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Use of Classical Plate Finite Elements for the Analysis of
Electroactive Composite Plates. Numerical Validations

F. PABLO,* I. BRUANT AND O. POLIT

Laboratoire de Mécanique de Paris X (LMpX), Paris X University, 50 rue de Sèvres 92410 Ville d’Avray, France

ABSTRACT: An original piezoelectric plate theory has been presented in the companion
paper (Osmont and Pablo, 2008). The particularity of the ‘piezoelectric’, finite element stem-
ming from this theory lies in the fact that no electric degree of freedom is needed to take into
account the electromechanical coupling. This article is focused on the validation of this theory
through various benchmarks issued from literature. It will be proved that results are in quite
agreement with static and dynamic reference solutions of laminated composite plates equipped
with piezoelectric patches.

Key Words: piezoelectric, plate finite element, a priori assumptions, no electric degree of
freedom.

INTRODUCTION

T
HE purpose of the present studies is to perform
active vibration control of composite panels using

distributed electro-active actuators and sensors. Many
previous works proved that the number and location
of actuator/sensor pairs have a great influence on con-
trol efficiency (see, for example, (Preumont, 1997)).
As the actuators need to be perfectly bonded to the
controlled structure in order to maximize the electro-
mechanical interactions, patches locations have to be
defined using numerical simulations previous to any
experimental application.
From this point of view, the present work is focused

on modeling laminated composite plates equipped with
piezoelectric patches for active vibration control appli-
cations. A new methodology has been presented in the
companion paper (Osmont and Pablo, 2008) to analyze
such electro-mechanically coupled problems using clas-
sical mechanical plate finite elements.
Indeed, based on a priori assumptions, it has been

shown that electric variables could analytically be elimi-
nated from the problem unknowns. The piezoelectric
effects are then taken into account via external forces
depending on electric boundary conditions and modified
elastic coefficients.
This article presents a numerical validation of this

original theory through various benchmarks issued
from literature. The benchmark selection proposed
here was limited by the need of piezoelectric

electromechanical properties to be fully known in
order to implement the present theory. As these proper-
ties are generally incomplete in the open literature, other
interesting benchmarks could not be used for results
comparisons.

The present work efficiency is hereafter proved
through comparisons with various finite element the-
ories with, or without, electric degrees of freedom.
In particular, the present merely elastic model (i.e., with-
out electric degree of freedom) is compared to reference
piezoelectric finite elements including electric degrees of
freedom and proposed by Bruant and Polit (2004) and
Polit and Bruant (2005).

The article is organized as follows. To stand with,
main results obtained by Osmont and Pablo (2008)
are reminded in the section ‘Main Theoretical Results’.
The finite element implementation of the present
theory is then developed in the section ‘Finite Element
Considerations’.

Finally, various benchmarks are proposed so as to
evaluate the present theory for thin plates made of �
or including � piezoelectric layers submitted to static
electromechanical loads and modal analysis. In particu-
lar, the last benchmark leads to a discussion concerning
the appropriate way to take into account the isolated
electric boundary conditions.

NOTATIONS

In following developments, latin indices i, j, . . . , take
their values in the set {1,2,3} while greek indices
�,�, . . . , take their values in the set {1, 2}.
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Einstein agreement stating the summation on repeated
indices and the classic notation ( ),�¼ @( )/@x� are used.
Moreover, classical engineering notations are used for
stresses and strains.
The following notations are generally used:

. double bar symbols, such as A, denote tensors of
order greater than two,

. bold symbols, such as A, denote vectors and matrices,

. regular symbols, such as A, denote scalars,

. the t superscript denotes the transpose,

. the d superscript denotes prescribed values (given
boundary conditions),

. the E superscript denotes the short-circuited (closed-
circuit) variables,

. the D superscript denotes the isolated (open-circuit)
variables,

. the S superscript denotes the strain-free variables,

. the T superscript denotes the stress-free variables.

Finally, the following notations will in particular
represent:

u¼ (u1 u2 u3)
t : Mechanical displace-

ment vector
ü¼ (ü1 ü2 ü3)

t : Acceleration vector
f d¼ ð f d

1 f d
2 f d

3 Þ
t : Applied body forces

Fd
¼ ðFd

1 Fd
2 Fd

3 Þ
t : Applied surface

forces
n¼ (n1 n2 n3)

t : Normal vector
S¼ (S11 S22 S33 2S13 2S23 2S12)

t : Strain vector
Sp
¼ (S11 S22 2S12)

t : In-plane strain vector
Ss (2S13 2S23)

t : Transverse shear
strain vector

T¼ (T11 T22 T33 T13 T23 T12)
t : Stress vector

D¼ (D1 D2 D3)
t : Electric displacement

vector
E¼ (E1 E2 E3)

t : Electric field vector
� : Electric potential
Qd : Surface electric

charges
qd : Body electric charges
S : Compliance tensor

(fourth order)
C : Stiffness tensor

(fourth order)
e and h : Strain-free

piezoelectric tensors
(third order)

d and g : Stress-free
piezoelectric tensors
(third order)

e : Dielectric tensor
(second order)

� : Susceptibility tensor
(second order)

MAIN THEORETICAL RESULTS

Based on a priori plate assumption, it has been proven
that the in-plane stresses can be expressed as a linear func-
tion of membrane and bending strains for all possible
electric boundary conditions defined at the layers’
top and bottom surfaces of piezoelectric actuators.
Assuming each layer to be homogeneous, the following
relationships have been established depending on the elec-
tric boundary conditions at its top and bottom surfaces:

