, 1, 1) = (1 ? )

, 3) = ? (1 ? ), vol.8

, 3) = ? (1 ? ), vol.9

, 3) = (1 ? ), vol.8

, 3) = ? (1 + ), vol.9

, 3) = (1 + ), vol.8

, 3) = (1 + ), vol.9

, 3) = ? (1 + ), vol.8

, 3) = (1 ? ), vol.9

A. K. Noor and W. S. Burton, Assessment of shear deformation theories for multilayered composite plates, Appl. Mech. Rev, vol.42, pp.1-13, 1989.

J. N. Reddy and D. H. Robbins, Theories and computational models for composite laminates, Appl. Mech. Rev, vol.47, pp.147-169, 1994.

A. K. Noor and W. S. Burton, Computational models for sandwich panels and shells, Appl. Mech. Rev, vol.49, pp.155-199, 1996.

E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, Arch. Comput. Methods Eng, vol.9, pp.87-140, 2002.

A. S. Sayyad and Y. M. , On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results, Compos. Struct, vol.129, pp.177-201, 2015.

J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: theory and Analysis, 2004.

J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech, vol.51, pp.745-752, 1984.

M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci, vol.29, pp.901-916, 1991.

E. Carrera, C 0 z-Requirements-models for the two dimensional analysis of multilayered structures, Compos. Struct, vol.37, pp.373-383, 1997.

P. Vidal and O. Polit, A refined sinus plate finite element for laminated and sandwich structures under mechanical and thermomechanical loads, Comput. Methods Appl. Mech. Eng, vol.253, pp.396-412, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01366914

A. Tessler, Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner's mixed variational principle, Meccanica, vol.50, pp.2621-2648, 2015.

E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev, vol.56, pp.287-308, 2003.

K. H. Lo, R. M. Christensen, and E. M. Wu, A high-order theory of plate deformationPart 1: homogeneous plates-Part 2: laminated plates, J. Appl. Mech, vol.44, pp.669-676, 1977.

A. Barut, E. Madenci, and A. Tessler, C 0-continuous triangular plate element for laminated composite and sandwich plates using the {2,2}-Refined Zigzag Theory, Compos. Struct, vol.106, pp.835-853, 2013.

P. Vidal, O. Polit, M. D'ottavio, and E. Valot, Assessment of the refined sinus plate finite element: free edge effect and Meyer-Piening sandwich test, Finite Elem. Anal. Des, vol.92, pp.60-71, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366962

O. Polit, P. Vidal, and M. D'ottavio, Robust C 0 high-order plate finite element for thin to very thick structures: mechanical and thermo-mechanical analysis, Int. J. Numer. Methods Eng, vol.90, pp.429-451, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01366921

W. Feng and S. V. Hoa, Partial hybrid finite elements for composite laminates, Finite Elem. Anal. Des, vol.30, pp.365-382, 1998.

H. Hu, S. Belouettar, M. Potier-ferry, and E. M. Daya, Multi-scale modelling of sandwich structures using the Arlequin method-Part I: linear modelling, Finite Elem. Anal. Des, vol.45, pp.37-51, 2009.

C. Wenzel, P. Vidal, M. D'ottavio, and O. Polit, Coupling of heterogeneous kinematics and finite element approximations applied to composite beam structures, Compos. Struct, vol.116, pp.177-192, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366965

J. N. Reddy, An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Compos. Struct, vol.25, pp.21-35, 1993.

F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu, Variable kinematic plate elements coupled via Arlequin method, Int. J. Numer. Methods Eng, vol.91, pp.1264-1290, 2012.

E. Carrera, A. Pagani, and M. Petrolo, Use of Lagrange multipliers to combine 1D variable kinematic finite elements, Comput. Struct, vol.129, pp.194-206, 2013.

E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, 2014.

E. Carrera and L. Demasi, Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: derivation of finite element matrices. Part 2: numerical implementations, Int. J. Numer. Methods Eng, vol.55, pp.253-291, 2002.

M. Ottavio, F. K. Wittel, and J. Reiser, Damage and its evolution in fiber-composite materials: simulation and non-destructive evaluation, Mechanism Based Toolbox: Prototypical Implementation of Tools, pp.481-518, 2006.

M. Ottavio, P. Vidal, E. Valot, and O. Polit, Assessment of plate theories for free-edge effects, Composites B, vol.48, pp.111-121, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01366913

C. Wenzel, M. D'ottavio, O. Polit, and P. Vidal, Assessment of free-edge singularities in composite laminates using higher-order plate elements, Adv. Mater. Struct, vol.23, pp.948-959, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01367030

R. H. , Perspective on finite elements for shell analysis, Finite Elem. Anal. Des, vol.30, pp.175-186, 1998.

T. H. Pian and K. Sumihara, State-of-the-art development of hybrid/mixed finite element method, Finite Elem. Anal. Des, vol.21, pp.5-20, 1995.

