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1. Introduction

Thermal loads play an important role in several fields of engi-
neering. Aeronautical and space applications are a well-known
example, where the structures commonly experience severe aero-
dynamic heating and drastic changes of thermal environments. For
instance, the launch and the re-entry of space vehicles is typically
associated with severe temperature variations. Similarly, thermal
loads are developed in supersonic and hypersonic aircrafts as the
result of restrained thermal expansion [1].

These aspects, in conjunction with the typical thin-walled
architecture of light-weight structures, have made thermal
buckling the subject of several investigations in the past. Early
works are based on classical lamination theory (CLT) and first order
shear deformation theory (FSDT). Reviews of analytical solutions
using classical CLT and FSDT are available on several textbooks
[2,3]. A comprehensive overview of the topic is proposed by Jones
[4] with regard to fiber-reinforced composite plates, where CLT is
applied and the equivalent mechanical loading concept is
discussed. Within the context of CLT, Nemeth [5] investigated the
thermal buckling response of infinitely long plates, introducing
stiffness-weighted thermal-expansion parameters as a useful
mean to obtain design charts, whose validity extends to a wide
range of laminates. Recently, the effects of non-uniform tempera-
ture distribution on thermal buckling have been assessed by Li
et al. [6] using CLT in the context of an energy-based formulation.
The work was successively extended to account for random system
properties [7]. Still in the context of CLT, variable stiffness plates
have been optimized with regard to thermal buckling require-
ments using finite elements in Ref. [8].

While CLT can be successfully applied to analyze a wide class of
thin-plate problems, different strategies are needed to analyze
more general plate configurations, where transverse shear defor-
mation effects cannot be neglected. In this sense, a relatively vast
amount of research efforts has regarded the development of more
refined approaches, FSDT being the simplest one. An early work by
Tauchert [9] discusses the derivation of closed-form solutions for
anti-symmetric angle-ply plates based on FSDT, while mixed FSDT
finite-elements are adopted by Noor and Peters [10] to address the
sensitivity of thermal buckling loads to lamination and material
properties. Recently, FSDT has been applied also to analyze the
thermal buckling of FGM shells [11].
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Fig. 1. Plate dimensions and reference system.
High-order shear deformation theories were employed in Refs.
[12,13] and closed-form solutions obtained for simply-supported
plates subjected to a uniform temperature rise. Erroneous assump-
tions on the plate constitutive law of Ref. [12] were successively
pointed out by Rohwer [14], and results corrected accordingly.

Other refined techniques for the analysis of laminated plates
included the high-order mixed formulation and the global/local
higher order theory proposed in Refs. [15,16], respectively, while
layerwise approaches have been carried out with finite elements
in Refs. [17,18].

Despite the vast amount of research papers dealing with com-
posite plates, less studies are available on the thermal buckling
response of sandwich plates. A simplified analytical study is pro-
posed in Ref. [19], based on the Ritz method and Libove-Batdorf
sandwich theory [20]. A higher-order plate finite element is used
in Refs. [21,22] to address the thermal buckling response of sand-
wich panels, including skew configurations. An analytical approach
is developed by Frostig [23] for the thermal buckling and post-
buckling based on a high-order approach incorporating the effects
of the core flexibility. Equivalent single layer models are discussed
by Pradeep et al. [24], and Matsunaga with regard to plates with
cross-ply and angle-ply face-sheets [25–27]. These latter studies
include a simplified treatment of the pre-buckling deformations
on the thermal buckling load, demonstrating their role on the crit-
ical temperature prediction.

Three dimensional solutions were developed by Noor and co-
workers [28–30] for both laminated and sandwich panels. In these
pioneering works, the relevance of pre-buckling deformations was
illustrated by providing results for temperature-independent [28]
and temperature-dependent [29] properties. Despite their useful-
ness for deriving benchmark results, three dimensional solution
procedures are usually too costly to be used for common design
purposes, and more efficient approaches are needed.

In this sense, a powerful strategy for including several theories
into one single formulation is given by the unified formulation pro-
posed by Carrera, often denoted with the acronym CUF [31,32].
This kind of variable-kinematic approach has been adopted to ana-
lyze the mechanical response of sandwich panels in several works
[33–37], while the prediction of the critical temperatures is dis-
cussed in Refs. [38,39]. Within the same framework, the thermal
stability of functionally graded sandwich has been recently
assessed [40].

The importance of retaining the transverse normal deformation
in the presence of thermal loading and the influence of the actual
temperature distribution across the plate thickness was pointed
out by Carrera in Refs. [41,42].

In recent works by the authors, the Generalized Unified Formu-
lation proposed by Demasi [43–45] was extended to include a sub-
laminate approach [36,37] for the bending analysis of sandwich
plates with the aim of optimizing the accuracy-to-cost ratio. The
resulting approach was indicated as Sublaminate Generalized Uni-
fied Formulation (S-GUF).

In the present paper, the S-GUF is developed in the context of a
Ritz-based approach [46–48] and its formulation is extended to
address the thermal buckling response of laminated plates and
sandwich panels.

As opposed to the vast majority of previous studies, the initial
stress produced by a uniform thermal loading is considered and
the effect of the pre-buckling transverse normal deformation is
assessed. This technique, suggested by Noor and Burton [28], intro-
duces the deformed pre-buckling state into the classical eigenvalue
problem for determining the critical temperature, which is then
solved iteratively.

A more accurate identification of the initial stress state, that
accounts for a refined representation of the thermal loading profile,
the actual boundary conditions of the plate and, where necessary,
temperature-dependent material properties, would require the
solution of a more complex non-linear problem and remains out
of the scope of this paper.

The results illustrate the excellent accuracy of the predictions in
relation with the relatively low number of degrees of freedom.
Novel results are finally proposed as a benchmark for future
studies.

2. Formulation

The formulation is developed for the thermal buckling analysis
of composite plates in the framework of the Sublaminate-
Generalized Unified Formulation (S-GUF). Linear and nonlinear
pre-buckling deformations are taken into account. The panels are
flat and can be either monolithic or sandwich. A sketch of the panel
is provided in Fig. 1, where the reference system together with the
typical dimensions of the panel are reported. In particular, a and b
denote the length and the width of the panel, respectively, while h
is the total thickness. For generality purposes, the sketch refers to a
sandwich configuration, where the quantity hf denotes the thick-
ness of the single face-sheet. In the case of monolithic composite
plates, the panel thickness is simply denoted with h, while hf

becomes meaningless.
The panel is subjected to a uniform temperature increase,

although the formulation could be, in principle, extended to con-
sider nonuniform distributions. The initial heating of the panels –
which constitutes the pre-buckling condition – happens by assum-
ing fully restrained boundary conditions, where immovable edges
are considered. The buckling boundary conditions, as discussed
next, can be any sort of combination involving the vanishing or
non-vanishing of the three-inplane displacement components.

The formulation is thus characterized by two distinct steps,
consisting in the solution of the pre-buckling and buckling condi-
tion. When the nonlinear pre-buckling effects are accounted for,
the equations are in the form of a nonlinear eigenvalue problem,
which is solved iteratively. On the contrary, the classical approach
based on a linear pre-buckling analysis leads to the solution of a
standard eigenvalue problem.

The Sublaminate-Generalized Unified Formulation is an axio-
matic approach for the analysis of composite structures based on
the idealization of the structure as an assembly of Nk sublaminates.
The fundamental ideas of the approach are here reviewed, while a
deeper discussion is available in [36,37]. Each sublaminate is a

cluster of Nk
p plies, arbitrarily chosen by the user, where an arbi-

trary kinematic theory is chosen for describing the displacement
field. A fully displacement-based approach is adopted. By collect-
ing the three displacement components of the generic ply p
belonging to the sublaminate k, the 3 � 1 vector up;k is defined as:



up;k ¼ up;k
x up;k

y up;k
z

n oT
ð1Þ

where up;k
r denotes the displacement component along the generic

coordinate direction r ¼ x; y; z. The Generalized Unified Formulation
(GUF) proposed by Demasi [43–45] is adopted as underlying kine-
matic description for approximating the displacement components
of Eq. (1). In particular, following the notation of GUF, the compo-
nents of Eq. (1) are expressed as:

up;k
x ðx; y; zpÞ ¼ Faux ðzpÞup;k

xaux ðx; yÞ aux ¼ 0;1; . . . ;Nk
ux

up;k
y ðx; y; zpÞ ¼ Fauy ðzpÞup;k

yauy ðx; yÞ auy ¼ 0;1; . . . ;Nk
uy

up;k
z ðx; y; zpÞ ¼ Fauz ðzpÞup;k

zauz ðx; yÞ auz ¼ 0;1; . . . ;Nk
uz

8>><>>: ð2Þ

where separation of variables is assumed between the thickness-
wise and in-plane directions. In particular, Faur denotes the

thickness function, while up;k
raur are the generalized displacement
gp;k
X ¼ 1

2
up;k2

x;x þ up;k2

y;x þ up;k2

z;x

� � 1
2

up;k2

x;y þ up;k2

y;y þ up;k2

z;y

� �
up;k
x;xu

p;k
x;y þ up;k

y;xu
p;k
y;y þ up;k

z;x u
p;k
z;y

� 	T

gp;k
n ¼ up;k

x;yu
p;k
x;z þ up;k

y;yu
p;k
y;z þ up;k

z;yu
p;k
z;z up;k

x;xu
p;k
x;z þ up;k

y;xu
p;k
y;z þ up;k

z;x u
p;k
z;z up;k

x;z u
p;k
x;z þ up;k

y;z u
p;k
y;z þ up;k

z;z u
p;k
z;z

n oT
ð9Þ
components associated with the kinematic assumptions. Note that

Nk
ur denotes the order of the expansions, thus a different number

of terms can be used for representing the displacement field along
the three directions. This means that, for instance, the in-plane
displacement components of a generic sublaminate could be
described with an equivalent single layer theory of order 4, and
the out-of-plane displacement with a similar theory of order 2. In
this case, the sublaminate theory would be labeled as ED442. At lam-
inate level, the kinematic theory is specified as a string reporting
the approaches adopted for the various sublaminates. For instance,
ED332/ED554/ED332 denotes a three-sublaminate subdivision, where
the first and the third sublaminates are modeled using ED332, while
ED554 is adopted for the second one. It is also remarked that each
sublaminate can be modeled by assuming, independently, an equiv-
alent single layer or a layerwise description for each displacement
component.
2.1. Strain–displacement relations