Case 1: electric charges (Qd
l and Qd

u ) are known on the
two surfaces of the ith layer

Ti
�� ¼ C

Di

���� S
0
�� þ zC

Di

���� R
1
�� � h

ti

��3 Q
d
l ð1Þ

Case 2: electric charges (Qd
l ) and electric potential (�d

u )
are, respectively, known on the lower and upper surfaces
of the ith layer

Ti
�� ¼ C

Di

���� S
0
�� þ zC

Di

���� R
1
�� � h

ti

��3 Q
d
l ð2Þ

Case 3: electric potential (�d
l ) and electric charges (Qd

u)
are, respectively, known on the lower and upper surfaces
of the ith layer

Ti
�� ¼ C

Di

���� S
0
�� þ zC

Di

���� R
1
�� � h

ti

��3 Q
d
u ð3Þ

Case 4: electric potentials (�d
l and �d

u) are, respectively,
known on both surfaces of the ith layer

Ti
�� ¼ C

Ei

���� S
0
�� þ ðzC

Di

���� � zimid h
ti

��3 e
i
3��ÞR

1
��

þ h
ti

��3 "
Si
33

�d
u ��d

l

hi
; ð4Þ

where S0 and R1 are respectively the in-plane strains
deriving from membrane and bending distortion. They
are independent of z.

Finally, thick plates shearing behavior is given by:

T�3 ¼ C
D

�3�3 S�3 ð5Þ

FINITE ELEMENT CONSIDERATIONS

Taking into account these theoretical results, the
variational formulation of the boundary value problem
can be written as follows:

Find uðM; tÞ;TðM; tÞ such that they meet:
8 t 2

�
0;T

�
;

8 u
�
2 U0u; U

0
u ¼

�
u
�
ðMÞju

�
ðMÞ ¼ 0 on �u, u

�
regular

�
;

the dynamic equation:Z
�

S
�
tðu
�
ÞTðuÞ d�þ

Z
�

u
� t f d d�þ

Z
�F

u
� t Fd dS

�

Z
�

� u
� t €u d� ¼ 0; ð6Þ



the layers’ electromechanical constitutive equations:

Ti
�� ¼ ðC

Di

���� � h
ti

��3 � 0Di
3�� ÞS

0
�� þ ðzC

Di

���� � h
ti

��3 �1Di
3��Þ

R1
�� � h

ti

��3 D
bound
3 ;

Ti
�3 ¼ C

Di

�3�3 S�3;

8>>><
>>>:

ð7Þ

the mechanical displacement boundary conditions:

ui ¼ udi on �u , u 2 U0u; ð8Þ

in which �0Di and �1Di are zero for cases 1, 2, 3 (recalled
above), and are equal to:

�kDi ¼

Z ziu

zi
l

zk h3�� dzZ ziu

zi
l

�
S

33

dz; k ¼ 0; 1; for case 4:

The developments presented hereafter are obtained
assuming the electro-active layers to be homogeneous
and voltage driven. These electric boundary conditions
correspond to case 4, mentioned in the section
‘Main Theoretical Results’. in this case, the general
in-plane behavior (first equation of (7)) is replaced by
Equation (4).
Moreover, mechanical layers (non-electro-active ones)

behavior will hereafter be characterized by the following
in-plane and shearing constitutive laws:

Ti
��ðuÞ ¼ C

i

���� S
0��ðuÞþzC

i

���� R
1
��ðuÞ; ð9Þ

Ti
�3ðuÞ ¼ C

i

�3�3 S�3ðuÞ: ð10Þ

Finally, it is assumed that the laminate plate is made
of N layers of which Np layers are electro-active
actuators.
Let us now estimate the strain energy given by the first

term of the left-hand side in Equation (6). As presented
in the companion paper (Osmont and Pablo, 2008),
in-plane strains can be written as a linear function of
the membrane and bending strains:

S��ðuÞ ¼ S 0
��ðuÞ þ zR1

��ðuÞ: ð11Þ

introducing Equations (11) and (4) in the strain energy
expression, we obtain:

Z
�

S
�
t Td� ¼

Z
�

S 0t
�

��

�XNp

i¼1

�Z ziu

zi
l

C
Ei

���� dz

�

þ
XN�Np

i¼1

�Z ziu

zi
l

C
i

���� dz

�	
S 0
�� dS

þ

Z
�

S 0t
�

��

�XNp

i¼1


Z ziu

zi
l

�
zC

Di

���� � zimid h
ti

��3 e
i
3��

�
dz

�

þ
XN�Np

i¼1

�Z ziu

zi
l

zC
i

���� dz

�	
R1
�� dS

þ

Z
�

R 1t
�

��

�XNp

i¼1

�Z ziu

zi
l

zC
Ei

���� dz

�

þ
XN�Np

i¼1

�Z ziu

zi
l

zC
i

���� dz

�	
S 0
�� dS

þ

Z
�

R 1t
�

��

�XNp

i¼1

Z ziu

zi
l

�
z2 C

Di

���� � z zimid h
ti

��3 e
i
3��

�
dz

þ
XN�Np

i¼1

�Z ziu

zi
l

z2 C
i

���� dz

�	
R1
��dS

þ

Z
�

St
�

�3

�XNp

i¼1

�Z ziu

zi
l

C
Di

�3�3 dz

�

þ
XN�Np

i¼1

�Z ziu

zi
l

C
i

�3�3 dz

�	
S�3 dS

þ

Z
�

�
S 0t
�

��

XNp

i¼1


Z ziu

zi
l

h
ti

��3 "
Si
33

�d
u ��d

l

hi
dz

�

þt R1
�

��

XNp

i¼1


Z ziu

zi
l

z th
i

��3 "
Si
33

�d
u ��d

l

hi
dz

�	
dS;

Integrations with respect to the thickness are performed
and the following expression is deduced:

