 has not been imposed.

We define then an error estimator for the problem defined by Eqs. ( 8)-( 14), with 8)- [START_REF] Louf | Constitutive error estimator for the control of contact problems involving friction[END_REF], resp. problem ( 11)-( 14), from step 1 of NNDD algorithm.

e C RE ( dp , ŝp ) = e 1 C RE ( d1 p , ŝ1 p ) 2 + e 2 C RE ( d2 p , ŝ2 p ) 2 1 2 . ( 29 
)
As ( 8)-( 10) defines a linear elastic problem we can use the Prager-Synge theorem [START_REF] Prager | Approximation in elasticity based on the concept of functions space[END_REF] to obtain

(e 1 C RE ) 2 = σ 1 p -Kε( û1 p ) 2 σ ,Ω 1 = σ 1 p -σ 1 p 2 σ ,Ω 1 + û1 p -u 1 p 2 u,Ω 1 . ( 30 
)
Considering ( 11)-( 14), the error estimator writes

(e 2 C RE ) 2 = σ 2 p -K 2 ε( û2 p ) 2 σ ,Ω 2 + 2 t2 p ŵ2 p = σ 2 p -σ 2 p + K 2 ε(u 2 p ) -K 2 ε( û2 p ) 2 σ ,Ω 2 + 2 Γ c t2 p ŵ2 p d S = σ 2 p -σ 2 p 2 σ ,Ω 2 + û2 p -u 2 p 2 u,Ω 2 + C with C = 2 Ω 2 ( σ 2 p -σ 2 p ) : ε(u 2 p -û2 p )dV + 2 Γ c t2 p ŵ2 p d S. ( 31 
)
In other words, we have

(e 1 C RE ) 2 + (e 2 C RE ) 2 = σ 1 p -σ 1 p 2 σ ,Ω 1 + û1 p -u 1 p 2 u,Ω 1 + σ 2 p -σ 2 p 2 σ ,Ω 2 + û2 p -u 2 p 2 u,Ω 2 + C.
Thus, we only need to show that C ≥ 0: As u 2 p -û2 p ∈ V 2 0 and thanks to Eq. ( 12) we have

Ω 2 σ 2 p : ε(u 2 p -û2 p )dV = Γ 2 N F 2 (u 2 p -û2 p ) d S + Γ c t 2 p (u 2 p -û2 p ) d S Ω 2 σ 2 p : ε(u 2 p -û2 p )dV = Γ 2 N F 2 (u 2 p -û2 p ) d S + Γ c t2 p (u 2 p -û2 p ) d S
therefore by substraction, we obtain

Ω 2 ( σ 2 p -σ 2 p ) : ε(u 2 p -û2 p )dV = Γ c ( t2 p -t 2 p )(w 2 p -ŵ2 p ) d S.
As u 2 p and û2 p belong to V 2 (λ p ) their restriction to Γ c are respectively equal to w 2 p and ŵ2 p , so that C writes

C = 2 Γ c ( t2 p -t 2 p )(w 2 p -ŵ2 p ) d S + 2 Γ c t2 p ŵ2 p = 2 Γ c ( t2 p w 2 p + t 2 p ŵ2 p -t 2 p w 2 p ) d S = 2 Γ c ( t2 p w 2 p + t 2 p ŵ2 p ) d S
Finaly, remarking that φ * ( t2 p ) = 0 and φ(w 2 p ) = 0, as well as φ * (t 2 p ) = 0 and φ( ŵ2 p ) = 0, see [START_REF] Zienkiewicz | A simple error estimator and adaptive procedure for practical engineering analysis[END_REF], leads to C ≥ 0 which concludes the proof.