As far as the formulation is developed within a displacement-
based approach, it is necessary to introduce the relation between
the strain and the displacement components. With the aim of
treating the thermal buckling problem, the Green–Lagrange strain
tensor is introduced as:

�ij ¼ eij þ gij ð3Þ
where distinction is made between the linear and the nonlinear
parts eij and gij, whose components are:

eij ¼ 1
2

ui;j þ uj;i
� � ð4Þ

and

gij ¼
1
2
ur;iur;j ð5Þ

Following the standard CUF formalism, the components of Eqs.
(4) and (5) are organized in vectors where the in-plane and the
normal components are conveniently separated. Considering, for
now, the linear part of the strain tensor, it is possible to write:
ep;kX ¼ DXup;k ep;kn ¼ Dnup;k þ Dzup;k ð6Þ
where the subscripts X and n are introduced to denote the in-plane
and the normal components, respectively. The two vectors of Eq. (6)
read:

ep;kX ¼ ep;kxx ep;kyy cp;kxy

n oT
ep;kn ¼ cp;kyz cp;kxz ep;kzz

n oT
ð7Þ

and the differential matrices of Eq. (6) are defined as:

DX ¼
@
@x 0 0
0 @

@y 0
@
@y

@
@x 0

264
375 Dn ¼

0 0 @
@x

0 0 @
@y

0 0 0

264
375 Dz ¼

@
@z 0 0
0 @

@z 0
0 0 @

@z

264
375
ð8Þ

In a similar fashion, the nonlinear terms of the strain tensor gij

expressed by Eq. (5) are organized as:
where, consistently with Eq. (6), distinction is made between the
in-plane and the normal components.

2.2. Hooke’s law

The same partitioning into in-plane and normal components of
Eq. (6) is adopted, and linear hyperelastic orthotropic behaviour is
assumed. After rotating the components into a common laminate
reference system, the 3D constitutive law of the generic ply p of
the sublaminate k can be written as:

rp;k
X ¼ ~Cp;k

XX�
p;k
X þ ~Cp;k

Xn�
p;k
n rp;k

n ¼ ~Cp;k
nX�

p;k
X þ ~Cp;k

nn�
p;k
n ð10Þ

where:

~Cp;k
XX ¼

eCp;k
11

eCp;k
12

eCp;k
16eCp;k

12
eCp;k
22

eCp;k
26eCp;k

16
eCp;k
26

eCp;k
66

2664
3775 ~Cp;k

Xn ¼
0 0 eCp;k

13

0 0 eCp;k
23

0 0 eCp;k
36

2664
3775

~Cp;k
nn ¼

eCp;k
44

eCp;k
45 0eCp;k

45
eCp;k
55 0

0 0 eCp;k
33

2664
3775

ð11Þ

Thermal deformations, which are of concern for the pre-
buckling analysis, are introduced as [2,49]:

t�
p;k
X ¼ �ap;k

X DT t�p;k
n ¼ �ap;k

n DT ð12Þ
where DT denotes the temperature increase with respect to a refer-
ence value, while the vectors collecting the coefficients of thermal
expansion are defined as:

ap;k
X ¼ ap;k

xx ap;k
yy 2ap;k

xy

n oT
ap;k
n ¼ 0 0 ap;k

zz

� �T ð13Þ
2.3. Pre-buckling state

FollowingNoor and Burton [28], the pre-buckling analysis is per-
formed by assuming uniform heating and boundary conditions of
immovable edges. More specifically, the panel is constrained such
that the normal in-plane displacement components are prevented
along the four edges. On the other hand, the out-of-plane



displacement is constrained in correspondence of themidsurface, so
that the panel is free to expand or contract along the thickness-wise
direction. It follows that the deformed pre-buckling deformed pat-
tern is given by:

0uxðx; y; zÞ ¼ 0uyðx; y; zÞ ¼ 0

0uzðx; y; zÞ ¼ 0uzðzÞ

�
ð14Þ

where the subscript 0 is introduced to specify the pre-buckling con-
dition. The internal stress distribution arising from the displace-
ment field given by Eq. (14) is:

0ryzðx; y; zÞ ¼ 0rxzðx; y; zÞ ¼ 0

0rabðx; y; zÞ ¼ 0rabðzÞ with a;b ¼ x; y

�
ð15Þ

meaning that the only not-null pre-buckling stress components are
those relative to the panel membrane behaviour. It is worth high-
lighting that the terms 0rab are functions of z and are, in general,
different from ply to ply.

For the pre-buckling condition specified by Eqs. (14) and (15),
the evaluation of the normal displacement 0uz and the in-plane
stress components can be performed in a closed-form manner.
After noticing that the only not null pre-buckling strain component

is 0�
p;k
zz , the internal stresses are available from the thermoelastic

constitutive relation:

0r
p;k
X ¼ �~Cp;k

XXa
p;k
X DT þ ~Cp;k

Xn 0�
p;k
n � ap;k

n DT
� �

0r
p;k
n ¼ �~Cp;k

nXa
p;k
X DT þ ~Cp;k

nn 0�
p;k
n � ap;k

n DT
� � ð16Þ

where:

0�p;k
n ¼ 0 0 0�p;kzz

� �T ð17Þ

The value of 0�
p;k
zz can be determined after imposing the vanish-

ing of the normal stress rp;k
zz , viz. considering plane stress condi-

tions. More specifically, the condition rp;k
zz ¼ 0 can be substituted

in Eq. (16), and the pre-buckling strain is obtained as function of
the temperature variation as:

0�p;kzz ¼ 0�p;k33 ¼
eCp;k
13eCp;k
33

ap;k
xx þ

eCp;k
23eCp;k
33

ap;k
yy þ 2

eCp;k
36eCp;k
33

ap;k
xy þ ap;k

zz

!
DT ð18Þ

and the corresponding in-plane stress components are retrieved by
making use of Eq. (16), so:

0r
p;k
X ¼ �Ĉp;kap;k

X DT

0r
p;k
n ¼ 0

ð19Þ

where

Ĉp;k ¼
bCp;k
11

bCp;k
12

bCp;k
16bCp;k

12
bCp;k
22

bCp;k
26bCp;k

16
bCp;k
26

bCp;k
66

2664
3775 ð20Þ

and

bCij ¼ eCp;k
ij �

eCp;k
i3
eCp;k
3jeCp;k

33

i; j ¼ 1;2;6 ð21Þ

If the effect of pre-buckling deformations is neglected – as it is
done in standard linear buckling eigenvalue analysis – no addi-
tional results are needed, and the solution given by Eq. (19) suffices
for performing the subsequent buckling analysis.

On the other hand, an additional step is needed if the analysis is
aimed at accounting for the effect of pre-buckling deformations. In
particular, the additional quantity to be evaluated is the first
derivative of the pre-buckling displacement 0uz;z, which is easily
obtained after recalling the nonlinear expression of the Green–
Lagrange strain tensor of Eq. (3) and the solution of the pre-
buckling problem of Eq. (14) as:
0up;k
z;z ¼ �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20ep;kzz

q
ð22Þ

Note that the solution of Eq. (22), despite its simplicity,
accounts for the nonlinearity contained in the Green–Lagrange
strain tensor. It is also worth observing the presence of the term

0ep;kzz in Eq. (22), which makes it necessary the adoption of a theory
of order higher than zero with respect to the uz component.

2.4. Buckling condition

The buckling equations are derived in the context of a varia-
tional framework, starting from the expression of the total poten-
tial energy of the panel, which is:

P ¼ 1
2

Z
V
� : rdV ð23Þ

where the potential of the external loads is, in the present investi-
gation, identically null as no mechanical loads are prescribed. The
strain tensor � is intended as the contribution restricted to the
mechanical deformations, as no strain energy is associated with
the thermal deformations.

The first variation of the potential energy allows to derive the
nonlinear pre-buckling equilibrium equations, whose closed-form
solution is available from Eqs. (16) and (22). The buckling condi-
tion can be found referring to the Trefftz criterion [3]:

dðd2PÞ ¼ 0 ð24Þ
According to the stability criterion of Eq. (24), the buckling con-

dition is readily found by recalling Eqs. (3) and (23), and is
expressed as:

dðd2PÞ ¼
Z
V

de : rþ kdg : 0rð ÞdV ¼ 0 ð25Þ

where 0r is the pre-buckling stress tensor, k is the buckling multi-
plier, while e is:

e ¼ eþ ê ð26Þ
The components of the tensors e and g are available from Eqs.

(4) and (5), while the term ê is the linear part of the incremental
Green–Lagrange strain tensor and its components read:

êij ¼ 1
2 0ur;iur;k þ 0ur;kur;i
� � ð27Þ

It is highlighted that the components êij are identically null
whenever pre-buckling deformations are null or negligible. In this
case the variational statement of Eq. (25) reduces to the well-
known form:

dðd2PÞ ¼
Z
V

de : rþ kdg:0rð ÞdV ¼ 0 ð28Þ

The more general case of non negligible pre-buckling deforma-
tions is now considered. Introducing the S-GUF approximation, and
recalling the pre-buckling condition expressed by Eq. (19), the
buckling condition of Eq. (25) can be re-written as:

XNk

k¼1

XNk
p

p¼1

Z
X

Z ztopp

zbotp

dep;k
T þ dêp;k

T
� �

rp;k þ kdgp;kT

X 0r
p;k
X

h i
dzdX ¼ 0 ð29Þ

where, according to the pre-buckling solution given by Eq. (16), the
components of êp;k are:

êp;kX ¼ 0 0 0f gT

êp;kn ¼ ĉp;kyz ĉp;kxz �̂p;kzz

n oT

¼ 0up;k
z;z u

p;k
z;y 0up;k

z;z u
p;k
z;x 0up;k

z;z u
p;k
z;z

n oT

ð30Þ



Substituting now Eq. (30) into the variational principle of Eq.
(29) leads to:

XNk

k¼1

XNk
p

p¼1

Z
X

Z ztopp

zbotp

dep;k
T

X rp;k
X þ dep;kn þ dêp;kn

� �T
rp;k

n þ kdgp;kT

X 0r
p;k
X

h i
dzdX¼ 0

ð31Þ
which is the variational statement expressing the buckling condi-
tion in the presence of nonlinear pre-buckling deformations. In
the context of a displacement-based formulation, the various terms
of Eq. (31) need to be expressed as function of the displacement
components. This is done by recalling Eq. (6) and assuming that
the constitutive relation can be written in the form:

rp;k
X ¼ ~Cp;k

XXe
p;k
X þ ~Cp;k

Xne
p;k
n rp;k

n ¼ ~Cp;k
nXe

p;k
X þ ~Cp;k

nne
p;k
n ð32Þ

In addition, the relation between the strains êp;kn and the dis-
placement components can be organized by separating the deriva-
tives with respect to the in-plane and the normal components as:

êp;kn ¼ 0up;k
z;z D̂nup;k þ D̂zup;k
� �

ð33Þ

where the differential matrices D̂n and D̂z are defined as:

D̂n ¼
0 0 �ð Þ;y
0 0 �ð Þ;z
0 0 0

264
375 D̂z ¼

0 0 0

0 0 0

0 0 �ð Þ;z

2664
3775 ð34Þ

Substituting now Eqs. (32) and (33) in Eq. (31), it is possible to
express the buckling condition as function of the displacement
unknowns up;k. In particular, the three contributions reported in
Eq. (31) are written as:

dep;k
T

X rp;k
X ¼ d DXup;k

� �T ~Cp;k
XXDXup;k þ ~Cp;k

Xn Dnup;k þ Dzup;k
�n

þ 0up;k
z;z D̂nup;k þ D̂zup;k
� �io

ð35Þ

dep;kn þ dêp;kn

� �T
rp;k

n ¼ d Dnup;k þ Dzup;k þ 0up;k
z;z D̂nup;kD̂zup;k
� �h iT

� ~Cp;k
nXDXup;k þ ~Cp;k

nn Dnup;k þ Dzup;k
�n

þ 0up;k
z;z D̂nup;k þ D̂zup;k
� �io

ð36Þ

dgp;kT

X 0r
p;k
X ¼ Dnldup;k

� �T
0R

p;kDnlup;k ð37Þ
It is noted that all the terms of Eqs. (35) and (36) multiplied

with 0u
p;k
z;z are those associated with the nonlinear pre-buckling

contributions, while the remaining ones are the standard terms
contributing to the stiffness matrix of the undeformed
configuration.

The contribution of Eq. (37) is written after introducing the pre-
stress matrix 0R

p;k as:

0R
p;k ¼

01p;k 0 0
0 01p;k 0
0 0 01p;k

264
375 ð38Þ

with

01
p;k ¼ 0rp;k

xx 0rp;k
xy

0rp;k
xy 0rp;k

yy

" #
ð39Þ

The pre-buckling stress components collected in Eq. (39) are
available from Eq. (19) and, in general, are different from ply to
ply depending on their thermoelastic properties.

The differential operator Dnl relative to the nonlinear part of the
strain tensor is:
Dnl ¼

�ð Þ;x 0 0

�ð Þ;y 0 0

0 �ð Þ;x 0

0 �ð Þ;y 0

0 0 �ð Þ;x
0 0 �ð Þ;y

26666666664

37777777775
ð40Þ

Integration along the thickness of Eq. (31) can be performed by
recalling the GUF expansion of the displacement unknowns of Eq.
(2), which depends upon the theory adopted. In general, the thick-
ness integrals can be written in the form:

Z
paur bus
urus ¼

Z ztopp

zbotp

Faur Fbus
dz Z

paur bus
@urus ¼

Z ztopp

zbotp

Faur ;zFbus
dz

Zpaur bus
ur@us ¼

Z ztopp

zbotp

Faur Fbus ;z
dz Zpaur bus

@ur@us ¼
Z ztopp

zbotp

Faur ;zFbus ;z
dz

ð41Þ

In the present Ritz-based approach, the in-plane integration of
Eq. (31) is performed after approximating the in-plane behaviour
by means of properly chosen shape functions.

3. Ritz approximate solution

The exact solution of the buckling equations expressed by Eq.
(31) can be found for special sets of stacking sequences, loading
and boundary conditions. An approximate solution is here sought
not to restrict the class of problems to be analyzed, thus making
it possible to study different sets of boundary conditions and lay-
ups. The solution procedure relies upon a Ritz approximation of
the generalized displacement components introduced by Eq. (2)
(see also [46,48,37]), which are expressed as:

up;k
xaux ðx; yÞ ¼ Nuxiðx; yÞup;k

xaux i

up;k
yauy ðx; yÞ ¼ Nuyiðx; yÞup;k

yauy i

up;k
zauz ðx; yÞ ¼ Nuziðx; yÞup;k

zauz i

8>>><>>>: i ¼ 1;2; . . . ;M ð42Þ

where different sets of global shape functions are adopted to

approximate the three components up;k
raur ðx; yÞ. A map is introduced

between the physical and the computational domain ðn;gÞ defined
in the interval ½�1 1� � ½�1 1�, where the generic shape function
can be expressed as:

Nuriðn;gÞ ¼ /urmðnÞwurnðgÞ m ¼ 1; . . . ;R n ¼ 1; . . . ; S ð43Þ
and the number of functions R and S along the directions n and g can
be, in general, different. The relation between the generic i-th func-
tion and the m-th and n-th one-dimensional functions is given by:

i ¼ Sðm� 1Þ þ n ð44Þ
The functions /urmðnÞ and wurnðgÞ of Eq. (43) are, in turn,

expressed as the product between sets of complete functions pr

and proper boundary functions, chosen depending on the con-
straints applied at the panel edges:

/urmðnÞ ¼ f ur ðnÞpmðnÞ
wurnðgÞ ¼ gur ðgÞpnðgÞ

ð45Þ

In the present implementation, Legendre orthogonal polynomi-
als are adopted as global functions, thus:

p0 ¼ 1; p1 ¼ f; plþ1 ¼ ð2lþ 1Þfpl � lpl�1

lþ 1
with l ¼ m;n

ð46Þ
while the boundary functions are the polynomial expressions
reported in Ref. [46].



Table 1
Elastic properties and coefficients of thermal expansion of the materials used in the
present study.

M1 (Ref. [28]) M2 (Ref. [39]) M3 (Ref. [26])

E11/E22 15 Variable 19
E33/E22 1 1 1
G12/E22 0.5 0.5310 0.52
G13/E22 0.5 0.5310 0.52
G23/E22 0.3356 0.1593 0.338
m12 0.3 0.3 0.32
m13 0.3 0.3 0.32
m23 0.49 0.36 0.49
a11=a0 0.015 �0.0333 0.001
a22=a0 1 1 1
a33=a0 1 1 1
For comparison purposes, a second set of Ritz functions, taken
from Ref. [39], is considered. In particular, the set consists of the
trigonometric functions defined as:

Nuxiðn;gÞ ¼ cos
mp
2

nþ 1ð Þ sinnp
2

gþ 1ð Þ

Nuyiðn;gÞ ¼ sin
mp
2

nþ 1ð Þ cosnp
2

gþ 1ð Þ

Nuziðn;gÞ ¼ sin
mp
2

nþ 1ð Þ sinnp
2

gþ 1ð Þ

ð47Þ

It should be highlighted that the functions of Eq. (47) are suit-
able for analyzing simply-supported boundary conditions, while
they cannot be employed to analyze other set of boundary
conditions.

Independently on the choice for the Ritz functions, the approx-
imation of Eq. (43) can be substituted into the expression of Eq.
(31) and, after evaluating the surface integrals and assembling
the contributions at ply and sublaminate level [36,37], the govern-
ing equations are obtained in the form:

duT Kþ K0
� �

þ kKG
h i

u ¼ 0 8 du ð48Þ

where K is the stiffness matrix, K0 is the contribution due the pre-
buckling deformations and KG is the geometric stiffness. The vector
of unknowns is given by:

u ¼ u1 � � �uRSf gT ð49Þ
and the i-th contribution appearing in Eq. (49) is the set of unknown
amplitudes associated with the i-th shape function, partitioned into
the x; y and z-wise contributions as:

ui ¼ uxi uyi uzi
� �T ð50Þ

The expression of the stiffness matrix K is already available in
Ref. [37] but, for completeness, its expression is summarized in
the Appendix.

The stiffness contribution associated with the pre-buckling
deformations is obtained as:

K0 ¼ K0
uxuz þ K0T

uxuz þ K0
uyuz þ K0T

uyuz þ K0
uzuz ð51Þ

where the single terms of Eq. (51) are organized to highlight the
work-conjugacy dependence over the different displacement com-
ponents ur . The formulation is developed by keeping separate the
thickness-wise and the in-plane response, as clear from Eq. (2). It
follows that the various terms composing the stiffness matrices
can be obtained by composing two distinct contributions: those rel-
ative to the integration along the thickness, and those relative to in-
plane integration of Eq. (31). Referring to Eq. (51), the three distinct
contributions are obtained by composing the assembled thickness
integrals Z0

ð@Þur@ð@ÞusRS, whose expression is reported in the Appendix,
and the in-plane integrals as:

K0
uxuz ¼I0100

uxuz �Z0
ux@uz36þI0010

uxuz �Z0
@uxuz55þI1000

uxuz �Z0
ux@uz13þI0001

uxuz �Z0
@uxuz45

K0
uyuz ¼I0010

uyuz �Z0
@uyuz45þI0100

uyuz �Z0
uy@uz23þI0001

uyuz �Z0
@uyuz44þI1000

uyuz �Z0
uy@uz36

K0
uzuz ¼I0101

uzuz �Z0
uzuz44þI0000

uzuz �Z0
@uz@uz33þ I0110

uzuz þI1001
uzuz

� ��Z0
uzuz45

þI1010
uzuz �Z0

uzuz55

ð52Þ

where � denotes the Kronecker product and Idefg
urus are the matrices

collecting the integrals of the Ritz functions according to the follow-
ing notation:

Idefg
urus

� �
ij
¼
Z 1

�1

Z 1

�1

@dþeNuri

@nd@ge

@fþgNusj

@n f @g g
dgdn ðd; e; f ; g ¼ 0;1Þ

ð53Þ
In a similar fashion, the geometric stiffness matrix is obtained
as:

KG ¼ KG
uxux þ KG

uyuy þ KG
uzuz ð54Þ

where:

KG
uxux ¼I1010

uxux �ZG
uxux11þI0101

uxux �ZG
uxux22þ I1001

uxux þI0110
uxux

� ��ZG
uxux12

KG
uyuy ¼I1010

uyuy �ZG
uyuy11þI0101

uyuy �ZG
uyuy22þ I1001

uyuy þI0110
uyuy

� �
�ZG

uyuy12

KG
uzuz ¼I1010

uzuz �ZG
uzuz11þI0101

uzuz �ZG
uzuz22þ I1001

uzuz þI0110
uzuz

� ��ZG
uzuz12

ð55Þ
and the generic contribution ZG

urusRS is reported in the appendix.
The solution of the buckling problem of Eq. (48) is performed by

implementing an iterative procedure. Firstly, the eigenvalue
problem is solved by neglecting the pre-buckling deformations,
i.e. setting K0 to a zero matrix, thus reducing to the standard form
of the buckling eigenvalue problem. Then, the pre-buckling state is
updated by using Eqs. (18), (19) and (22), and, accordingly, the
matrices K0 and KG of Eqs. (51) and (54) are re-computed. The
eigenvalue problem of Eq. (48) is then solved again, and the
procedure is repeated until convergence between two successive
iterations is reached. Classical buckling solutions are obtained by
neglecting the pre-buckling deformations, i.e. arresting the proce-
dure at the first iteration.