Z
�

S
�
t Td�

¼

Z
�

S 0t
�

��

�XNp

i¼1

hi C
Ei

���� þ
XN�Np

i¼1

hi C
i

����

	
S 0
�� dS

þ

Z
�

S 0t
�

��

�XNp

i¼1

zimid h
i

�
C

Di

���� � h
ti

��3 e
i
3��

�

þ
XN�Np

i¼1

zimid h
i C

i

����

	
R1
�� dS

þ

Z
�

R1t
�

��

�XNp

i¼1

zimid h
i C

Ei

����

þ
XN�Np

i¼1

zimid h
i C

i

����

	
S 0
�� dS

þ

Z
�

R1t
�

��

�XNp

i¼1



ðziuÞ

3
� ðzilÞ

3

3
C

Di

����

� ðzimidÞ
2hi h

ti

��3e
i
3��

�	
R1
�� dS

þ

Z
�

R1t
�

��

�XN�Np

i¼1

ðziuÞ
3
� ðzilÞ

3

3
C

i

����

	
R1
�� dS



þ

Z
�

St
�

�3

�XNp

i¼1

hi C
Di

3�3� þ
XN�Np

i¼1

hi C
i

3�3�

	
S�3 dS

þ

Z
�

S 0t
�

��

�XNp

i¼1



h
ti

��3 "
Si
33

�
�d

u ��d
l


�	
dS

þ

Z
�

R1t
�

��

�XNp

i¼1



zimid h

ti

��3 "
Si
33

�
�d

u ��d
l


�	
dS:

Now, it is possible to show that (see for example (Ikeda,
1990)):

C
Di

���� � h
ti

��3 e
i
3�� ¼ C

Ei

���� ð12Þ

As a consequence, the second term can be simplified and
the following results obtained:

Z
�
S
�
tTd�

¼

Z
�
S0t
�

��

(XNp

i¼1

hiC
Ei
���� þ

XN�Np

i¼1

hiC
i
����

)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K1

S0
��dS

þ

Z
�
S0t
�

��

(XNp

i¼1

zimid h
iC

Ei
����þ

XN�Np

i¼1

zimid h
iC

i
����

)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K2

R1
��dS

þ

Z
�
R1t
�

��

(XNp

i¼1

zimid h
iC

Ei
���� þ

XN�Np

i¼1

zimid h
iC

i
����

)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K2

S0
��dS

þ

Z
�
R1t
�

��

(XNp

i¼1

"
ðziuÞ

3�ðzilÞ
3

3
C
Di
�����ðz

i
midÞ

2hih
ti
��3e

i
3��

#)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K3

R1
��dS

þ

Z
�
R1t
�

��

( XN�Np

i¼1

ðziuÞ
3�ðzilÞ

3

3
C
i
����

)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K30

R1
��dS

þ

Z
�
St
�

�3

(XNp

i¼1

hiC
Di
3�3� þ

XN�Np

i¼1

hiC
i
3�3�

)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K4

S�3 dS

þ

Z
�
S0t
�

��

(XNp

i¼1

h
ti
��3 "

Si
33

�
�d
u��d

l

�)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K5

dS

þ

Z
�
R1t
�

��

(XNp

i¼1

zimidh
ti
��3 "

Si
33

�
�d
u��d

l

�)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K6

dS:

Following classical finite element techniques, strains
can be expressed with respect to the elementary vector of

degrees of freedom (dof) qe:

S0 ¼ BS0 qe and S0
�

¼ BS0 qe
�

R1 ¼ BR1 qe and R1
�

¼ BR1 qe
�

Ss ¼ BC qe and S
�
s ¼ BC qe

�
;

in which BS0, BR1, and BC are the interpolation matrices
for membrane, bending, and transverse shearing strains,
respectively.

The internal energy can then be written as follows:

Z
�

S
�
t T d� ¼ qe

� t

Z
�

Bt
S0 K1 BS0 dS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

qe

þ qe
� t

Z
�

Bt
S0 K2 BR1 dS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

qe

þ qe
� t

Z
�

Bt
R1 K2 BS0 dS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bt

qe

þ qe
� t

Z
�

Bt
R1

�
K3 þK30

�
BR1dS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

qe

þ qe
� t

Z
�

Bt
C K4 BCSC dS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

E

qe

þ qe
� t

Z
�

Bt
S0 K5 dS|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
F

qe

þ qe
� t

Z
�

Bt
R1 K6 dS|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
G

qe:

C
Ei

���� and C
i

���� being symmetric sub-matrices, K2 is also
symmetric. As a consequence, the third term of this last
equation is the transpose of the second one.

The modified stiffness matrix and the piezoelectric
load vector can then be written as follows:

K ¼

A B 0

Bt D 0

0 0 E

2
64

3
75 and Fpiez ¼

F

G

0

0
B@

1
CA; ð13Þ

in which A, B, D, and E sub-matrices and F and G sub-
vectors are obtained from the short-circuited stiffness
matrix (CE), the isolated stiffness matrix (CD), the
strain-free piezoelectric matrices (e and h) and the
strain-free dielectric matrix (eS).

It is to be underlined that Young’s moduliEi, Poisson’s
ratios nij, shear moduli Gij, stress-free piezoelectric
constants dij and stress-free electric permittivities eT are
generally the electro-mechanical characteristics provided
by manufacturers. Matrices needed for the present model



have thus to be evaluated from these data. This is possible
through relationships presented in Ref. (Osmont and
Pablo, 2008) (Equation (24)).
Note that the stiffness matrix is still symmetric despite

the introduction of the piezoelectric effect. As a conse-
quence, classical numerical methods can be used to solve
the electromechanical problem.
Finally, calculating the mass matrix and the mechan-

ical load vectors, the finite element problem to be solved
is written as follows:

M €qe þ K qe þ Fmech þ Fpiez ¼ 0 ð14Þ

Developments presented above have been obtained
assuming the piezoelectric layers to be voltage driven by
referring to the case 4 of electric boundary conditions
(Equation (4)). Similar expressions with modified
stiffness matrices and piezoelectric load vectors have
been obtained for others electric boundary conditions
(cases 1, 2, 3).

NUMERICAL VALIDATIONS

This section aims at evaluating the theory developed
in the companion paper (Osmont and Pablo, 2008) using
classical mechanical plate finite elements. Five bench-
marks, taken from literature, are hereafter examined.
First, three benchmarks dealing with plates under
static loads are studied:

. A piezoelectric bimorph beam so as to validate the
ability of the theory to simulate the behavior of static
piezoelectric actuators.

