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A 1D nonlinear finite element model for analysis of composite foam-
insulated concrete sandwich panels

M. Lezgy-Nazargah, P. Vidal, O. Polit

1. Introduction

Due to specific properties such as high thermo-acoustic efficiency,
high blast resistance, high workability and low self-weight character-
istics, foam-insulated concrete sandwich panels are nowadays applied
extensively in constructions of various civil engineering structures. As
shown in Fig. 1, the FICSP structures are made of insolation foam,
concrete, shear connectors, longitudinal rebar and welded wire re-
inforcements (WWR). The connectivity between the upper and lower
concrete layers, which are referred as wythes, is provided using shear
connectors. Different materials like polystyrene, fiberglass and rock
wool are used for insulation layer. The expanded polystyrene (EPS) and
extruded expanded polystyrene (XEPS) are the most common materials
which are used for the insolation foams [1]. Dayton superior delta tie,
Thermomass rod, standard steel C-clip and universal Teplo tie are some
of various types of shear connectors [2]. Without shear connectors,
there is no connection between concrete wythes and insulation layer. In
this case, the FICSP has non-composite action and slip occurs at the
interfaces between concrete wythes and insulation layer when it is bent.
When a FICSP has sufficient number of shear connectors, its constituent
layers will act together as a single unit to resist bending. In this case, it
will have a fully composite action and no slip occurs at the interface
between concrete wythes and insulation layer. It has been observed that
generally the composite action of FICSPs is somewhere between the

fully composite action and the non-composite action, and is called the
partial composite action.

The mechanical behavior of FICSP structures is to some extent si-
milar to traditional sandwich structures which are fabricated by fas-
tening two thin but stiff face-sheets to a thick but lightweight core. In
both of them, there is a large difference between the mechanical
properties of core and upper/lower face-sheets. Different laminated
theories are presented until now for the analysis of traditional sandwich
structures. A finite element based on the variables separation method
was presented by Vidal et al. [3] for the thermo-mechanical analysis of
sandwich beams. Vidal and Polit [4] proposed a 6-node triangular finite
element for analysis of multilayered composite and sandwich plates
subjected to mechanical and thermomechanical loads. The formulation
of this reference is based on the sinus model with layer refinement and
it includes the transverse normal effects. An efficient finite element
method based on global-local theory was introduced by Lezgy-Na-
zargah and colleagues [5–7] for bending and vibration analyses of la-
minated composite and sandwich beams. A large variety of plate the-
ories including classical, higher order, zigzag, layerwise, and mixed
theories were described and assessed by Carrera and Brischetto [8] to
evaluate the bending and vibration of sandwich structures. By adding a
zig-zag function to displacement fields of known theories, Brischetto
et al. [9] developed higher order theories for bending analysis of
sandwich flat panels. A very flexible variable kinematics modeling
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technique based on sublaminate Generalized Unified Formulation was
proposed by D’Ottavio [10] for the analysis of laminated composite and
sandwich structures. Choe et al. [11] investigated the post-buckling
behavior of sandwich structures. They used a novel one-dimensional
layer-wise model using Euler-Bernoulli beam theory in the skins and
higher-order kinematics in the core. Shen et al. [12] studied bending
deflections of soft-core sandwich beams subject to concentrated loads.
Two correction factors to the classical deflection formula were pro-
posed by them based on the higher-order theory approach. By ex-
panding the displacement field into Fourier series, Huang et al. [13]
studied the instability phenomena of sandwich plates. Saoud and
Grognec [14] introduced an advantageous 1D finite element model to
analyze the post-buckling behavior of sandwich beams. They modeled
the thin skin layers as Timoshenko–Reissner beams. In this reference,
the complex behavior of core layer is represented by specific kinematics
involving hyperbolic functions. The buckling behavior of two-layer
shear-deformable beams with partial interaction was studied by
Grognec et al. [15]. They considered Timoshenko kinematic hypotheses
for both layers. For representing the shear connection, they assumed a
continuous relationship between the interface shear flow and the cor-
responding slip. Challamel et al. [16] studied the out-of-plane vibra-
tions of composite and sandwich beams with interlayer slip for general
boundary conditions by exact and finite element methods. For more
details about various theories and numerical models on sandwich
beams structures, the interested readers can refer to [17–20]. However,
most of these available laminate theories are not appropriate for the
structural analysis of FICSP systems. In contrast to traditional sandwich
structures which are made from metallic face sheets, FICSPs consist of
concrete wythes. Failure mode in traditional sandwich structures is
local buckling of face-sheets while the concrete cracking/crushing is the
dominant failure modes in FICSPs. Traditional sandwich structures
have a relatively high composite action and can be considered in some
extent as a “fully composite” structure. In FICSP structures, stiffness and
spacing of shear tie connectors will cause partial composite action to
occur between the foam and concrete layers.