T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, 2000.

T. J. Hughes, The Finite Element Method, 1987.

T. J. Hughes and T. Tezduyar, Finite elements based upon Mindlin plate theory with particular reference to the four node bilinear isoparametric element, J. Appl. Mech, vol.46, pp.587-596, 1981.

R. H. , Derivation of element stiffness matrices by assumed strain distributions, Nucl. Eng. Des, vol.70, pp.3-12, 1982.

K. C. Park, E. Pramono, G. M. Stanley, and H. A. Cabiness, The ANS shell elements: earlier developments and recent improvements, Analytical and Computational Models of Shells, vol.3, pp.217-239, 1989.

K. J. Bathe and E. N. Dvorkin, A four-node plate bending element based on Mindlin/ Reissner plate theory and a mixed interpolation, Int. J. Numer. Methods Eng, vol.21, pp.367-383, 1985.

B. R. Somashekar, G. Prathap, and C. R. Babu, A field-consistent, four-noded, laminated, anisotropic plate/shell element, Comput. Struct, vol.25, pp.345-353, 1987.

J. Batoz and P. Lardeur, A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates, Int. J. Numer. Methods Eng, vol.28, pp.533-560, 1989.

K. Bletzinger, M. Bischoff, and E. Ramm, A unified approach for shear locking free triangular and rectangular shell finite elements, Comput. Struct, vol.75, pp.321-334, 2000.

D. H. Robbins and J. N. Reddy, Modelling of thick composites using a layerwise laminate theory, Int. J. Numer. Methods Eng, vol.36, pp.655-677, 1993.

M. Ottavio, D. Ballhause, T. Wallmersperger, and B. Kröplin, Considerations on higher-order finite elements for multilayered plates based on a unified formulation, Comput. Struct, vol.84, pp.1222-1235, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01367082

E. Carrera, M. Cinefra, and P. Nali, MITC technique extended to variable kinematic multilayered plate elements, Compos. Struct, vol.92, pp.1888-1895, 2010.

G. M. Kulikov and S. V. Plotnikova, A hybrid-mixed four-node quadrilateral plate element based on sampling surfaces method for 3D stress analysis, Int. J. Numer. Methods Eng, vol.108, pp.26-54, 2016.

K. Y. Sze, Three-dimensional continuum finite element models for plate/shell analysis, Prog. Struct. Eng. Mater, vol.4, pp.400-407, 2002.

N. Büchter, E. Ramm, and D. Roehl, Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Methods Eng, vol.37, pp.2551-2568, 1994.

H. Naceur, S. Shiri, D. Coutellier, and J. Batoz, On the modeling and design of composite multilayered structures using solid-shell finite element model, Finite Elem. Anal. Des, pp.1-14, 2013.

G. M. Kulikov and S. V. Plotnikova, Non-linear geometrically exact assumed stressstrain four-node solid-shell element with high coarse-mesh accuracy, Finite Elem. Anal. Des, vol.43, pp.425-443, 2007.

O. Polit, M. Touratier, and P. Lory, A new eight-node quadrilateral shear-bending plate finite element, Int. J. Numer. Methods Eng, vol.37, pp.387-411, 1994.
DOI : 10.1002/nme.1620370303

R. H. Macneal and R. Harder, A proposed standard set of problems to test finite element accuracy, Finite Elem. Anal. Des, vol.1, pp.3-20, 1985.

H. Murakami, Laminated composite plate theory with improved in-plane response, J. Appl. Mech, vol.53, pp.661-666, 1986.
DOI : 10.1115/1.3171828

L. Demasi, Partially Zig-Zag advanced higher order shear deformation theories based on the Generalized Unified Formulation, Compos. Struct, vol.94, pp.363-375, 2012.
DOI : 10.1016/j.compstruct.2011.07.022

S. P. Timoshenko and S. Woinowsky-krieger, Theory of Plates and Shells, 1959.

A. Razzaque, Program for triangular bending elements with derivative smoothing, Int. J. Numer. Methods Eng, vol.6, pp.333-343, 1973.
DOI : 10.1002/nme.1620060305

J. Batoz and G. Dhatt, Modélisation des Structures par Eléments Finis, vol.2, 1990.

N. J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos. Mater, vol.4, pp.20-34, 1970.
DOI : 10.1007/978-94-017-2233-9_8

M. D'ottavio and . Sublaminate, Generalized Unified Formulation for the analysis of composite structures and its application to sandwich plates bending, Compos. Struct, vol.142, pp.187-199, 2016.