. A cantilever laminate plate so as to validate the elec-
tromechanical behavior of composite plates including
piezoelectric layers.

. An active plate so as to validate the contribution of
piezoelectric patches bounded on purely mechanical
plates.

Then, two benchmarks focused on frequency tests are
presented:

. A cantilever composite plate including short-circuited
piezoelectric layers so as to validate the natural fre-
quencies estimation.

. A simply supported square plate including piezoelec-
tric layers submitted to various electrical boundary
conditions which will lead to a discussion on the mod-
eling of these boundary conditions.

Finite Element Considerations

The electro-active plate theory, proposed in the com-
panion paper (Osmont and Pablo, 2008), has been
implemented in EvalEF, a Finite Element Software

developed for finite element evaluation. This implemen-
tation uses the CL8 plate finite element which has been
first introduced by Polit et al. (1994).

This element is a classical mechanical eight-node
quadrilateral finite element with five degrees of freedom
per node (three displacement components and two rota-
tions), based on the Reissner�Mindlin plate model and
the field compatibility conditions. This element does not
suffer from any numerical pathologies in the field
of finite elements: shear locking, membrane locking,
spurious modes, etc. (Polit et al., 1994; Ganapathi
et al., 1996).

The present evaluations are hereafter compared with
results from literature and with an LMpX previous work
(Bruant and Polit, 2004) about piezoelectric finite ele-
ments with electric degrees of freedom. This last work
led to the conception of CL8-based finite elements, in
which the electric potential is approximated using the
layerwise approach. An evaluation has been performed
in order to assess the best compromise between mini-
mum number of degrees of freedom and maximum effi-
ciency. On the one hand, two kinds of finite element
approximations for the electric potential with respect
to thickness coordinate have been studied: a linear vari-
ation and a quadratic variation in each layer. On the
other hand, the in-plane variation could be quadratic
or constant on the elementary domain at each interface
layer.

All details about these elements are given by Bruant
and Polit (2004); Polit and Bruant (2005). From these
papers, the CL8EZ finite element (linear variation with
respect to the thickness and constant in-plane variation)
turned out to be the best compromise. Therefore, this
element will be used for further comparisons in the con-
sidered benchmarks.

Main characteristics (number of mechanical dof per
node, electrical dof kind and number, and in-plane elec-
trical approximations) of finite elements picked up in
literature for comparisons, are summarized in Table 1.

Apart from the element of Lam et al. (1997) and
the element used in the present work, all presented
piezoelectric finite elements include electrical dofs.
The piezoelectric element proposed by Lam et al. is,
however, a classical laminated finite element in which
u1 and u2, and u3, are, respectively, interpolated using
C 0 and C1 functions. The piezoelectric effect is then only
taken into account via external loads (thermal analogy).

In the following paragraphs, engineering notation for
stresses and strains is used. The piezoelectric tensors are
then the 3� 6 matrices, denoted dia, eia, gia, and hia, in
which a takes its values in the set {1, 2, 3, 4, 5, 6}.

Piezoelectric Data Considerations

In some of the tests presented hereafter (sections
‘Laminated Composite Plate’ and ‘Simply Supported



Square Plate’), some piezoelectric properties have to be
modified.
In particular, the piezoelectric constants d3� and d33

provided in these tests are of similar sign. The isolated
stiffness and compliance matrices can be evaluated by
using Equations (24) in the companion paper (Osmont
and Pablo, 2008) and the original data. This leads to
negative determinants, i.e., these matrices are not posi-
tive-defined ones, which is not consistent with mechan-
ical theories. Moreover, piezoelectric materials do not
have the ability of volume expansion when they are sub-
jected to a transverse electric field (E3), which would be
obtained by the original data: d3� and d33 must have
opposite signs. Since classical piezoelectric materials
used as actuators are characterized by negative d3� and
positive d33, this sign agreement is used hereafter.
The modifications brought to the piezoelectric con-

stants do not have any drawbacks on the solution. This
point can easily be proved. Let us consider the last test
presented in this article (section ‘Simply Supported
Square Plate’), in which the sign of d33 has been changed
to positive. Calculating, for example, the e31 piezo-
electric coefficient (e¼ dCE) using the data of Saravanos
et al. (1997), one obtains eliterature31 � �47:3242C=m2.
Using the data used in the present article, this value is
ePablo31 � �5:34795C=m2. Now, developing plate models,
plane stress assumption is generally used. This assump-
tion induces significant modifications in the matrices of
piezoelectric coefficients d and e. Considering our exam-
ple, e31 becomes �e31¼ e31� (C13/C33)e33. Calculating
this ‘plane stress’ coefficient in the two cases, one
respectively obtains �eliterature31 � �14:8039C=m2 and
�ePablo31 � �14:8039C=m2. Thus, the modification brought
to d33 sign is cancelled by theplane stress assumption. This
conclusion canbe expanded to other tests andother piezo-
electric constants through similar developments.

Static Tests

Three benchmarks available in open literature are
hereafter examined in order to evaluate the present
finite element approach to different plates under static
loads.

PIEZOELECTRIC BIMORPH BEAM
The first numerical validation is based on an experi-

ment conducted by Tzou et al. (1990). The present
experiment has been widely used in literature to vali-
date finite elements (Detwiler et al., 1995; Suleman
and Venkayya, 1995; Franco Correia et al., 2000;
Fukunaga et al., 2001; Cen et al., 2002; Bruant and
Polit, 2004).

A cantilever piezoelectric beam made of two piezo-
electric polymeric PVDF layers with opposite polarity
is considered. The lower and upper faces of the beam are
subjected to a 1V electric potential and the mid-line
beam deflection is measured.

The beam geometrical specifications and the PVDF
mechanical and piezoelectric properties provided by the
authors (Tzou et al., 1990) are presented in Figure 1 and
Table 2, respectively.