Benayoune et al. [21] studied the structural behavior of FICSPs
made of steel truss shear connectors experimentally. Six full-scale FICSP
with variable slenderness ratio were tested under eccentric loads till
failure. Woltman et al. [22] investigated the behavior of FICSP made of
Glass fiber-reinforced polymer shear connectors via experimental tests.
Naito et al. [2] studied experimentally the blast resistance of FICSP

structures. Flexural behavior of FICSPs with FRP shear connectors was
studied numerically and experimentally by Chen et al. [23]. Carbonari
et al. [24] studied experimentally the flexural behavior of FICSPs
containing inclined shear connectors under different boundary condi-
tions. Using 2D finite element model and considering both geometrical
and material nonlinearities, Benayoune et al. [25] studied the axial
strength capacity of FICSP structures. They also carried out full scale
tests in order to validate their finite element model. Bai and Davidson
[26] introduced an analytical solution for the analysis of simply sup-
ported FICSP structures in elastic regime. They considered the effects of
both partial composite action and shear deformation of insulation layer
in formulations. With considering the nonlinear behavior of foam,
concrete and rebar, Kang [27] used a 3D nonlinear finite element model
(ABAQUS) for simulating the structural behavior of FICSPs. In [27], the
multi-point constraints method is used for modeling the shear con-
nectors.

The review of open literature shows that most of research works on
FISCP structures are experimental studies. The 2D and 3D finite element
models introduced for the structural analysis of FISCPs are computa-
tionally expensive methods and cannot be used for the practical design
purposes. To fill this gap, a new displacement-based materially non-
linear 1D finite element model with low number of degrees of freedom
(DOFs) is introduced for the flexural analysis of FISCP structures.
Thanks to introducing a Sine function in the assumed displacement
fields, the presented finite element model takes into account the
transverse shear deformations induced in concrete wythe and middle
insolation layers. The partial composite action of FISCP has been
modeled based on spring layer model concept. Shear correction factor is
not needed in the presented nonlinear formulation and the zero con-
ditions of the transverse shear stress on the external plane of concrete
wythes are fulfilled exactly. Max stress failure criterion is used for the
detection of failure in insulation layer. Elasto-plastic model is used for
modeling the material nonlinearity of steel rebar. The material acting
manner of concrete after tensile crack is modeled via smeared crack
method while the elasto-plastic model is employed for capturing the
compressive behavior of concrete. A standard 1D displacement-based
nonlinear finite element model is derived for solving the governing
differential equations. The developed element has three nodes and 22
DOFs. The full-scale experimental data, the 3D finite element results
and other analytical approaches have been used to validate the present
formulation.

2. Coordinate system and kinematic

As shown in Fig. 2a, the considered FISCP structure is made of three
main constituent elements: top concrete wythe, insulation layer and
bottom concrete wythe. In this figure, the chosen coordinate systems for
constituent elements are also shown. The coordinate systems are taken
so that the coordinate plane y-z lies on the cross-section symmetry
plane of the FISCP structure. Each constituent element of FISCP is di-
vided into a series of sub-layers. Although the material property and
strain at each constituent element are independent on the number of
sub-layers, the sub-layer discretization is required for the purpose of
materially nonlinear analysis. As shown in Fig. 2b, longitudinal steel
rebar embedded in top and bottom concrete wythes are treated as being
steel layers with equivalent thickness t A b/s s= (where As is the total
cross-section area of steel rebar in each wythe). These equivalent steel
layers are placed at the centerline of the longitudinal steel rebar.