In order to obtain a global error estimator for the contact problem, we define an admissible solution for the unilateral contact problem ( dp = ( d1 p , d2 p ), ŝp = ( ŝ1 p , ŝ2 p )) that is

( d1 p , ŝ1 p ) ∈ U 1 ad (λ p ) × S 1 ad , ( d2 p , ŝ2 p ) ∈ U 2 ad (λ p ) × S 2 ad (λ p ), tc p -t1 p = 0.
The global error estimator for the contact problem is then defined by

η glo = e C RE ( dp , ŝp ) = e 1 C RE ( d1 p , ŝ1 p ) 2 + e 2 C RE ( d2 p , ŝ2 p ) 2 1 2 . ( 32 
)
We have the following property: 8)-( 14). From Eq. ( 12) it follows that tc p + t2 p = 0, which combined with tc p -t1 p = 0 leads to t1 p + t2 p = 0. Then, from Proposition 1, ( dp , ŝp ), is the exact solution of the global unilateral contact problem.

Remark 5

The admissible displacement fields are easily recovered, since the finite element fields satisfy the kinematic constraints and w c p,h (x i ) ≥ 0, where x i denote the nodes of the FEM on the contact zone Γ c . d1 p = (u 1 p,h , w 1 p,h ) and d2 p = (u 2 p,h , w 2 p,h , w c p,h ). However, the stress fields and the traction forces s p,h , see [START_REF] Gallimard | A constitutive relation error estimator based on traction-free recovery of the equilibrated stress[END_REF], computed by the algorithm do not satisfy the equilibrium equations. The pair ( ŝ1 p , ŝ2 p ) is recovered from the finite element solution and the data in 3 steps -The first step, consists in recovering admissible traction fields ( t1 , t2 , tc ). We built a traction tc such that φ * ( tc ) = 0 and which minimizes in the least square sense J ( tc )

J ( tc ) = Γ c tc - 1 2 t 1 h, p -t 2 h, p 2 d S.
-The second step, consists in recovering stress fields σ α h, p that satisfy the FE-equilibrium equations on each solid

Ω α . Let ũα h, p ∈ V α h such that σ α h, p = K α ε( ũα h, p ) and ∀ v ∈ V α h,0 , - Ω α K α ε( ũα h, p ) : ε(v) dV + Γ α N F α v d S + Γ c tα v d S = 0.
-Finally, the recovery of equilibrated stress fields σ α from σ α h, p = K α ε( ũα h, p ), F α and tα in each subdomain Ω α is the most technical point. This step is performed with a traction-free recovery technique developed in [START_REF] Gallimard | A constitutive relation error estimator based on traction-free recovery of the equilibrated stress[END_REF].

Let us define the following error between the exact and approximate solution of the contact problem

e h, p = 2 α=1 u α -u α h, p 2 u,Ω α 1/2 (33)
Repating the proof of Proposition 6 with the exact solution of the unilateral contact problem leads to Proposition 8 The global error estimator e C RE ( dp , ŝp ) is an upper bound of the error e h, p .

Error Indicators for the NNDD Algorithm and for the FE Discretization

Following the method proposed in [START_REF] Gallimard | Error estimation and time-space parameters optimization for FEM non linear computation[END_REF][START_REF] Ladevèze | Adaptive control for finite element analysis in plasticity[END_REF][START_REF] Pelle | An efficient adaptive strategy to master the global quality of viscoplastic analysis[END_REF], we propose here two error indicators that allow us to estimate separately the part of the error due to the FE discretization from the part due to the NNDD algorithm. The discretization error is defined as the limit of the global error when the convergence criterion of the iterative algorithm tends to zero. The NNDD algorithm error is defined as the limit of the global error as the mesh size h tends to zero.