In the present work, the beam is discretized using a
regular mesh composed of five elements. The isolated

Table 1. Finite element characteristics.

Mechanical Electrical Number of In-plane
Characteristic dof per node dof electrical dof elect. approx.

Detwiler et al. (1995) 5 Potential 1 per interface Constant
Suleman and Venkayya (1995) 6 Voltage 1 per layer Constant
Lam et al. (1997) 5 None None Constant
Saravanos et al. (1997) 5 Potential 1 per interface ? Linear ?
Franco Correia et al. (2000) 9 Voltage 1 per layer Constant
Fukunaga et al. (2001) 7 Voltage 1 per layer Constant
Cen et al. (2002) 5 Potential 1 per node of interface Bilinear
CL8EZ (Bruant and Polit, 2004) 5 Potential 1 per interface Constant
Present work 5 None None Constant

100 mm
5 mm

1 mm

x

y

z

Figure 1. Piezoelectric bimorph beam.

Table 2. PVDF mechanical and piezoelectric properties.

Mechanical properties Piezoelectric properties

Ei G12¼G13¼G23 lij e31¼e32 e33 eS
33

2 GPa 1 GPa 0 0.046 C/m2 0 C/m2 0.1062 nF/m



and short-circuited mechanical and piezoelectric matri-
ces needed in the present theory are obtained using rela-
tionships (24) presented in Osmont and Pablo (2008).
Table 3 compares the results obtained by the present

theory with those provided in literature.
The present theory leads to similar results to those

found in literature. The error, in comparison with the
experimental tip displacement, is then �9%. It is to be
noticed that the results obtained by Franco Correia et al.
are very close to the experimental tip deflection (error is
�0.3%). On the other hand, present results are <0.5 %
different from nodal deflections given in other references
(Detwiler et al., 1995; Suleman and Venkayya, 1995;
Fukunaga et al., 2001; Cen et al., 2002; Bruant and
Polit, 2004).

LAMINATED COMPOSITE PLATE
This second test is proposed by Lam et al. (1997).

It consists in a 200� 200 mm2 square cantilever
laminated composite plate made of six homogeneous
layers: two 0.1mm thick PZT G1195N piezoelectric
layers and four 0.25mm thick T300/976 graphite-
epoxy composite layers. The stacking sequence used
to elaborate the composite plate is [piezo/�y/y/�y/y/
piezo] in which y¼ 45� is the longitudinal direction
of each composite ply with respect to the O~x axis
(Figure 2).
The material properties used by Lam et al. (1997),

were previously given by Ha et al. (1992) and are sum-
marized in Table 4.

According to the discussion in the section ‘Piezoelectric
Data Considerations’, the signs of the piezoelectric con-
stants d31 and d32 have been taken negative in contrast to
Ha et al. (1992) data. Two numerical simulations are
presented hereafter:

(1) Actuator application. The laminated plate is free
from any mechanical load and subjected to an elec-
trical load: electrical potentials with similar magni-
tudes but opposite sign are, respectively, applied on
the upper (positive) and lower (negative) faces of the
plate. Voltage magnitudes ranging from 0 to 60 V
have been used. The plate deflection is calculated
using the present theory and compared to results
obtained by Lam et al. (1997).

(2) The results presented in Figure 3 have been obtained
using a 36 finite element mesh which is similar to
that employed by Lam et al. Figure 3(a) represents
the deflection of the plate midsurface under a 10V
static electric potential load, and, in Figure 3(b) the
plate centerline’s free end tip deflection (point C) is
plotted as a function of various electric potentials.

(3) Static counteraction. A 100Nm�2 uniform pres-
sure is applied on the upper face of the plate,

Table 3. Nodal deflection of the bimorph piezoelectric beam (lm).

Distance from clamping (mm) 20 40 60 80 100
Experiment (Tzou et al., 1990) � � � � 0.315
Detwiler et al. (1995) 0.014 0.055 0.210 0.221 0.345
Suleman and Venkayya (1995) 0.014 0.055 0.124 0.221 0.345
Franco Correia et al. (2000) 0.013 0.051 0.114 0.202 0.316
Fukunaga et al. (2001) 0.0139 0.0553 0.124 0.221 0.345
Cen et al. (2002) 0.0138 0.0552 0.1242 0.2208 0.3450
CL8EZ (Bruant and Polit, 2004) 0.0137 0.0551 0.1241 0.2207 0.3449
Present work 0.0137 0.0549 0.1235 0.2197 0.3433

Table 4. Materials properties.

PZT G1195N T300/976 composite

Young’s moduli (GPa):
E1 63.0 150.0
E2¼E3 63.0 9.0

Poisson’s ratio:
n12¼ n13 0.3 0.3
n32¼ n23 0.3 0.3

Shear moduli (GPa):
G12¼G13 24.2 7.1
G23 24.2 2.5

Density (kgm�3):
r 7600.0 1600.0

Piezoelectric constants (pmV�1):
d31¼d32 �254.0 �
d15¼d24 584.0 �
d33 374.0 �

Electrical permittivity (nFm�1):
"T

11 ¼ "
T
22 15.3 �

"T
33 15.0 �

200 mm 200 mm

1.2 mm

Piezoelectric layers

C

O

x

y

z

Figure 2. Cantilever laminated composite plate.



inducing bending. A static potential with opposite
signs is then gradually applied to the piezoelectric
actuators in order to reduce centerline deflection.
Results obtained with the present theory are com-
pared to those of Lam et al. in Figure 4.

For all considered cases the curves are found to coin-
cide. Nevertheless, Figure 4 shows that the present
approach slightly softens the plate behavior. This differ-
ence is due to the modifications applied to the elastic
coefficients of piezoelectric materials in the present
theory.
Based on these results, the present theory is consistent

with laminated composite plates including piezoelectric
layers, each layer being continuous in plane.

ACTIVE PLATE
The last static test is inspired from Franco Correia

et al. (2000) and Polit et al. (Bruant and Polit, 2004).