The following expressions are defined for representing the axial (Ui)
and transverse displacement (Wi ) in insolation layer and two concrete
wythes:

U x y z u x z w x
x

h z
h

x w x
x

( , , ) ( ) ( ) sin ( ) ( )
i

k
i i i

i i

i
i

( )
0= + +

(1.a)

Fig. 1. Main constituent elements of the typical FISCP structures.
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where subscript i= t, m, b denote the top concrete wythe, insolation
layer and bottom concrete wythe, respectively. Superscript k represents
the sub-layer number. u i0 is the axial displacement at mid-plane of each
constituent element. hi denotes the total thickness of insulation/wythe
layers. The shear-bending rotation of constituent elements around the y
axis is represented with x( )i . w denotes the transverse displacement of
FICSPs whose variations are assumed to be constant along the thickness
direction of FICSP system. From Eq. (1), it is seen that the assumed
kinematic has only seven global unknown variables: u b0 , w, b, u m0 , m,
u t0 , t.

Using the well-known strain-displacement relations, axial and shear
strains at the kth sub-layer of FICSP can be determined from the fol-
lowing relations:
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It is easy to find from Eq. (2) that the transverse shear stress xz
becomes zero at z h /2t t= and z h /2b b= . Thus, the considered kine-
matic does not need the shear correction factor. The geometrically
nonlinear effects are not considered in the present formulation since
FICSP structures are not generally designed to operate in this regime.

Due to the partial composite action of shear ties, relative sliding will
appear at the interface between the insolation layer and concrete
wythes. This phenomenon has been modeled using distributed elastic
shear springs which are placed at the interfaces between insulation
layer and concrete wythes. The stiffness of these distributed springs

may be approximated based on the real tangential stiffness of shear ties
and distance between them. The slip at the interface between insulation
layer and top concrete wythe can be determined as follow:

s U x z h U x z h u x u x

h h h h w x
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h x h
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( /2 /2 / / ) ( ) ( / ) ( ) ( / )
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(3)

Similarly, the relative sliding at the interface between the bottom
concrete wythe and insulation layer can be approximated as:
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3. Constitutive relations

3.1. Insulation layer

Before the occurrence of failure, the following linear elastic beha-
vior is assumed for the kth sub-layer of insulation layer:

E
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( )
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(5.a)

or

Dm
k

m
k

m
k( ) ( ) ( )= (5.b)

where Gxz
m and Exx

m are shear and Young's modulus of insulation layer,
respectively. The Maximum stress criterion is used for detecting the
occurrence of failure in the insulation layer. Based on this criterion, the
failure occurs at a point in the insulation layer when the stress com-
ponents satisfy one of the below conditions [28]:

X ( 0)xx t xx > (6.a)

X ( 0)xx c xx < (6.b)

S| |xz xz (6.c)

where Xc, Xt and Sxz denote uniaxial compressive strength, uniaxial
tensile strength and shear strength in x-z plane, respectively. After
failure, the elastic constants of insulation layer degrade to zero [28].

3.2. Steel rebar

It is assumed that no slip occurs at the interface between steel rebar
and concrete wythes. The constitutive relations for the kth equivalent
steel layer can be expressed as follow:
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0
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k
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k

s
E

v
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( )

( )s
s
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s and Es are Poisson's ratio and Young's modulus of the steel layers,
respectively. The above relation can be written as the following matrix
form:

Ds
k

s
k

s
k( ) ( ) ( )= (8)

Elasto-plastic model is considered for the material behavior of steel
layers after yielding. In this condition, the incremental constitutive
equations revert to

Dd ds
k t

s
k

s
k( ) ( ) ( )= (9)

where

Fig. 2. Coordinate system and typical geometry of FICSPs: (a) side view, (b)
cross-section.
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and f ( ) is the von Mises yield function. The expression of f ( ) is
given in Appendix A.