Error Indicator for the FE Discretization

To define FE discretization error indicator η F E , let us consider the reference problem defined by the step p of the NNDD algorithm: Find d p = (u 1 p , w 1 p , u 2 p , w 2 p , w c p ) and s p = (σ 1 p , t 1 p , σ 2 p , t 2 p , t c p ) that satisfy equations ( 8)-( 14). The only approximation introduced between (d p , s p ) and the finite element solution (d p,h , s p,h ) is the FE discretization. We have shown in Sect. 5.2 that the error in the constitutive relation e C RE ( dp , ŝp ) defined in Eq. ( 29) is an error estimator for this reference problem. The quantity e C RE ( dp , ŝp ) is used to define a FE discretization error indicator for the unilateral contact problem

η F E = e C RE ( dp , ŝp ). ( 34 
)
Remark 6 As shown on Sect. 5.2 this error indicator is however an upper bound of the exact solution of ( 8)-( 14) at each step of the discretized NNDD algorithm.

Error Indicator for the NNDD Algorithm

To define a NNDD algorithm error indicator η N N , let us denote by (P h ) the reference problem defined by finite element discretization of the unilateral contact problem Eqs. ( 1)-( 4) and its solution by (d h , s h ). The only approximation introduced between the solution (d h , s h ) and the finite element solution (d p,h , s p,h ) is the approximation introduced by the NNDD algorithm. Let ( dh , ŝh ) an admissible solution for the problem (35)-( 37)

ûα h ∈ V α h (u α D ) ûα h = ŵα h , ŵc h = ŵ1 h -ŵ2 h on Γ c . (35) ∀ v ∈ V α h (0), - Ω α σ α h ε(v)dV + Γ α N F α vd S + Γ c tα h vd S = 0, Γ c ( tc h -t1 h )vd S = 0 and Γ c ( tc h + t2 h )vd S = 0 on Γ c , ( 36 
)
qn ≤ 0 and C ˆ n ≤ 0 and

C ˆ t = 0, ( 37 
)
where qn is the vector of the nodal values of ŵc h , ˆ n and ˆ t are respectively the normal and the tangentials components of the nodal values of tc h , and C is the contact matrix. The discretized version e C RE,h ( dh , ŝh ) of the error in the constitutive relation defined by Eq. ( 23) is an error estimator for this reference problem, and is used to define NNDD algorithm error indicator for the unilateral contact problem

η N N = e C RE,h ( dh , ŝh ) = 2 α=1 σ α h -K α ε( ûα h ) 2 σ ,Ω α + 2 qT n C ˆ n 1/2 . ( 38 
)

Numerical Results

In this section we give numerical results on two 2D examples. Both examples contain two elastic bodies, one of them clamped along a part of its boundary, whereas the other domain is subject to a non-zero imposed displacement. The results are very similar in the two chosen example, but showing different performances of the NNDD algorithm.

Example 1

The first example is shown on Fig. 2. The lower boundary of structure Ω 1 is clamped, on structure Ω 2 the applied force F 2 has a linear distribution (F 2 max = 10 7 Mpa) and the applied displacement is u 2 D = -10 -4 m. The Young's modulus for both structures is E = 210 GPa and the Poisson's ratio is ν = 0.27. The coefficient θ of the NNDD algorithm is set to 0.25.

To evaluate the computed global estimator, we compute a reference solution denoted by u re f and we define the reference error e re f and the effectivity index γ by

e re f = 2 α=1 u α re f -u α h, p 2 u,Ω α 1/2 and γ = η glo e re f . ( 39 
)
To obtain a reliable reference solution we choose a mesh size h re f = 1/8h and we set the convergence criteria of the NNDD algorithm to ε τ ≤ 10 -8 , where we chose to define the precision of the algorithm as

ε τ = 2 max Γ c |t 1 p + t 2 p | max Γ c |t 1 p | + max Γ c |t 2 p |
, where t 1 p and t 2 p are obtained from Step 1 of the NNDD algorithm at iteration p. The results are reported in Fig. 3. We have represented the evolution of the effectivity index γ as a function of the number of degrees of freedom (n DoF ) for a fixed number of iterations of the NNDD algorithm (n ite = 3) and its evolution as a function of the number of iterations of the NNDD algorithm for a fixed number of degrees of freedom, n DoF = 1,002. The results show the upper bound property of the global error estimator. It is worth noticing that the effectivity index seems rather insensitive to the FE discretization as well to the number of iterations.