4. Results

This section presents the thermal buckling results obtained for
monolithic and sandwich plates, derived with and without
accounting for the effects of nonlinear pre-buckling deformations.
It is highlighted that one single sublaminate is adopted for analyz-
ing monolithic plates and, in that case, the kinematic models
reduce to those formulated by the standard GUF approach.

Comparisons are discussed against reference solutions available
in the literature, and additional results are provided for future
comparison purposes.

The thermoelastic properties of the materials considered
throughout the study are summarized in Table 1. The labels M1
to M3 refer to typical fibrous composite materials.

For sandwich panels, the face-sheets are assumed to be made of
material M3, while the core is labeled as C1. The properties of the
material C1 are taken from Ref. [26] and, for convenience, are
summarized here below:

� E11=E22;M3 = 3.2e-5; E22=E22;M3 = 2.9e-5; E33=E22;M3 = 0.4
� G12=E22;M3 = 2.4e-3; G13=E22;M3 = 7.9e-2; G23=E22;M3 = 6.6e-2
� m12 = 0.99; m13 ¼ m23 = 3.0e-5;
� a11=a0 ¼ a22=a0 ¼ a33=a0 = 1.36



where E22;M3 denotes the transverse elastic modulus of the material
M3.

It is worth noting that the critical temperatures will be pre-
sented, in most cases, in nondimensional form as function of
a0Tcr. As such, the results do not depend on E22 and a0, whose val-
ues can be arbitrarily fixed; the remaining thermoelastic properties
are then recovered by making use of the nondimensional ratios of
Table 1 and those of material C1. On the contrary, the dimensional
critical temperature Tcr depends on the value of a0. This latter will
be provided in the next sections whenever the results are pre-
sented in dimensional form.

4.1. Monolithic plates

4.1.1. Convergence analysis
A preliminary convergence analysis is presented to illustrate

properties of different shape functions, both in terms of type and
number, and to motivate their choice throughout the study. The
analysis regards a set of square, anti-symmetrically layered plates,
characterized by a length-to-thickness ratio equal to 10. The plates
are obtained by the stacking of 10 plies, oriented at ½�h�5, and each
layer is made of the material M1 of Table 1. Simply-supported con-
ditions are imposed at the four edges.

The convergence analysis is performed by considering one sin-
gle sublaminate and an equivalent single layer theory ED554. Note
that models with Nuz ¼ Nua � 1 and ða ¼ x; yÞ yield a consistent
polynomial approximation of the transverse shear strain caz of
order Nuz . This approximation is justified by the fact that the inves-
tigated composite plates all show a bending-dominated buckling
mode, for which the transverse shear strains are known to have a
certain relevance.

Both Legendre polynomials and trigonometric functions are
used to approximate the generalized displacement components
according to Eqs. (46) and (47). The results are computed by vary-
ing the number of Ritz functions from 2 � 2 until 30 � 30. The
nondimensional critical temperatures a0Tcr are summarized in
Table 2. Here and henceforth, the acronyms L and NL denote the
results of the linear and nonlinear buckling analysis, respectively.
The comparison against the 3D approximate solutions derived by
Noor and Burton [28] is reported to illustrate the accuracy of the
solutions here obtained.

The results of Table 2 demonstrate the superior convergence
properties of the Legendre polynomials over the trigonometric
functions. This conclusion holds both for the linear and nonlinear
predictions. The only exception is given by the plates with h equal
to 0, for which the trigonometric Ritz functions are capable of rep-
Table 2
Convergence analysis and comparison of critical temperatures a0Tcr for square composite

h 0 15 30

Analysis type R Trigonometric functions

L 2 0.5782�1 0.8020�1 0.1128
5 0.5782�1 0.7968�1 0.1124
10 0.5782�1 0.7948�1 0.1119
15 0.5782�1 0.7939�1 0.1117
20 0.5782�1 0.7934�1 0.1116
25 0.5782�1 0.7930�1 0.1114
30 0.5782�1 0.7927�1 0.1114

3D, Ref. [28] 0.5782�1 0.7904�1 0.1100 0.1194

NL 2 0.6944�1 0.1043 0.1688
5 0.6944�1 0.1035 0.1679
10 0.6944�1 0.1031 0.1669
15 0.6944�1 0.1030 0.1664
20 0.6944�1 0.1029 0.1661
25 0.6944�1 0.1028 0.1659
30 0.6944�1 0.1028 0.1657

3D, Ref. [28] 0.6950�1 0.1027 0.1633
resenting the exact solution of the problem (or, alternatively, a
Navier-type solution of this configuration can be obtained). It fol-
lows that two functions suffice for capturing the exact solution,
and clearly no improvements are obtained as the number of
degrees of freedom is increased. On the other hand, poor-quality
predictions are obtained if the same number of functions is taken
by considering Legendre polynomials. In any case, it can be
observed that convergence to the exact solution is quickly achieved
up to four digits when 10 Legendre polynomials are taken along
the two directions.

In all the other cases, Legendre functions guarantee faster con-
vergence. In particular, for h– 0, the buckled pattern is affected by
the elastic coupling arising from the anti-symmetry of the lami-
nate. The three displacement components of the first buckling
mode are reported in Fig. 2 for h equal to 45. While the out-of-
plane displacement is characterized by a square half-wave, the
skewness of the two in-plane displacement components can be
clearly observed. As it turns out, this buckled pattern is not prop-
erly captured using few trigonometric functions, and, for this rea-
son, more terms are needed to reach convergence. On the contrary,
Legendre polynomials guarantee a far better approximation and
convergence is achieved with 15 terms.

From Table 2 it is clear that, for all the configurations, no
improvements are achieved when the number of Legendre func-
tions is increased beyond 15. On the contrary, the critical temper-
atures obtained with trigonometric functions, excluding the special
case of h ¼ 0, have not reached convergence of the fourth digit even
when 30 functions are adopted.

The comparison against the solutions reported by Noor and Bur-
ton demonstrates the accuracy of the present formulation. In some
cases, the results here obtained are smaller in comparison to Ref.
[28]. These latter are obtained by a 3D, yet approximate, solution
procedure.

It is worth noting that the orthogonality properties of the
Legendre functions guarantee a higher degree of sparsity of the
resulting matrices with respect to the trigonometric case. It follows
that, for the same number of Ritz functions, the computational
effort to solve the eigenvalue problem is much smaller. It is finally
remarked that the authors did not experience any sort of numerical
issue, both in the case of Legendre as well as trigonometric func-
tions, by increasing the number of shape functions, even much
beyond the values indicated in Table 2.

4.1.2. Example 1
A comprehensive set of results, useful for benchmarking pur-

poses, is available in Ref. [28]. The test case consists in a set of
SSSS plate of material M1, lay-up ½�h�5 ; a=h ¼ 10 and theory ED554.

45 0 15 30 45

Legendre functions

0.1231 0.8782�1 0.9969�1 0.1210 0.1305
0.1226 0.5797�1 0.7909�1 0.1111 0.1211
0.1221 0.5782�1 0.7878�1 0.1106 0.1204
0.1218 0.5782�1 0.7877�1 0.1105 0.1202
0.1216 0.5782�1 0.7876�1 0.1105 0.1202
0.1214 0.5782�1 0.7876�1 0.1105 0.1202
0.1213 0.5782�1 0.7876�1 0.1105 0.1202

0.5782�1 0.7904�1 0.1100 0.1194

0.1936 1.1852�1 0.1411 0.1882 0.2121
0.1924 0.6966�1 0.1025 0.1651 0.1887
0.1910 0.6944�1 0.1019 0.1639 0.1868
0.1903 0.6944�1 0.1019 0.1637 0.1864
0.1898 0.6944�1 0.1019 0.1637 0.1864
0.1894 0.6944�1 0.1019 0.1637 0.1864
0.1892 0.6944�1 0.1019 0.1637 0.1864
0.1849 0.6950�1 0.1027 0.1633 0.1849



Fig. 2. Plot of the buckling mode of a SSSS square plate of material M1, lay-up ½�h�5; a=h ¼ 10 and theory ED554: (a) ux component, (b) uy component, (c) uz component.
angle-ply laminates and one isotropic configuration, characterized
by different nondimensional values of a=h. The composite panels
are made of material M1 and the lay-up is ½�h�5; the isotropic con-
figurations have a Poisson’s coefficient m ¼ 0:3 and aii=a0 ¼ 1 (no
summation is implied for the index i). Boundary conditions of sim-
ply supported edges are assumed at the four edges of the plate. The
results are summarized in Table 3 by adopting 20 � 20 Legendre
functions and four different kinematic theories.

Note that a few configurations of thick panels with a=h equal to
10/3, 4 and 5 and ply angles h equal to 30 and 45 are not reported
in the table as no reference results are available.

The excellent agreement between the results obtained using the
present Ritz formulation can be seen from Table 3. As expected, the
critical temperatures diminish as the equivalent single layer
Table 3
Comparison of critical temperatures a0Tcr for square SSSS plates of material M1, lay-up ½�

a=h h Ref. [28] ED332 ED

L NL L NL L

10/3 0 0.2057 0.4264 0.2066 0.4266 0.
15 0.2347 0.5719 0.2378 0.5799 0.
Isotropic 0.7193�1 0.9511�1 0.7199�1 0.9514�1 0.

4 0 0.1777 0.3314 0.1781 0.3303 0.
15 0.2087 0.4598 0.2107 0.4623 0.
Isotropic 0.5600�1 0.6944�1 0.5603�1 0.6939�1 0.

5 0 0.1436 0.2350 0.1438 0.2348 0.
15 0.1753 0.3352 0.1763 0.3366 0.
30 0.2377 0.6642 0.2441 0.6968 0.
Isotropic 0.3990�1 0.4644�1 0.3991�1 0.4643�1 0.