3.3. Concrete wythes

Before cracking/crushing, the following linear elastic behavior is
assumed for the kth concrete layer:
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where c and Ec denote Poisson's ratio and Young's modulus of concrete.
In this study, smeared crack modeling is adopted for representing the
behavior of concrete after tensile cracking. According to this con-
stitutive model, the incremental stress–strain relations at a point after
concrete cracking revert to:
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c
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c
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where denotes the shear retention factor whose range is between 0
and 1. The subscripts 1 and 3 are direction perpendicular and parallel to
the tensile crack, respectively. In this study, the constant value

0.001= is assumed for the shear retention factor. Interested readers
can refer to [29] for more details about the proper selection of shear
retention factor.

Concerning the material behavior of concrete after compressive
crushing, elasto-plastic model is employed.

4. Finite element formulation

The standard finite element method is used for solving the gov-
erning differential equations of the FICSPs. By adopting suitable inter-
polation schemes for the unknown displacement field variables, the
finite element formulation is derived from the following virtual work
principle:

u P u P

A dx b s ks dx b s ks dx

dx dV
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¯ ¯ 0

T
e

l i i i

e

l tm tm
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e e e

e e
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Ai, P̄i and P̄i
V denote the cross-section area, surface and body force

vectors, respectively. i= t, m, b and k̄is the equivalent stiffness of the
shear ties. le and Ve denote the length and volume of elements, re-
spectively. e is the total number of elements.

Since the unknown field variables of the FICPS are only function of x
coordinate, a 1D finite element formulation is adopted. The variations
of transverse displacement w(x) within each element are approximated
using Hermite shape functions. Other displacement field variables are
approximated using quadratic Lagrangian shape functions. Thus, one
can write the vector of displacement variables with respect to the nodal
displacement vector as below:

u Nu e= (13)

where u u w u u{ }T b b m m t t0 0 0= , N N N N[ ]1 3 2= ,

u u u u{ }e e e e1 3 2T = . The expression for N1 , N3 , N2 , ue 1, ue 3 and ue 2

are given in Appendix A. The considered three-nodded element and
corresponding nodal variables are shown in Fig. 3.

It should be pointed here that the linear or cubic Lagrangian shape
functions may be used for interpolating of u i0 and i (i= t, m, b).
However, previous published results [30–32] show that the selection of
the same order of interpolation for w x, and i in the expression of
transverse shear strain ( )i13 , prevents from the appearance of shear
locking phenomenon.

The kinematic relations considered for the constituent elements of
the FICSP (Eqs. (1)) can be written as the following matrix form:

U A ut t= (14.a)

U A um m= (14.b)

U A ub b= (14.c)

where { }U U Wi i
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By substituting Eq. (13) into Eq. (14), the vector of global dis-
placements Ui can be written with respect to the nodal displacement
vector u e:

U A Nu ue e
i i i= = (15)

The strain components of FICSP can be rewritten as the below
matrix form:
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Fig. 3. The three-node FICSP element and related degrees of freedom.
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Substituting of Eq. (13) into Eqs. (16) yields:

C Nu ue e
i i i= = (17)

Based on Eqs. (3) and (4), the slips appeared at the interface between
the concrete wythe and insulation layer can be written as the following
matrix form:
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h h h h d

dx
h h

tm
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2 2
m t t m m t= + =

(18.a)
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2 2
b m m b b m= + =

(18.b)

Substituting of Eq. (13) into the above equations gives:
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By introducing the interpolation functions (Eq. (13)) in the virtual
work principle (Eq. (12)), the element load vector is obtained as
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After introducing the constitutive relations (Eqs. (5)(11)) as well as
the strain-nodal variables relations (Eq. (17)) in the virtual work
principle, the following expression is obtained for the element stiffness
matrix:
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nt , nm, nb, nsband nst are the number of sub-layers of top concrete
wythe, insulation layer, bottom concrete wythe, top equivalent steel
layer, and bottom equivalent steel layer, respectively. is the local
coordinate of FICSP elements. Summing the element contributions, the
following final nonlinear system of equations are obtained from the
application of the virtual work principle:

K u F[ ]{ } { }T T= (22)

where

K K F F u u[ ] , { } , { }T T

e
e

e
e

e
e= = =

Since the nonlinear behavior of insolation layer, steel and concrete
is considered in the formulation, the above system of equations are

nonlinear and should be solved using the usual incremental-iterative
methods. By assuming that the estimate solution at the ith iteration is
u{ }i , the solution at the next step can be estimated as below using the
first-order Taylor series:

u u u{ } { } { }i i m i1 ( ) 1= ++ + (23)

In the above equation, u{ }m i( ) 1+ is the mth estimation to the in-
cremental vector displacement u{ }i 1+ . It can be obtained from the
resolution of the linear system:
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Based on the history of stress at each sub-layer element, Dc
k( ) may

denote the elastic moduli matrix Dc
k( ) or the incremental moduli matrix

Dt c
k( ). The similar definitions are exist for the matrices Ds

k( ) and Dm
k( ).