Figure 4 shows the evolutions of the global error estimator η glo , the FE error indicator η F E , and the NNDD error indicator η N N as functions of the number of n ite the number of iterations of the NDDD algorithm for a fixed number of DoF, n DoF = 1,002. The global error η glo tends to an horizontal asymptote which is the FE error indicator η F E , whereas the convergence of NNDD error indicator η N N as a function of the number of iterations is shown.

Figure 5 shows the evolution of the global error estimator η glo , of the FE error indicator η F E , and of the NNDD error indicator η N N as a function of the number n DoF of the degree of freedom (DoF), for a fixed number iterations of the NDDD algorithm n ite = 6 for the example 1. The global error η glo tends to an horizontal asymptote which is the NNDD error indicator η N N , whereas the convergence of FE error indicator η F E as a function of the number of DoF is shown.

The η glo can be numerically related to η N N and η F E by relation (40).

η glo 2 ≈ η F E 2 + η N N 2 . ( 40 
)
We illustrate the relation (40) in Fig. 6, where are drawn the errors ratio r as a function of the number of iteration and the number of nodes. With these tools, it would be possible to adapt the quality of the mesh during the iterations of the domain decomposition algorithm and to control the final quality of the computation. The extension of these error estimates to other domain decomposition algorithms for unilateral contact problem, such as FETI [START_REF] Dureisseix | A numerically scalable domain decomposition method for the solution of frictionless contact problems[END_REF][START_REF] Dureisseix | A FETI-based algorithm for the iterative solution of unilateral contact problems[END_REF] is under consideration.

r = η glo η F E 2 + η N N 2 1/2 .
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  )-(4), denoted ( d, ŝ). The pair ( d, ŝ) is said to be an admissible solution if ( d, ŝ) ∈ U ad × S ad where U ad = the set of the kinematicaly admissible fields = { d = ( û1 , û2 , ŵ1 , ŵ2 , ŵc )/ d satisfies Eq.(1) and φ(-ŵc ) = 0}, and S ad = the set of the statically admissible fields = {ŝ = ( σ 1 , σ 2 , t1 , t2 , tc )/ŝ satisfies Eq.(2) and φ * ( tc ) = 0}. The constitutive relation error on the pair ( d, ŝ) is defined by

5. 2 1 ad 1 ad = {ŝ 1 = 2 ad
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 5689110 Fig. 5 Example 1-computed errors as a function of the number of Nodes

As for the Example 1, we first study the evolution of the global error estimator η glo , of the FE error indicator η F E , and of the NNDD error indicator η N N as a function of the number n DoF of the degree of freedom (DoF), for a fixed number iterations of the NDDD algorithm n ite = 3 and a fixed value of the NNDD parameter θ = 0.45, which seems "optimal" see Fig. 9. While showing a different performance of the NNDD algorithm for the Example 1, the graphic of Fig. 8 is very similar to Fig. 5. We test the a posteriori error estimates of the NNDD algorithm for different values of θ, and two meshes, one coarse mesh with 380 nodes (760 DoF) and one finer mesh with 5,994 nodes (11,992 DoF), for 3 iterations of the algorithm (see Fig. 9). For both meshes, we notice an apparently optimal value near 0.4 ≤ θ ≤ 0.5. We also remark that the NNDD algorithm errors are very similar in both fine and coarse meshes. The discretisation errors are naturally greater in the coarse mesh, but it doesn't change much with θ .

In Fig. 10 we draw the errors ratio r , defined in (40), as a function of the parameter θ after 3 iterations of the NNDD algorithm on the two different meshes. The figure shows that relation (40) holds for that example.

Conclusion

A global error estimator has been introduced to verify the finite element approximate solution of an unilateral contact problem computed by a natural Neumann-Neumann domain