A cantilever rectangular composite plate equipped
with four rectangular piezoelectric actuator pairs is
studied.

For the present test, the piezoelectric material
proposed in the original one (Franco Correia et al.,
2000) could not be used. Indeed, piezoelectric properties
provided by the authors are not complete (missing
piezoelectric constants and electrical permittivity).
As a consequence, the electromechanical matrices needed
in the present theory could not be evaluated. The PZT4
piezoelectric material proposed by Saravanos et al.
(1997) will thus be used in the test proposed hereafter.

The plate is made of six 0.508mm thick graphite/
Epoxy composite layers, with a [90�/0�/90�]s stacking
sequence. This composite plate is L¼ 240mm long and
W¼ 120mm wide, and is clamped along the O~y~z plane
as presented in Figure 5.

Each actuator pair (with opposite polarization) is
supposed to be perfectly and symmetrically bonded on
the lower and upper faces of the composite plate.
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Figure 3. Plate centerline deflection under electrical loads.
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Figure 4. Input voltage effect on the flatten plate.
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Figure 5. Active composite plate.



The aim of this test is to evaluate the active control of
composite plates and thus to evaluate the influence of
the piezoelectric patch dimensions and locations. As a
consequence, patch sizes and positions are changing.
The ith (i¼ 1, . . . , 4) piezoelectric pair is thus supposed
to be l(i) mm long, w(i) mm wide and t(i) mm thick, and,
its geometric center is supposed to be placed at cx(i) mm
and cy(i) mm in the O~x~y axis.
In this particular static test all patches are assumed

to be 60mm long, 30 mm wide, and 0.254mm thick
and the following statements are used: cx(1)¼ cx(2)¼
60mm, cx(3)¼ cx(4)¼ 180mm, cy(1)¼ cy(3)¼ 30mm,
and cy(2)¼ cy(4)¼ 90mm.
Materials properties used in this numerical application

are summarized in Table 5 (the PZT-4 and Graphite/
Epoxy properties were respectively given by Saravanos
et al. (1997) and Franco Correia et al. (2000)).
For physical reasons (see explanation in section

‘Piezoelectric Data Considerations’) the d33 sign has
been changed to positive compared to Saravanos et al.
data (1997).
In this test, a 300V static electric potential is applied

to each actuator, the deflection w and the rotation yx at
point M (x¼L, y¼W/2, 0) are recorded. Table 6 pre-
sents results obtained using our theory, and using the
CL8EZ piezoelectric finite element (Bruant and Polit,
2004) with a 8� 8 mesh.
The differences between the two finite elements are,

respectively, �0.2 and 0.1% for the nodal deflection and

the rotation. The present theory is thus consistent with
laminated composite plates equipped with distributed
actuators (non-continuous layers in plane).

Frequency Tests

This theory has been validated for static electro-
mechanical loads. Two benchmarks are hereafter pro-
posed from literature for frequency validations.

CANTILEVER COMPOSITE PLATE
The first test, proposed by Lam et al. (1997), is based

on the geometry and the material properties described in
section ‘Laminated Composite Plate’, and presented in
Figure 2.

In the present test, the piezoelectric layers are short-
circuited (0V electric potential). The first 10 natural
frequencies are calculated and compared to those
obtained by Lam et al. (1997) in Table 7.

One can observe that the greater difference between
the two theories is <2.5%.

The present theory is thus consistent with frequency
analysis of laminated plates containing short-circuited
piezoelectric layers.

SIMPLY SUPPORTED SQUARE PLATE
The test proposed by Saravanos et al. (1997) and suc-

cessively used by Franco Correia et al. (2000) and Polit
et al. (Bruant and Polit, 2004) is examined.

Table 5. Materials properties.

PZT-4 Graphite/Epoxy

Young’s moduli (GPa):
E1 81.3 97.974
E2 81.3 7.9
E3 64.5 7.9

Poisson’s ratio:
n12 0.33 0.28
n13¼ n23 0.43 0.28

Shear moduli (GPa):
G12 30.6 5.5999
G13¼G23 25.6 5.5999

Density (kgm�3):
r 7600.0 Not given

Piezoelectric constants (pmV�1):
d31¼d32 �122.0 �
d15¼d24 0 �
d33 285.0 �

Electrical permittivity (nFm�1):
"T

11 ¼ "
T
22 13.05 �

"T
33 11.51 �

Table 7. Calculated natural frequencies (Hz).

Natural
frequencies Lam et al. Present work Difference (%)

1 21.4657 21.513 0.22
2 63.3491 63.250 0.16
3 130.8221 129.700 0.86
4 182.4224 182.950 0.29
5 218.2750 217.600 0.31
6 381.9788 377.470 1.18
7 395.7263 400.150 1.12
8 410.9160 409.680 0.30
9 476.4277 475.120 0.27

10 642.9230 658.200 2.38

Table 6. Nodal deflection and rotation at point M.

w (mm) hx (10�2 rad)

CL8EZ �0.32863 �0.28015
Present work �0.32856 �0.28012

a a

e

Piezoelectric layers

O

x

y

z

Figure 6. Simply supported laminated composite plate.



The free-vibration response of a square simply-
supported laminated composite plate is analyzed
(Figure 6). The plate is made of three Graphite/Epoxy
composite layers and two piezoelectric layers according
to a [piezo/0�/90�/0�/piezo] stacking sequence.
The edge length of the square plate is denoted by

a (m) and its thickness by c (m). The thickness of the
piezoelectric and graphite/epoxy layers are 0.1�e m,
and 0.267� e m, respectively. The material properties
used in this test are given in Table 8, in which the d33
sign has been changed to positive for physical
reasons (see explanation in section ‘Piezoelectric Data
Considerations’).