5. Numerical results

In this section, some FICSPs were analyzed until failure stage by
means of the presented 1D nonlinear finite element model. In order to
assess the accuracy of the present numerical model in predicting the
structural responses of FICSP systems, the obtained numerical data
were compared with the full-scale experimental data, results of the 3D
finite element (ABAQUS) analysis and the analytical results reported in
open literature.

5.1. Example 1

A simply supported FICSP with span 3.05m was analyzed by means
of the present nonlinear finite element model. It is submitted to a
uniform pressure. The geometrical characteristics and cross-section
properties of the considered FICSP are shown in Fig. 4. The insulation
layer is made of XEPS material with E MPa40.9xx

m = and G MPa12.7xz
m = .

Table 1shows the mechanical properties assumed for the longitudinal
steel rebar and concrete wythes. Three different values k̄ =952 kN/m3,
8490 kN/m3, and 374,678 kN/m3 are assumed for the stiffness of shear
ties.

Due to the structural symmetry of the considered FICSP system, only
the half of it was modeled. Based on the convergence mesh study, the
FICSP was axially discretized into 20 elements with equal length. The
applied boundary conditions at the support of FICSP model is w 0= . At
the middle of FICSP system, the considered boundary conditions are
w u u u 0x b m t b m t, 0 0 0= = = = = = = . The cross-section of FICSP
was also divided into 20 sub-layers. Seven sub-layers were assumed for
each concrete wythe while the insolation layer was divided into six sub-
layers. As shown in Fig. 5, the selected number of sub-layers is adequate
for a nonlinear finite element analysis. Although the kinematics relation
given in (1) is written individually for each constituent layer (and not
for sub-layers), the sub-layer discretization is also needed due to the
consideration of nonlinear behavior of material. In contrast to concrete



layer, the foam insulation layer does not experience significant stress
and it will remain in the elastic regime. To this reason, the lower
number of sub-layer division is assumed for it. For different values of
shear ties' stiffness, the mid-span deflection of FICSP under different
pressure state is depicted in Fig. 6. The pressure-slip diagram at the end
of the FICSP is also shown in Fig. 7. The depicted graphs of Figs. 6 and 7
indicate that the stiffness of shear ties has a remarkable effect on the
structural responses of FICSP systems. It should be pointed here that the
FICSP system of this example has previously been investigated by Naito
et al. [2] via experimental tests. For each FICSP system with a distinct k̄,

two similar specimens were fabricated and tested by Naito and col-
leagues in their laboratory. The results corresponding to these two
specimens are shown in depicted graphs of Figs. 6 and 7. The con-
sidered FICSPs of the present example have also been analyzed by Bai
and Davidson [23] using an analytical elastic model. In Figs. 6 and 7,
the results of these researchers are also shown and compared with the
present results. It can be seen that the present finite element model
gives results which are in good agreement with reported experimental
data. In comparison to the analytical results of Bai and Davidson, the
results of present model are more close to the experimental results. In
contrast to the analytical model of Bai and Davidson which assumes a
linear elastic behavior for materials, the present finite element model
considers the nonlinear behavior of all constituent elements of the
FICSPs.

Fig. 4. Geometrical characteristics of considered FICSP of example 1: (a) loads
and boundary conditions (b) cross-section details-unit (mm).

Table 1
Mechanical characteristics of concrete wythes and steel rebar – Example 1.