20/3 0 0.1029 0.1448 0.1030 0.1447 0.
15 0.1322 0.2109 0.1325 0.2109 0.
30 0.1859 0.4068 0.1887 0.4165 0.
45 0.1981 0.4713 0.2024 0.4877 0.
Isotropic 0.2468�1 0.2709�1 0.2468�1 0.2707�1 0.

10 0 0.5782�1 0.6950�1 0.5782�1 0.6946�1 0.
15 0.7904�1 0.1027 0.7898�1 0.1023 0.
30 0.1100 0.1633 0.1110 0.1649 0.
45 0.1194 0.1849 0.1209 0.1882 0.
Isotropic 0.1183�1 0.1237�1 0.1183�1 0.1237�1 0.

20 0 0.1739�1 0.1834�1 0.1739�1 0.1834�1 0.
15 0.2528�1 0.2734�1 0.2523�1 0.2727�1 0.
30 0.3446�1 0.3843�1 0.3468�1 0.3866�1 0.
45 0.3810�1 0.4302�1 0.3839�1 0.4338�1 0.
Isotropic 0.3109�2 0.3145�2 0.3109�2 0.3145�2 0.

100 0 0.7463�3 0.7480�3 0.7463�3 0.7480�3 0.
15 0.1115�2 0.1118�2 0.1114�2 0.1118�2 0.
30 0.1502�2 0.1509�2 0.1514�2 0.1521�2 0.
45 0.1674�2 0.1683�2 0.1690�2 0.1698�2 0.
Isotropic 0.1264�3 0.1265�3 0.1264�3 0.1265�3 0.
description is enriched from ED332 to ED554. Similarly, a reduction
of the buckling multiplier is observed by refining the layerwise
theory from LD111 to LD222. Note that the critical temperatures
obtained using LD111 (33 DOF) are, in general, sensibly higher than
those predicted by the LD222 model (63 DOF) and, in many cases,
by the ED554 model (17 DOF). The reason is attributed to the Pois-
son locking problem that comes along a linear assumption for the
transverse deflection and the associated constant transverse nor-
mal strain, see also [50].

As seen from Table 3, the gain in terms of accuracy is modest if
the theory is refined from ED332 to the more expensive LD222, even
for studying thick panels. Very accurate results are available
already from theory ED332, both in terms of linear and nonlinear
predictions.
h�5.

554 LD111 LD222

NL L NL L NL

2057 0.4241 0.2069 0.4280 0.2057 0.4241
2354 0.5685 0.2348 0.5653 0.2318 0.5490
7193�1 0.9504�1 0.7219�1 0.9548�1 0.7193�1 0.9504�1

1777 0.3290 0.1786 0.3318 0.1777 0.3290
2090 0.4554 0.2085 0.4530 0.2058 0.4406
5600�1 0.6935�1 0.5618�1 0.6963�1 0.5600�1 0.6935�1

1436 0.2343 0.1442 0.2360 0.1436 0.2343
1753 0.3331 0.1748 0.3316 0.1726 0.3234
2419 0.6812 0.2379 0.6557 0.2344 0.6297
3990�1 0.4642�1 0.4002�1 0.4658�1 0.3990�1 0.4642�1

1029 0.1446 0.1033 0.1454 0.1029 0.1446
1320 0.2096 0.1317 0.2089 0.1300 0.2048
1874 0.4099 0.1849 0.3987 0.1809 0.3778
2006 0.4774 0.1969 0.4576 0.1921 0.4310
2468�1 0.2707�1 0.2475�1 0.2715�1 0.2468�1 0.2707�1

5782�1 0.6944�1 0.5800�1 0.6971�1 0.5782�1 0.6945�1

7876�1 0.1019 0.7868�1 0.1018 0.7784�1 0.1004
1105 0.1637 0.1095 0.1617 0.1076 0.1575
1202 0.1864 0.1187 0.1822 0.1163 0.1766
1183�1 0.1237�1 0.1186�1 0.1240�1 0.1183�1 0.1237�1

1739�1 0.1834�1 0.1743�1 0.1838�1 0.1739�1 0.1834�1

2519�1 0.2723�1 0.2520�1 0.2723�1 0.2503�1 0.2704�1

3459�1 0.3855�1 0.3448�1 0.3842�1 0.3416�1 0.3802�1

3826�1 0.4322�1 0.3809�1 0.4300�1 0.3767�1 0.4246�1

3109�2 0.3145�2 0.3116�2 0.3153�2 0.3109�2 0.3145�2

7463�3 0.7480�3 0.7478�3 0.7495�3 0.7463�3 0.7480�3

1114�2 0.1117�2 0.1115�2 0.1119�2 0.1113�2 0.1117�2

1514�2 0.1521�2 0.1514�2 0.1521�2 0.1512�2 0.1519�2

1689�2 0.1698�2 0.1689�2 0.1698�2 0.1687�2 0.1696�2

1264�3 0.1265�3 0.1267�3 0.1268�3 0.1264�3 0.1265�3



In agreement with Noor and Burton, the ratio between the lin-
ear and the nonlinear critical temperature diminishes as the ratio
a=h increases, and, for thin plates, these two values are almost
identical. On the contrary, a noticeable difference can be observed
between the linear and nonlinear predictions, especially for thick
configurations, with a difference between the values that increases
with the anisotropy of the lay-up. Isotropic plates are, in all the
cases, those characterized by the closer values between linear
and nonlinear results, whilst laminates with h equal to 45 are those
exhibiting the highest differences.

A plot of the nondimensional parameter a=h versus the critical
temperature ratio is provided in Fig. 3. This latest quantity is
defined as the ratio between the linear buckling prediction and
the nonlinear one, thus providing a measure of the effects due to
the pre-buckling deformations. The close agreement with the
results extracted from Ref. [28] can be seen even in this case.

4.1.3. Example 2
Another test case is taken from Ref. [39]. Relatively thin plates

with a=h equal to 50 are considered. The plates are made of
material M2 and obtained by the stacking of four plies oriented
at ½�h�s. Simply-supported boundary conditions are imposed at
the plate edges. The results are summarized in Table 4 in terms
of dimensional critical temperatures, obtained by taking
E11=E22 ¼ 11:292, and a0 = 27 10�6/K.

The results taken from Ref. [39] are obtained using the CUF-
based ED222 theory in conjunction with a Ritz approach employing
12 � 12 trigonometric shape functions. For consistency, present
results are reported in the adjacent column and denoted ED222a,
which are obtained using the same model and Ritz function as in
Ref. [39]: as expected, the results are identical. The remaining set
Fig. 3. Comparison of critical temperature ratios versus thickness-to-width ratio for plate

Table 4
Comparison of critical temperatures Tcr (K) for square SSSS plates with a=h ¼ 50, material

h Ref.[39] EDa
222 ED222

L L NL

0 118.128 118.128 118.129 119.150
15 156.394 156.394 155.164 156.945
22.5 206.605 206.605 203.690 206.769
30 245.693 245.693 240.702 245.018
45 266.242 266.242 258.546 263.531
of results are obtained with 20 � 20 Legendre functions. The
results obtained using ED222 highlight, as already discussed, the
superior performances of the Legendre polynomials. In particular,
the critical temperature for h equal to 45 is 3% smaller than the cor-
responding value obtained in Ref. [39] using trigonometric func-
tions. Again, the difference reduces with the degree of anisotropy
of the panel, and small deviations are seen for h equal to 15.

No significant improvements are achieved when ED554 and
LD222 theories are considered, which is consistent with the rela-
tively thin configuration under investigation. Similarly, the critical
temperature obtained by accounting for the nonlinear pre-
buckling effects are very close to the linear ones, with a maximum
difference of approximately 1%. Note also that the linear prediction
is always conservative, thus on the safe side.

Additional novel results are reported in Table 5 by considering
the same material, lay-ups and boundary conditions of the previ-
ous example. The investigation is now extended to various
length-to-width ratios. Nondimensional critical temperatures are
reported for three distinct kinematic theories, with and without
accounting for the effect of pre-buckling deformations. These
results could prove to be useful as an additional benchmark for
future investigations.

To further investigate the thermal buckling response of the pan-
els analyzed in Table 4, the width-to-thickness ratio is plotted
against the critical temperature ratio in Figs. 4–6. The effects due
to ply angles, material orthotropy ratio and boundary conditions
are addressed and, to the best of the authors’ knowledge, no previ-
ous investigations have covered these aspects.

The plates here considered are made of material M2 and are
obtained by the stacking of four plies with different angles of ori-
entations. Orthotropic plates, where all the plies are oriented at
s with lay-up ½�h�5: (a) thin plates (0 6 h=a 6 0:1), (b) thick plates (0:1 6 h=a 6 0:3).

M2 and lay-up ½�h�s . Note: ausing 12� 12 trigonometric functions.

ED554 LD222

L NL L NL

117.906 118.923 117.907 118.924
154.236 155.996 154.142 155.900
201.734 204.754 201.488 204.501
238.145 242.369 237.803 242.015
254.937 259.783 254.432 259.259



Table 5
Critical temperatures a0Tcr for square SSSS plates of material M2, lay-up ½�h�s .

a=h h ED222 ED554 LD222

L NL L NL L NL

10 0 6.1954�2 7.3979�2 5.9843�2 7.1025�2 5.9853�2 7.1038�2

15 7.8070�2 9.8009�2 7.2937�2 9.0149�2 7.2546�2 8.9560�2

22.5 9.8920�2 1.3321�1 8.9711�2 1.1697�1 8.8757�2 1.1539�1

30 1.2905�1 1.9305�1 1.1406�1 1.6198�1 1.1230�1 1.5856�1

45 1.3802�1 2.1579�1 1.2231�1 1.7965�1 1.2045�1 1.7576�1

20 0 1.8735�2 1.9726�2 1.8531�2 1.9500�2 1.8532�2 1.9501�2

15 2.4313�2 2.6004�2 2.3697�2 2.5302�2 2.3644�2 2.5241�2

22.5 3.1597�2 3.4502�2 3.0377�2 3.3055�2 3.0238�2 3.2891�2

30 3.8460�2 4.2858�2 3.6946�2 4.0990�2 3.6761�2 4.0764�2

45 4.1176�2 4.6303�2 3.9138�2 4.3697�2 3.8874�2 4.3370�2

50 0 3.1895�3 3.2171�3 3.1835�3 3.2109�3 3.1835�3 3.2109�3

15 4.1894�3 4.2375�3 4.1644�3 4.2119�3 4.1618�3 4.2093�3

22.5 5.4996�3 5.5828�3 5.4468�3 5.5284�3 5.4402�3 5.5215�3

30 6.4990�3 6.6155�3 6.4299�3 6.5440�3 6.4207�3 6.5344�3

45 6.9807�3 7.1153�3 6.8833�3 7.0141�3 6.8697�3 7.0000�3

100 0 8.0479�4 8.0655�4 8.0441�4 8.0616�4 8.0441�4 8.0617�4

15 1.0593�3 1.0623�3 1.0571�3 1.0601�3 1.0569�3 1.0599�3

22.5 1.3928�3 1.3980�3 1.3882�3 1.3934�3 1.3875�3 1.3928�3

30 1.6382�3 1.6455�3 1.6318�3 1.6390�3 1.6309�3 1.6381�3

45 1.7607�3 1.7691�3 1.7515�3 1.7598�3 1.7502�3 1.7585�3

Fig. 4. Critical temperature ratio versus thickness-to-width ratio for plates with lay-up ½0�4: (a) E11=E22 ¼ 10, (b) E11=E22 ¼ 15, (c) E11=E22 ¼ 20.