While the outer surfaces of the piezoelectric layers are
enforced to remain grounded (V¼ 0), two different elec-
tric boundary conditions are defined for the inner inter-
faces (Saravanos et al., 1997):

(1) the short-circuited boundary condition is obtained
by enforcing the inner surfaces of the piezoelectric
layers to be grounded (V¼ 0),

(2) the ‘isolated’ boundary condition is obtained by
keeping the electric potential free on the inner
surfaces of the piezoelectric layers.

It is to be noticed that quotation marks have been
used for the word isolated because a real isolated bound-
ary condition should enforce the electric displacements
to be zero (Dz¼ 0) on the two surfaces of the piezoelec-
tric layers. Since the model of Saravanos et al. has been
developed as a function of the electric potentials,
electrical boundary conditions involving electric
displacements can not be imposed. To overcome this
difficulty the present work implements various
models corresponding to different electrical boundary
conditions (Equations (1)�(4)). In the present test, the
isolated boundary condition thus corresponds to
Qi

l ¼ Qi
u ¼ 0.

The numerical simulation is conducted using an
8� 8 mesh. The unit mass density is assumed for all
the layers (r¼ 1 kg/m3) in order to compare the results
with the analytical solutions of Heyliger and Saravanos
(1989).

The first five frequencies obtained with the present
theory are compared to other results found in literature
(Table 9):

. a three dimensional layerwise exact solution
from Heyliger and Saravanos (1989),

Table 9. First five non-dimensionalized frequencies ~fi.

Frequency (103 Hz
ffiffiffiffiffiffiffiffiffiffiffiffi
m=kg

p
) ~f1 ~f2 ~f3 ~f4 ~f5

No piezoelectric effect (purely mechanical):
CL8 (LMpX) 233.325 526.450 671.400 926.700 1033.175

Short-circuited boundary conditions:
Heyliger et al. (Heyliger and Saravanos, 1989) (a) 245.941 � � � �
Saravanos et al. (1997) (b) 237.109 � � � �
Correia et al. (2000) (c) 206.304 519.444 663.336 907.636 1020.102
Benjeddou et al. (2002) (a) 246.067 559.615 693.601 967.141 1091.458
CL8EZ (Polit and Bruant, 2005) (a) 246.462 560.725 698.300 973.925 1097.175
CL8EZ new (b) 233.295 552.637 671.350 926.575 1033.050
Present work (b) 233.405 526.700 671.475 927.000 1033.675

Isolated boundary conditions:
Heyliger et al. (Heyliger and Saravanos, 1989) (i) 245.942 � � � �
Saravanos et al. (1997) (ii) 259.895 � � � �
Correia et al. (2000) (iii) 245.349 558.988 694.196 962.017 1093.006
Benjeddou et al. (2002) (i) 246.068 559.621 693.606 967.155 1091.481
CL8EZ (Polit and Bruant, 2005) (iv) 246.462 560.725 698.300 973.925 1097.175
Present work (v) 255.825 587.375 719.400 1014.275 1154.400

Table 8. Materials properties.

PZT-4 Graphite/Epoxy

Young’s moduli (GPa):
E1 81.3 132.38
E2 81.3 10.76
E3 64.5 10.76

Poisson’s ratios:
n12 0.33 0.24
n13 0.43 0.24
n23 0.43 0.49

Shear moduli (GPa):
G12 30.6 5.65
G13 25.6 5.65
G23 25.6 3.61

Density (kgm�3):
r 7600.0 1578

Piezoelectric constants (pmV�1):
d31¼d32 �122.0 �

d15¼d24 0 �

d33 285.0 �

Electrical permittivity (nFm�1):
"T

11 ¼ "
T
22 13.05 �

"T
33 11.51 �



. a finite element solution based on layerwise laminate
theories from Saravanos et al. (1997),

. a finite element solution based on a higher order dis-
placement model (Q9-FSTD) from Franco Correia
et al. (2000),

. a 2D closed-form solution from Benjeddou et al.
(2002),

. a finite element solution using CL8EZ model from
Polit et al. (Polit and Bruant, 2005)

. a finite element solution using CL8EZ with modified
short-circuited boundary conditions.

These frequencies are non-dimensionalized using the
following relationship:

~fi ¼ fi
a2

e
ffiffiffi
�
p :

Considering the first frequency, Benjeddou et al.
(2002) and Polit et al. (Polit and Bruant, 2005) models
are closer to the Heyliger et al. exact solution than the
present theory in both cases. On the other hand, the
present theory leads to results which are similar to
those presented by Saravanos et al. (1997) and Franco
Correia et al. (2000) and to new ones obtained using the
CL8EZ model. Indeed, these last results reveal signifi-
cant differences (about 10 %) between the short-
circuited and isolated natural frequencies.
An analysis of electric boundary conditions used in

literature is now essential in order to correctly analyze
the results presented in Table 9.

First, three ‘short-circuited’ boundary conditions can
be distinguished:

(a) The electric potentials are enforced to be zero on
the outer surfaces of the piezoelectric layers, while
they remain free on their inner surfaces Figure 7(a).
These boundary conditions were used by Benjeddou
et al. (2002), Polit et al. (Polit and Bruant, 2005),
and probably Heyliger and Saravanos (1989).

(b) The electric potentials are enforced to be zero on the
inner and outer surfaces of the piezoelectric layers
Figure 7(b). These boundary conditions were used
by Saravanos et al. (1997), in the present work, and
for the new CL8EZ results.

(c) The voltages are enforced to be zero through the
thickness of the piezoelectric layers Figure 7(c).
These boundary conditions were used by Franco
Correia et al. (2000).

Furthermore, five ‘isolated’ boundary conditions can be
distinguished:

(i) The electric potentials remain free on the inner and
outer surfaces of the piezoelectric layers Figure 8(a).
These boundary conditions were used by Benjeddou
et al. (2002) and probably Heyliger and Saravanos
(1989).

(ii) The electric potentials are enforced to be zero on
the outer surfaces of the piezoelectric layers, while
they remain free on their inner surfaces Figure 8(b).
These boundary conditions were used by Saravanos
et al. (1997).