Mechanical property Concrete wythes Steel rebar

Modulus of elasticity (GPa) 36 200
Yield strength (MPa) – 480
Compressive strength (MPa) 49 –
Tensile strength (MPa) 2.8 –
Poisson's ratio 0.18 0.3

Fig. 5. Effect of the number of cross-section sub-layers on the mid-span de-
flection of FICSP (k̄ =8490 kN/m3).

Fig. 6. Mid-span deflection of FICSP versus the applied pressure: (a)
k̄ =952 kN/m3, (b) 8490 kN/m3, (c) 374,678 kN/m3.



5.2. Example 2

The structural response of a FICSP system till collapse stage is
evaluated in this section using the proposed nonlinear finite element
model. The geometrical and structural details of considered FICSP
system are shown in Fig. 8. The FICSP is simply supported and is under
the action of a uniform pressure. Table 2 gives the mechanical prop-
erties corresponding to longitudinal steel rebar and concrete wythes.
The insulation layer is made of XEPS material. The distributed
equivalent stiffness of shear ties is approximated as k̄ =28,310 kN/m3

[33].
The pressure-deflection graph of the FICSP system predicted by the

nonlinear finite element model of present study is depicted in Fig. 9. In
this figure, the static test results performed at the University of Missouri
[34], and the analytical results of Kang [27] based on the ACI standard
design code are also shown for more comparison. It is seen that the
results obtained from the nonlinear finite element model of present
study are in good agreement with the reported experimental data. It can
be also observed that the analytical methods based on ACI standard
design code can only predict the fully composite and non-composite
behavior of FICSPs systems. Thus, such methods are not able to model
the partial composite behavior of FICSPs. As seen in Fig. 9, the fully
composite and non-composite behavior make, respectively, the upper
and lower boundaries of the capacity curve of the FICSPs.

In the following, the accuracy of presented finite element

Fig. 7. Pressure-slip history at the end of the FICSP: (a) k̄ =952 kN/m3, (b)
8490 kN/m3. Fig. 8. Geometrical characteristics and cross-section details of FICSP: unit

(mm).

Table 2
Mechanical characteristics of concrete wythes and steel rebar – Example 2.

Mechanical property Concrete wythes Steel rebar

Modulus of elasticity (GPa) 24.8 200
Yield strength (MPa) – 480
Compressive strength (MPa) 34 –
Tensile strength (MPa) 2.8 –
Poisson's ratio 0.18 0.3

Fig. 9. Pressure-deflection history of FICSP-example 2.



formulation in predicting the detailed (local) structural behavior of
FICSP's components is evaluated. To this aim, variations of mid-span
axial stress at upper and lower concrete wythes against the mid-span
deflection are shown in Fig. 10. Fig. 11 shows distributions of axial (in-
plane) stress in upper steel rebar at the ultimate pressure stage. Finally,
axial stress-strain history on insulation layer at the middle of span is
also shown in Fig. 12.

It can be seen from Figs. 10–12 that there exist a good correlation
between the experimental and present results in predicting the local
structural behavior of FICSP systems. Concerning the numerical results
corresponding to the axial stress in upper steel rebar (Fig. 11), it can be
seen that the slope in the middle part of graph is not the same as the
experiment. This discrepancy may be due to neglecting the structural
effect of WWR in the 1D finite element formulation of the present
model. Indeed, that part of wire mesh which is transverse to the

longitudinal rebar cannot be modeled in the framework of a 1D finite
element model. Assuming a perfect bonding between the longitudinal
rebar and surrounding concrete may be other reason which leads to the
difference between the experimental and present results.

The above obtained numerical results confirm that the introduced
finite element formulation of the present study is an appropriate tool for
global-local structural analysis of FICSP systems.

5.3. Example 3

As a final example, a cantilever FICSP system till failure stage was
analyzed via the nonlinear finite element formulation introduced in
Section 4. The length of the considered FICSP is 4m and it is under the
action of a distributed pressure. The cross-section details and the me-
chanical properties of the constituent elements of the considered FICSP
system of the present example are the same as example 1. The dis-
tributed equivalent stiffness of shear ties which provides the con-
nectivity between the upper and lower concrete wythes is assumed to
be k̄ =0 kN/m3 (non-composite action), 123 103× kN/m3 (partially
composite action), and 123 106× kN/m3 (fully composite action).