Fig. 5. Critical temperature ratio versus thickness-to-width ratio for plates with lay-up ½�22:5�s , Material M2: (a) E11=E22 ¼ 10, (b) E11=E22 ¼ 15, (c) E11=E22 ¼ 20.
0, are considered in Fig. 4, while angle-ply configurations with ply
angles at 22.5 and 45 are assumed for the plots of Figs. 5 and 6. As
done in the previous analyses, the computations are performed by
considering 20 functions along both the directions, while theory
ED554 is assumed. In agreement with the results of Ref. [28], a
reduction of the critical temperature ratio is observed for increas-
ing values of h=a and h. In addition, the effect of the boundary con-
dition can be clearly noticed from the plots, where SSSS, SCSC and



Fig. 6. Critical temperature ratio versus thickness-to-width ratio for plates with lay-up ½�45�s , Material M2: (a) E11=E22 ¼ 10, (b) E11=E22 ¼ 15, (c) E11=E22 ¼ 20.

Table 6
Comparison of critical temperatures a0Tcr for skew plates made of material M1, a=b ¼ 1 and a=h ¼ 10.

CSCS CCCC

Lay-up W Ref. [22] ED332 ED554 LD222 Ref. [22] ED332 ED554 LD222

[0/90]s 0 0.1305 0.1317 0.1306 0.1302 0.1601 0.1616 0.1603 0.1597
15 0.1340 0.1354 0.1341 0.1337 0.1618 0.1634 0.1620 0.1615
30 0.1447 0.1456 0.1451 0.1446 0.1690 0.1710 0.1693 0.1687
45 0.1523 0.1538 0.1526 0.1521 0.1893 0.1926 0.1896 0.1889

[±45]s 0 0.1360 0.1364 0.1321 0.1309 0.1609 0.1623 0.1573 0.1561
15 0.1427 0.1433 0.1386 0.1372 0.1678 0.1693 0.1639 0.1625
30 0.1625 0.1635 0.1576 0.1561 0.1886 0.1905 0.1838 0.1822
45 0.1950 0.1972 0.1893 0.1875 0.2249 0.2275 0.2185 0.2165

[±45]2s 0 0.1534 0.1539 0.1535 0.1498 0.1809 0.1819 0.1816 0.1779
15 0.1611 0.1616 0.1611 0.1571 0.1887 0.1897 0.1894 0.1854
30 0.1835 0.1842 0.1835 0.1786 0.2121 0.2133 0.2130 0.2080
45 0.2199 0.2208 0.2199 0.2134 0.2526 0.2543 0.2537 0.2468
CCCC conditions are considered. The critical temperature ratio is
seen to decrease when constraints are added to the plate. So, the
simply-supported condition represents the upper bound case,
while the fully clamped is the lower bound. Also it can be argued
from Figs. 4–6 that highest amounts of the material orthotropy
ratios have the effect of reducing the critical temperature ratio.

4.1.4. Example 3
To illustrate the generality of the proposed implementation, the

results are now presented for a set of skew composite plates sub-
jected to arbitrary boundary conditions. The panels are character-
ized by the geometric ratios a=b ¼ 1, a=h ¼ 10 and skew angle W;
the thermoelastic properties are those of material M1. The compar-
ison is presented between the results obtained with different the-
ories and the critical temperatures obtained by Kant and Babu [22]
using HSDT finite elements. The results are summarized in Table 6
for two different sets of boundary condition, CSCS and CCCC. The
first and the third entries refer to the constraints of the oblique
sides of the panels, which are clamped in both cases. Very close
agreement can be noticed between the present results and those
of Ref. [22].

4.2. Sandwich plates

4.2.1. Example 4
Results are now presented for sandwich configurations. The

first assessment regards the cross-ply configuration discussed in
Refs. [30,39]. It consists of a square sandwich panel with ten-
layer face-sheets made of material M3 with stacking sequence
½0=90�5s. The 0 plies are at the outer top and bottom surface, guar-
anteeing the symmetry of the panel stacking sequence. The core
properties are those of material C1. The panel is simply-
supported along its four edges. Two nondimensional parameters
are made vary in the analyses, namely the length-to-thickness
ratio a=h, and the ratio between the face-sheet thickness versus
the panel thickness hf=h.

It is well known that the need for refined theories becomes
increasingly relevant as the values of a=h diminish and those of
hf=h increase. In fact, a refined transverse response is more impor-
tant when the plate becomes thick and the stress gradients become
more abrupt, which occurs when the stiff faces increase their thick-
ness in comparison with the soft core. The results are summarized
in Table 7, and are obtained by considering different theories and
different shape functions. In particular, the first set of results is
obtained by considering the layerwise LD222 theory in conjunction
with a trigonometric expansion. Calculations are performed by
forcing the buckling mode to be of global type, i.e. assuming a
deflected pattern characterized by one single half-wave along the
two orthogonal directions x and y. Under this assumption, local
instabilities are prevented and close matching with the reference
results is achieved. This combination of kinematic theory and
shape functions is the same proposed by Fazzolari and Carrera in
[39] and, in fact, perfect matching is obtained with the results
obtained by the authors. Good agreement is also observed with
the 3D results of Ref. [30]. Again, it is worth highlighting that the
exact solution of this problem is characterized by a trigonometric
displacement field, thus one single trigonometric function can cap-
ture the exact shape of one of the buckling modes. The remaining



Table 7
Comparison of critical temperatures a0Tcr for square SSSS sandwich plates with face-sheet of material M1, core C1 and lay-up [0/90]5/core/[90/0]5. Note: ausing trigonometric
functions, ⁄local modes.

a=h hf=h Ref. [30] Ref. [39] Present

3D LD222 LD222 FSDT/ED332/FSDT
1�1a 1�1a 5�5 50�50

5 0.025 0.8512 0.8415 0.8411 0.8411 0.8393 0.1116⁄

0.050 0.6096 0.6018 0.6014 0.6014 0.6000 0.1188⁄

0.075 0.4692 / 0.4662 0.4662 0.4655 0.1267⁄

0.100 0.3820 0.3819 0.3816 0.3816 0.3814 0.1358⁄

0.150 0.2805 0.2850 0.2849 0.2849 0.2855 0.1582⁄

10 0.025 0.3220 0.3191 0.3190 0.3190 0.3188 0.2148⁄

0.050 0.2737 0.2705 0.2705 0.2705 0.2702 0.2216⁄

0.075 0.2358 / 0.2335 0.2335 0.2333 0.2285
0.100 0.2072 0.2052 0.2051 0.2051 0.2050 0.2050
0.150 0.1632 0.1654 0.1653 0.1653 0.1654 0.1654

20 0.025 0.0929 0.0924 0.0924 0.0924 0.0924 0.0924
0.050 0.0855 0.0853 0.0853 0.0853 0.0853 0.0853
0.075 0.0791 / 0.0786 0.0786 0.0786 0.0786
0.100 0.0726 0.0727 0.0727 0.0727 0.0727 0.0727
0.150 0.0623 0.0627 0.0627 0.0627 0.0627 0.0627
results in the table are calculated by adopting a sublaminate
description of the panel, where the face-sheets are modeled with
FSDT theory, and the core with ED332. In this case, the number of
theory-related degrees of freedom is equal to 15, against the 189
required by LD222. As seen form Table 7, the accuracy of the predic-
tions is not affected by the drastic reduction of the problem size,
and the results are identical to those computed with LD222. The
advantage of a sublaminate representation against a purely layer-
wise is thus clear. In the last two columns, Legendre-type functions
are adopted, with 5 and 50 terms along the two directions. The
results obtained with 5 functions are in good agreement with those
obtained with 1 trigonometric function. The predicted buckling
modes are still of global type, and the corresponding eigenvalues
resemble those previously obtained. However, local buckling
modes are detected – they are labeled with an asterisk in Table 7
– when the number of functions is raised up to 50. These modes
are observed for the thickest configurations and were not reported
in past studies due, presumably, to the premature truncation of the
series to approximate the unknown fields. The results here
reported are those obtained using 50 functions, but the authors
cannot exclude that lower eigenvalues can be found if the expan-
sion is further enriched. Given the size of the problem and the
computational costs associated with a larger number of functions,
ad hoc analysis tools would be needed.
Table 8
Comparison of critical temperatures a0Tcr for square SSSS sandwich plates with face-she
functions, ⁄local modes.

a=h hf=h h Ref. [26]

5 0.15 0 0.1837
15 0.2109
30 0.2702
45 0.3311

10 0.15 0 0.09938
15 0.1285
30 0.1916
45 0.2201

20 0.15 0 0.03820
15 0.05530
30 0.08845
45 0.09679
4.2.2. Example 5
The critical temperatures of angle-ply sandwich configurations

are presented in Table 8, where the comparison is presented
against the results obtained by Matsunaga [26]. The face-sheets
have lay-up ½�h�5, and are realized with material M3, with the plies
oriented at +h on the external faces. The core is made of material
C1. Simply-supported boundary conditions are assumed. The
results are obtained by considering a purely layerwise approach
LD222, and a sublaminate description FSDT/ED332/FSDT. For consis-
tency with Ref. [26], a first set of results is derived by considering
2 � 1 trigonometric functions. The two remaining set of analyses
are performed with Legendre polynomials and 5 � 5 and 50 � 50
functions.