V = 0
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V free
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V free

V free

V free

V free

V free
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Figure 8. Isolated (open-circuit) boundary conditions.
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Figure 7. Short-circuited (closed-circuit) boundary conditions.



(iii) The voltages remain free through the thickness
of the piezoelectric layers Figure 8(c). These bound-
ary conditions were used by Franco Correia et al.
(2000).

(iv) The electric potentials remain free everywhere,
except on the bottom surface of the plate where it
is enforced to be zero Figure 8(d). These boundary
conditions were used by the CL8EZ element of Polit
et al. (Polit and Bruant, 2005).

(v) The electric charges are enforced to be zero on the
inner and outer surfaces of the piezoelectric layers
Figure 8(e). These boundary conditions have been
used in the present work.

It is first surprising to notice that identical boundary
conditions have been defined as ‘short-circuited’
Figure 7(a) and isolated Figure 8(b). Physically, a piezo-
electric plate is short-circuited when its opposite faces
are at the same electric potentials. This boundary con-
dition corresponds to case (b) described above. If
the potential remains free on one of the two faces, the
piezoelectric layer is not strictly short-circuited. Thus,
‘closed-circuit’ values given by Benjeddou et al. (2002),
Polit et al. (Polit and Bruant, 2005), and probably
Heyliger and Saravanos (1989) can not be considered
as a reference for the present work.
Comparing the mechanical and short-circuited

natural frequencies obtained with physical boundary
conditions, one can note two cases:

(1) The natural frequencies obtained by Saravanos et al.
(1997) and in the present work are higher than the
purely mechanical ones,

(2) Those obtained by Correia et al. (2000) as well as
those extracted with the CL8EZ finite element (Polit
and Bruant, 2005) are lower than the purely mechan-
ical ones.

Furthermore, the first short-circuited frequency
obtained by Franco Correia et al. (2000) is very different
from the mechanical one (�12%). This result is quite
surprising since in all other cases this difference is, at
most, of �2%.
Now, the plate bending induces electric charges which

modify the stiffness of the piezoelectric layers. Indeed,
the constitutive laws for short-circuited piezoelectric
layers are:

T ¼ CE S � teE ð15Þ

D ¼ eS þ "S E: ð16Þ

Inverting Equation (16) one can express the electric
field E as a function of strain S and electric
displacement D. Replacing this value in Equation (15)
one obtains the following stresses:

T¼ ðCE
þ te�S eÞS þ �S eD¼ ðCE

þ CE
piezÞS þ �

S eD:

Now, assuming plane stress conditions, the additional
stiffness contribution C

E

piez is either positive or zero.
Therefore, the bending of the plate should induce an
increase in the stiffness of the piezoelectric layer. As a
consequence, the short-circuited natural frequencies can
not be smaller than the mechanical ones. This is consis-
tent with the results obtained by Saravanos et al. (1997)
and by the present theory.

Let us now focus our interest on ‘isolated’ results. One
can observe that four sets of results are similar: Heyliger
and Saravanos (1989), Franco Correia et al. (2000),
Benjeddou et al. (2002) and CL8EZ (Polit and Bruant,
2005) ones. This indicates that the ‘isolated’ boundary
conditions (i), (iii), and (iv) can be interpreted to be
nearly equivalent. Moreover short-circuited natural fre-
quencies obtained using (a) boundary conditions are
very close, or equal, to isolated natural frequencies.
Therefore, it seems that boundary conditions (a) are in
fact isolated ones. As a consequence, setting at least one
potential to be free seems to correspond to isolated
boundary condition.

Finally results obtained using the present
theory are quite different from the previous ones. Only
two explanations can be proposed for these variations:

. either the (i), (iii), and (iv) electric boundary
conditions are not similar to realistic isolated ones,

. or isolated frequencies are overestimated in the pres-
ent theory.

The point is being considered.

CONCLUSION

An original theory for multilayered plate structures
including piezoelectric patches was proposed in the
first part of this article. This theory is based on
a priori plate assumptions and leads to the suppression
of the electric variables from the problem unknowns.
The electromechanical effect is then taken into
account via the modification of the stiffness coeffi-
cients and the addition of a piezoelectric load, depend-
ing on electric boundary conditions, to the second
member. Different electrical boundary conditions for
each piezoelectric layer have been implemented.
Classical plate finite elements can be then used to
simulate the behavior of piezoelectric laminate under
static or dynamic loads.

The present theory has been implemented and
validated through benchmarks taken from literature.
The stiffness and mass matrices remaining symmetri-
cal, classical resolution schemes can be used in this
method.

For static electromechanical loads, results obtained by
the present theory are <5% different from the reference
numerical results available in literature.



The simply supported frequency test reveals that the
electric boundary conditions (short-circuited or isolated)
induce a nonnegligible variation of natural frequencies.
Moreover, the possibility of correctly taking into
account isolated boundary conditions in a ‘potential’
based model has been investigated. It seems that setting
at least one potential to be free corresponds to this elec-
tric boundary condition.
On the other hand, in the two tests presented here, the

natural frequencies obtained by the present theory are
<5% different compared to the ones found in literature.
The present theory can thus be used for active vibration
control analyses.
A drawback of the present theory lies in the fact that

the electromechanical properties of the piezoelectric
material have to be fully known so as to be able to
estimate the required matrices. These properties being
often partially given in literature, comparisons with
other theories are often impossible.
Calculation time was compared within the LMpX

in the last test presented above. It stands out that the
present theory is about four times faster than CL8EZ
finite element (Polit and Bruant, 2005), which is a real
advantage.
In the present article, tests have been carried out for

piezoelectric layers being actuators (applied electric
potentials). A subsequent work should focus on showing
the efficiency of the present theory for active vibration
control applications.
Finally, the present theory has been developed with

the view of performing active vibration control simula-
tions. The differences between the present results and
those presented in literature being <5%, the present
theory is suitable for such applications.
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