In Fig. 13, variations of the reaction force against the tip deflection
of FICSP are depicted for three different interface conditions (i.e. par-
tially composite, non-composite, and fully composite actions). It is seen
again that the ultimate capacity of FICSP system is extremely dependent
on the stiffness of shear ties. In Fig. 13, the present results were com-
pared with nonlinear 3D finite element results. ABAQUS software was
employed for carrying out a 3D finite element analysis. Concrete
whythes and insulation layer are modeled using 8-node brick elements
(C3D8R). Longitudinal steel rebar as well as the WWRs are modeled

Fig. 10. Stress-deflection history at the mid-span of FICSP: (a) upper concrete
wythe, (b) lower concrete wythe.

Fig. 11. Variations of axial stress in upper steel rebar at the ultimate load stage.

Fig. 12. Axial stress-strain history on insulation layer at mid-span.

Fig. 13. Tip deflection of cantilever FICSP versus the reaction force.



using 2-node truss elements. The refined mesh used for 3D finite ele-
ment model is shown in Fig. 14. The number of elements used for
meshing each concrete whyth is 6 30 50× × . The mesh of insulation
layer includes 5 30 50× × brick elements. Longitudinal steel rebar and
WWR were divided into 50 and 10 elements, respectively. Since long-
itudinal steel rebar and the WWRs are embedded in the concrete layers,
a perfect bond is assumed at the interface between them. Due to the
occurrence of slip at the interfaces between the concrete and insulation
layers, assumption of a perfect bond is not correct for describing the
interfacial behavior between them. In order to capture the partial
composite action in the 3D model of considered FICSP, traction-se-
paration laws (cohesive behavior) are used for describing the interfacial
behavior between the concrete wythes and insulation layer. Traction-
separation laws describe the interaction between two surfaces by de-
fining a relative displacement at each contact point. For more details

about interfacial traction-separation law, interested readers can refer to
[35]. The ideal elasto-plastic and concrete damage plasticity (CDP)
models are respectively employed for representing the material non-
linearity of steel and concrete. CDP uses concepts of isotropic damaged
elasticity in combination with isotropic tensile and compressive plas-
ticity to represent the inelastic behavior of concrete. The material
parameters used for the CDP model are given in Table 3. The expres-
sions corresponding to yield function of the CDP model are given in
Appendix A. The present finite element model estimates the maximum
load capacity of the cantilever FICSP in non-composite, partially com-
posite and fully composite conditions as 7.74 kN, 14.80 kN, and
21.92 kN, respectively. In case of 3D finite element analysis, the
aforementioned values are 7.63 kN, 14.15 kN and 22.05 kN. The per-
cent error between the ABAQUS and present results is less than 4.5. It is
worthy to be pointed here that the converged mesh of ABAQUS model
has about 109,500 DOFs while this value for the 1D finite element
formulation of the present study is only 288 DOFs. This comparison
proves the 1D finite element formulation introduced in the present
study is an efficient tool for nonlinear structural analysis of FICSP
systems.

Through-the-thickness distributions of stress and displacement
components of FICSP at a section with distance 1m from the fixed end
are depicted in Figs. 15–17. Note that the transverse shear stress was
calculated at the post-processing level by integrating from equilibrium
equations. For comparison purposes, the numerical results are also
given in Table 4. It can be observed from depicted graphs of Figs. 15–17
that the present finite element formulation has a good accuracy in
predicting the local structural behavior of FICSP structures. The small
discrepancies between the present and 3D finite element results is
mainly due to difference in employed constitutive law used for mod-
eling the nonlinear demeanor of concrete materials. In can be observed
from Figs. 15–17 that the interface properties between concrete and
foam (i.e. k̄) has a significant influence on the local structural responses
of FICSP systems. For low values of k̄, significant slip occurs at the
interface between concrete wythe and foam layer. This slip reduces
with increasing of shear ties' stiffness so that for k̄ 123 106= × kN/m3

Fig. 14. The refined mesh used for 3D finite element model (ABAQUS).

Table 3
The values of parameters used for the CDP model.