The results demonstrate relatively good agreement with Mat-
sunaga, as the present predictions are slightly smaller. The reason
for this discrepancy is believed to be related with the higher refine-
ment of the theories here considered, both in the case of the layer-
wise approach and the sublaminate one, in contrast to the
equivalent single layer description of Ref. [26]. Also for this case,
the results demonstrate the excellent accuracy versus computa-
tional cost of the sublaminate models. As a matter of fact, the crit-
ical temperatures are as accurate as those determined with a
layerwise approach, while requiring less than one tenth of the
theory-related degrees of freedom. As seen from Table 8, local
et of material M1, core C1 and lay-up [�h]5/core/[	h]5. Note: ausing trigonometric

LD222 FSDT/ED332/FSDT
2�1a 2�1a 5�5 50�50

0.1757 0.1739 0.1741 0.1582⁄

0.2037 0.2024 0.2023 0.1582⁄

0.2610 0.2609 0.2608 0.1582⁄

0.3216 0.3228 0.3225 0.1581⁄

0.0960 0.0955 0.0957 0.0955
0.1258 0.1254 0.1254 0.1252
0.1874 0.1873 0.1873 0.1871
0.2174 0.2178 0.2176 0.2175

0.0373 0.0373 0.0374 0.0373
0.0551 0.0551 0.0551 0.0550
0.0893 0.0894 0.0894 0.0893
0.0977 0.0978 0.0978 0.0977



Fig. 7. Comparison of critical temperatures for angle-ply sandwich plates with a=h=20, lay-up ½�h�5=core=½	h�5 and different boundary conditions: (a) SSSS, (b) CCCC.

Fig. 8. Critical temperatures obtained with ED332/ED332/ED332 for sandwich plates with a=h ¼ 20, lay-up ½�h�5=core=½	h�5 and different boundary conditions: (a) SSSS, (b)
CCCC.
buckling modes are detected when increasing the number of func-
tions up to 50 for two of the configurations analyzed, i.e. a thick
plate (a/h = 5) and h equal to 30.

4.2.3. Example 6
Further results are proposed in Fig. 7, where the nondimen-

sional critical temperatures are reported for sandwich plates with
same materials and lay-ups as in the previous example, and a geo-
metric ratio a=h fixed at 20. The results for simply-supported con-
ditions are presented in Fig. 7(a), while those of a fully clamped
panel in Fig. 7(b). The comparison is reported against the results
obtained by Babu and Kant [21] that utilized HOST9 isoparametric
finite elements, based on third-order description of the in-plane
displacement components, and a zero order representation of the
out-of-plane displacement component. For consistency, the results
are firstly computed with ED330 theory, and a number of 20 � 20
functions. The results reveal good correspondence with Babu
and Kant, and the effects of the ply orientation and the face-
to-thickness ratio on the panel critical temperature are correctly
captured. Also the effect of different boundary conditions is in
agreement with Ref. [21]. With the aim of providing additional
results to be used for future benchmarking, the plots obtained
using a sublaminate theory ED332/ED332/ED332 are presented in
Fig. 8. In addition, the results are summarized in tabular form in
Table 9.

4.2.4. Example 7
Finally, an investigation over the effect of the pre-buckling

deformations is discussed with regard to sandwich plates. In par-
ticular, the critical temperature ratio is calculated for angle-ply
configurations with face-sheets of material M3 at ½�h�5 and core
of material C1. The results are obtained by means of a sublaminate
ED332/ED332/ED332 description of the panel, chosen to guarantee
high accuracy of the results.

The charts relative to a ply angle h of 22.5 are reported in Fig. 9,
where two distinct values of hf=h are assumed. In particular, they



Table 9
Nondimensional critical temperatures 102a0Tcr obtained with ED332/ED332/ED332 for sandwich plates with a=h ¼ 20, lay-up [�h]5/core/[	h]5.

hf=h
h 0.10 0.075 0.05 0.025

SSSS 0 4.3453 4.7196 5.1514 5.6427
15 6.5230 7.1710 7.9427 8.8509
30 10.5539 11.5789 12.7781 14.1329
45 11.5973 12.7675 14.1507 15.7346
60 10.3761 11.4151 12.6426 14.0480
75 6.3944 7.0472 7.8342 8.7758
90 4.2727 4.6508 5.0922 5.6024

CCCC 0 7.5896 8.5643 9.8306 11.4972
15 9.2393 10.5055 12.2680 14.8725
30 14.8500 17.0741 20.1931 24.8912
45 18.1054 20.5678 23.8258 28.2761
60 14.6330 16.7751 19.8024 24.4604
75 8.9355 10.1530 11.8755 14.5345
90 7.3373 8.2830 9.5915 11.3277

Fig. 9. Critical temperature ratios for sandwich plates with ½�22:5�5=core=½	22:5�5, and different face-sheet ratios: hf=h ¼ 0:05, (b) hf=h ¼ 0:10.

Fig. 10. Critical temperature ratios for sandwich plates with ½�45�5=core=½	45�5, and different face-sheet ratios: hf=h ¼ 0:05, (b) hf=h ¼ 0:10.



Table 10
Critical temperature ratios TL

cr=T
NL
cr for sandwich plates with [�h]5/core/[	h]5.

h h=a hf=h = 0.05 hf=h = 0.10

SSSS SCSC CCCC SSSS SCSC CCCC

22.5 1/20 0.7057 0.6827 0.6053 0.7600 0.7383 0.6979
1/40 0.9154 0.9072 0.8565 0.9247 0.9181 0.8803
1/60 0.9614 0.9572 0.9304 0.9652 0.9616 0.9395
1/80 0.9781 0.9756 0.9594 0.9802 0.9780 0.9641
1/100 0.9859 0.9843 0.9735 0.9872 0.9858 0.9764

45 1/20 0.6197 0.4870 0.3815 0.6856 0.5952 0.5155
1/40 0.8921 0.8386 0.7956 0.9052 0.8607 0.8253
1/60 0.9509 0.9248 0.9035 0.9559 0.9333 0.9149
1/80 0.9721 0.9568 0.9441 0.9748 0.9613 0.9501
1/100 0.9821 0.9721 0.9638 0.9838 0.9749 0.9675
are taken equal to 0.05 in Fig. 9(a) and 0.10 in Fig. 9(b). Similarly,
the case of h equal to 45 is considered in Fig. 10.

The results demonstrate the same trends observed for the
monolithic plates. However, the effect of pre-buckling deforma-
tions is much more relevant in the case of sandwich panels. The
critical temperature ratio diminishes for increasing values of h
and h=a, thus thick configurations are those associated with more
relevant pre-buckling effects. The same role is played by the intro-
duction of constraints, and fully clamped panels are those charac-
terized by the lowest temperature ratios. As seen from the four
charts on Figs. 9 and 10, higher ratios hf=h have the effect of reduc-
ing the relevance of the pre-buckling effects. For facilitating future
benchmarking, the results of Figs. 9 and 10 are summarized in
Table 10.

5. Conclusions

A variable-kinematics model based on the Sublaminate Gener-
alized Unified Formulation has been presented with regard to the
thermal buckling analysis. The solution procedure is based on the
Ritz method, where both Legendre polynomials and trigonometric
shape functions were considered for approximating the displace-
ment field. The results illustrate the advantages offered by Legen-
dre polynomials in terms of rapidity of convergence. Exceptions are
clearly represented by those case for which the exact solution is
trigonometric.

Main advantage of the proposed approach consists in the flexi-
bility offered to the analyst to select different kinematic theories
for different clusters of plies. This possibility can be exploited for
optimizing the accuracy versus the number of theory-related
degrees of freedom, with consequent beneficial effects on the time
for the analysis. The accuracy of the results has been demonstrated
by comparison against reference solutions, including three-
dimensional results, both for monolithic and sandwich plates. In
this second case, a proper choice of the sublaminate theories
allowed to derive critical temperatures with accuracy comparable
to the layerwise predictions, but demanding for much less degrees
of freedom.

The excellent accuracy of the results is not restricted to the lin-
ear eigenvalue predictions, but includes the nonlinear results
obtained by considering the pre-buckling deformations. With this
regard, and in light of the few results available in the literature,
novel reference solutions were presented with and without
accounting for the pre-buckling effects. The role played by the
lay-up anisotropy, boundary conditions, orthotropy and length-
to-thickness ratios was illustrated. The results here obtained do
not account for temperature-dependent properties, which may
have a relevant impact on the cases here considered, and which
is subject of future investigations.
Appendix A. Appendix

A.1. Through-the-thickness integrals

Denote the assembly procedure of the thickness integrals with
the following notation:

h�i ¼ ANk

k A
Nk
p

p � ð56Þ
where the assembly is performed twice, at ply and at sublaminate
level. The resulting expressions of the thicknesswise contributions
are:
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where:
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A.2. Stiffness matrix

Kuxux ¼ I1010
uxux � Zuxux11 þ ðI1001

uxux þ I0110
uxux Þ � Zuxux16 þ I0101

uxux � Zuxux66

þI0000
uxux � Z@ux@ux55

Kuxuy ¼ I1001
uxuy � Zuxuy12 þ I1010

uxuy � Zuxuy16 þ I0101
uxuy � Zuxuy26

þI0110
uxuy � Zuxuy66 þ I0000

uxuy � Z@ux@uy45

Kuxuz ¼ I0010
uxuz � Z@uxuz55 þ I0001

uxuz � Z@uxuz45 þ I1000
uxuz � Zux@uz13

þI0100
uxuz � Zux@uz36

Kuyuy ¼ I0101
uyuy � Zuyuy22 þ ðI0110

uyuy þ I1001
uyuy Þ � Zuyuy26 þ I1010

uyuy � Zuyuy66

þI0000
uyuy � Z@uy@uy44

Kuyuz ¼ I0010
uyuz � Z@uyuz45 þ I0001

uyuz � Z@uyuz44 þ I0100
uyuz � Zuy@uz23

þI1000
uyuz � Zuy@uz36

Kuzuz ¼ I1010
uzuz � Zuzuz55 þ ðI1001

uzuz þ I0110
uzuz Þ � Zuzuz45 þ I0101

uzuz � Zuzuz44
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ð60Þ



[26] Matsunaga H. Thermal buckling of angle-ply laminated composite and 
sandwich plates according to a global higher-order deformation theory. 
where the generic thickness integral is
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References

[1] Thornton EA. Thermal structures for aerospace applications. Reston,
Virginia: AIAA; 1996.

[2] Hyer MW. Stress analysis of fiber-reinforced composite materials. New
York: McGraw-Hill; 1998.

[3] Jones RM. Buckling of bars, plates, and shells. Blacksburg, VA: Bull Ridge
Corporation; 2006.

[4] Jones RM. Thermal buckling of uniformly heated unidirectional and symmetric
cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained
simply supported rectangular plates. Compos Part A: Appl Sci Manuf 2005;36
(10):1355–67.

[5] Nemeth MP. Buckling behavior of long anisotropic plates subjected to fully
restrained thermal expansion. TP 2003-212131, NASA; 2003.

[6] Li J, Narita Y, Wang Z. The effects of non-uniform temperature distribution and
locally distributed anisotropic properties on thermal buckling of laminated
panels. Compos Struct 2015;119:610–9.

[7] Li J, Tian X, Han Z, Narita Y. Stochastic thermal buckling analysis of laminated
plates using perturbation technique. Compos Struct 2016;139:1–12.

[8] Duran AV, Fasanella NA, Sundararaghavan, Waas AM. Thermal buckling of
composite plates with spatial varying fiber orientations. Compos Struct
2015;124:228–35.

[9] Tauchert TR. Thermal buckling of thick antisymmetric angle-ply laminates. J
Therm Stresses 1987;10(2):113–24.

[10] Noor AK, Peters JM. Thermomechanical buckling of multilayered composite
plates. J Eng Mech 1992;118(2):351–66.

[11] Kandasamy R, Dimitri R, Tornabene F. Numerical study on the free vibration
and thermal buckling behavior of moderately thick functionally graded
structures in thermal environments. Compos Struct 2016;157:207–22.

[12] Chang JS, Shyue SY. Thermal buckling analysis of antisymmetric angle-ply
laminates based on a higher-order displacement field. Compos Sci Technol
1991;41(2):109–28.

[13] Chang JS. A further study on thermal buckling of simply supported
antisymmetric angle-ply laminates in a uniform-temperature field. Compos
Sci Technol 1992;43(4):309–15.

[14] Rohwer K. Letter to the editor. Compos Sci Technol 1992;45:181–2.
[15] Dafedar JB, Desai YM. Thermomechanical buckling of laminated composite

plates using mixed, higher-order analytical formulation. J Appl Mech 2002;69
(6):790–9.

[16] Lo SH, Zhen W, Cheung YK, Wanji C. Hygrothermal effects on multilayered
composite plates using a refined higher order theory. Compos Struct 2010;92
(3):633–46.

[17] Lee J. Thermally induced buckling of laminated composites by a layerwise
theory. Comput Struct 1997;65(6):917–22.

[18] Cetkovic M. Thermal buckling of laminated composite plates using layerwise
displacement model. Compos Struct 2016;142:238–53.

[19] Ko WL, Jackson RH. Compressive and shear buckling analysis of metal matrix
composite sandwich panels under different thermal environments. Compos
Struct 1993;25(1–4):227–39.

[20] Libove C, Batdorf SB. A general small-deflection theory for flat sandwich plates.
TN 1526, NACA; 1948.

[21] Babu CS, Kant T. Refined higher order finite element models for thermal
buckling of laminated composite and sandwich plates. J Therm Stresses
2000;23(2):111–30.

[22] Kant T, Babu CS. Thermal buckling analysis of skew fibre-reinforced composite
and sandwich plates using shear deformable finite element models. Compos
Struct 2000;49(1):77–85.

[23] Frostig Y, Thomsen OT. Thermal buckling and postbuckling of sandwich panels
with a transversely flexible core. AIAA J 2008;46(8):1976–89.

[24] Pradeep V, Ganesan N, Bhaskar K. Vibration and thermal buckling of composite
sandwich beams with viscoelastic core. Compos Struct 2007;81(1):60–9.

[25] Matsunaga H. Thermal buckling of cross-ply laminated composite and
sandwich plates according to a global higher-order deformation theory.
Compos Struct 2005;68(4):439–54.
[27] Matsunaga H. Free vibration and stability of angle-ply laminated composite
and sandwich plates under thermal loading. Compos Struct 2007;77
(2):249–62.

[28] Noor AK, Burton WS. Three-dimensional solutions for thermal buckling of
multilayered anisotropic plates. J Eng Mech 1992;118(4):683–701.

[29] Noor AK, Burton WS. Three-dimensional solutions for the thermal buckling
and sensitivity derivatives of temperature-sensitive muitilayered angle-ply
plates. J Appl Mech 1992;59(4):848–56.

[30] Noor AK, Peters AK, Jeanne M, Burton WS. Three-dimensional solutions for
initially stressed structural sandwiches. J Eng Mech 1994;120(120):284–303.

[31] Carrera E. A class of two-dimensional theories for anisotropic multilayered
plates analysis. Atti Accademia delle Scienze di Torino. Memorie Scienze
Fisiche 1995;19:1–39.

[32] Carrera E. Theories and finite elements for multilayered plates and shells: a
unified compact formulation with numerical assessment and benchmarking.
Arch Comput Methods Eng 2003;10(3):215–96.

[33] Carrera E, Brischetto S. A survey with numerical assessment of classical and
refined theories for the analysis of sandwich plates. Appl Mech Rev 2009;62
(1):010803.

[34] Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN, Mota
Soares CM. Static, free vibration and buckling analysis of isotropic and
sandwich functionally graded plates using a quasi-3d higher-order shear
deformation theory and a meshless technique. Compos Part B: Eng 2013;44
(1):657–74.

[35] Ferreira AJM, Araujo AL, Neves AMA, Rodrigues JD, Carrera E, Cinefra M, Mota
Soares CM. A finite element model using a unified formulation for the analysis
of viscoelastic sandwich laminate. Compos Part B: Eng 2013;45(1):1258–64.

[36] D’Ottavio M. A Sublaminate Generalized Unified Formulation for the analysis
of composite structures. Compos Struct 2016;142:187–99.

[37] D’Ottavio M, Dozio L, Vescovini R, Polit O. Bending analysis of composite
laminated and sandwich structures using sublaminate variable-kinematic Ritz
models. Compos Struct 2016;155:45–62.

[38] Nali P, Carrera E. Accurate buckling analysis of composite layered plates with
combined thermal and mechanical loadings. J Therm Stresses 2013;36:1–18.

[39] Fazzolari FA, Carrera E. Thermo-mechanical buckling analysis of anisotropic
multilayered composite and sandwich plates by using refined variable-
kinematics theories. J Therm Stresses 2013;36(4):321–50.

[40] Fazzolari A. Natural frequencies and critical temperatures of functionally
graded sandwich plates subjected to uniform and non-uniform temperature
distributions. Compos Struct 2015;121:197–210.

[41] Carrera E. Temperature profile influence on layered plates response
considering classical and advanced theories. AIAA J 2002;40(9):1885–96.

[42] Carrera E. Transverse normal strain effect on thermal stress analysis of
homogeneous and layered plates. AIAA J 2005;43(10):2232–42.

[43] Demasi L. 16 mixed plate theories based on the Generalized Unified
Formulation. Part I: Governing equations. Compos Struct 2009;87(1):1.

[44] Demasi L. 16 mixed plate theories based on the Generalized Unified
Formulation. Part II: Layerwise theories. Compos Struct 2009;87(1):12–22.

[45] Demasi L. 16 mixed plate theories based on the Generalized Unified
Formulation. Part III: advanced mixed high order shear deformation
theories. Compos Struct 2009;87(3):83–194.

[46] Dozio L, Carrera E. Ritz analysis of vibrating rectangular and skewmultilayered
plates based on advanced variable-kinematic models. Compos Struct 2012;94
(6):2118–28.

[47] Dozio L. Refined 2-D theories for free vibration analysis of annular plates:
Unified Ritz formulation and numerical assessment. Comput Struct
2015;147:250–8.

[48] Vescovini R, Dozio L. A variable-kinematic model for variable stiffness plates:
vibration and buckling analysis. Compos Struct 2016;142:15–26.

[49] Reddy JN. Mechanics of laminated composite plates and shells: theory and
analysis. Boca Raton: CRC Press; 2004.

[50] Carrera E, Brischetto S. Analysis of thickness locking in classical, refined and
mixed multilayered plate theories. Compos Struct 2008;82(4):549–62.

Compos Struct 2006;72(2):177–92.

http://refhub.elsevier.com/S0263-8223(17)30909-1/h0005
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0005
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0010
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0010
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0015
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0015
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0020
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0020
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0020
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0020
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0030
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0030
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0030
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0035
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0035
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0040
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0040
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0040
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0045
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0045
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0050
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0050
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0055
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0055
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0055
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0060
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0060
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0060
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0065
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0065
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0065
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0070
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0075
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0075
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0075
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0080
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0080
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0080
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0085
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0085
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0090
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0090
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0095
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0095
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0095
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0105
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0105
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0105
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0110
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0110
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0110
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0115
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0115
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0120
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0120
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0125
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0125
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0125
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0130
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0130
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0130
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0135
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0135
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0135
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0140
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0140
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0145
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0145
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0145
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0150
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0150
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0155
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0155
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0155
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0160
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0160
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0160
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0165
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0165
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0165
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0170
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0170
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0170
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0170
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0170
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0175
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0175
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0175
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0180
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0180
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0185
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0185
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0185
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0190
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0190
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0195
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0195
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0195
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0200
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0200
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0200
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0205
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0205
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0210
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0210
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0215
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0215
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0215
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0220
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0220
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0220
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0225
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0225
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0225
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0225
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0230
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0230
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0230
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0235
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0235
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0235
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0240
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0240
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0245
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0245
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0250
http://refhub.elsevier.com/S0263-8223(17)30909-1/h0250

	Thermal buckling response of laminated and sandwich plates using refined 2-D models
	1 Introduction
	2 Formulation
	2.1 Strain–displacement relations
	2.2 Hooke’s law
	2.3 Pre-buckling state
	2.4 Buckling condition

	3 Ritz approximate solution
	4 Results
	4.1 Monolithic plates
	4.1.1 Convergence analysis
	4.1.2 Example 1
	4.1.3 Example 2
	4.1.4 Example 3

	4.2 Sandwich plates
	4.2.1 Example 4
	4.2.2 Example 5
	4.2.3 Example 6
	4.2.4 Example 7


	5 Conclusions
	Appendix A Appendix
	A.1 Through-the-thickness integrals
	A.2 Stiffness matrix

	References