ψ, dilation angle e, eccentricity f f/b c0 Kc μ, viscosity parameter

30o 0.5 1.16 0.667 0.0001

Fig. 15. Through-the-thickness distributions of displacement and stress components for cantilever FICSP: fully composite case.



Fig. 16. Through-the-thickness distributions of displacement and stress components at cantilever FICSP: partially composite case.

Fig. 17. Through-the-thickness distributions of displacement and stress components at cantilever FICSP: non-composite case.



no slip occurs at the interface between layers. When k̄ 123 106= × kN/
m3, the maximum transverse shear stress situates at the foam layer.
With reducing of k̄, the value of transverse shear stress in the foam layer
reduces. In case of non-composite action, no shear stress appears in the
foam layer and maximum shear stress occurs at the center of concrete
wythes. Figs. 15–17 show that the through-the-thickness distribution of
axial stress is extremely affected by the interface characteristic between
foam and concrete. In case of fully composite action, the considered
FICSP system is bent as an integral cantilever beam. Top concrete wythe
experiences tensile stresses while the lower wythe undergoes com-
pressive stresses. With reducing of k̄, every concrete layer is inclined to
bend individually.

The tensile crack patterns developed at the concrete wythes are
shown in Fig. 18 for non-composite interface condition (k̄ =0). In this
figure, the tensile crack patterns corresponding to 3D finite element
analysis are also shown. It is seen that the patterns of tensile cracks
predicted via the present 1D finite element are similar to those pre-
dicted by ABAQUS.

6. Conclusions

A simple and efficient displacement-based 1D finite element

formulation was introduced for predicting the nonlinear structural be-
havior of FICSP structures. Non-polynomial expressions are considered
for representing the axial displacement of concrete wythes and insola-
tion layer. The assumed displacement field takes into account the
transverse shear deformations induced in the constituent components of
FICSP structures. Without using any shear correction factor, the pre-
sented formulation guarantees the zero conditions of transverse shear
stress on exterior plane of concrete wythes. The partial composite ac-
tion of shear connectors is represented using the concept of spring layer
model. In comparison to available 2D and 3D finite element models, the
proposed approach is computationally low cost. It has only 22 DOFs per
element. The presented finite element can accurately model the fully
composite, non-composite and partially composite actions of FICSP
structures. The obtained numerical results show that the formulation
introduced in this study can estimate both global (deflection, flexural
capacity) and local (through-the-thickness distributions of stress com-
ponents) structural behaviors of FICSP structures at different loading
stages with enough accuracy.

Future studies are toward the development of efficient plate/shell
elements for predicting the structural responses of FICSP structures till
failure stage.

k kN m¯ ( / )3 Load state Model U (1000, 114) W (1000, 0) (500, 114)11 (500, 0, 0)13

123 106× R=11 kN Present −0.0959 −0.4678 0.5603 −0.0655
ABAQUS −0.1050 −0.5878 0.6624 −0.0564

R=19.86 kN Present −0.2864 −4.1100 2.4305 −0.1152
ABAQUS −0.2880 −4.7812 2.0418 −0.1000

123 103× R=4.83 kN Present −0.0580 −0.8441 1.1558 −0.0110
ABAQUS −0.0653 −0.8177 1.1858 −0.0107

R=10 kN Present −0.1843 −2.9510 1.7306 −0.0290
ABAQUS −0.1428 −3.4841 1.6719 −0.0320

0 R=3.56 kN Present −0.1096 −1.4399 0.0214 −0.0000
ABAQUS −0.1240 −1.4058 0.0248 −0.0000

R=5.86 kN Present −0.2335 −4.6698 1.8714 −0.0000
ABAQUS −0.2404 −4.6334 1.9559 −0.0000

Fig. 18. Patterns of tensile crack at cantilever FICSP: (a) present finite element model, (b) 3D finite element model- (k̄ =0).

.

Table 4
Displacement (in mm) and stress (in MPa) components of the cantilever FICSP- x = 1000 mm.



(A.1)

y is the uniaxial yield stress.

Matrix formulation

{ }u u w w u u( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e T b b x m m t t1 0
1

1 1 , 1 0 1 1 0 1 1= (A.2)

u u u u{( ) ( ) ( ) ( ) ( ) ( ) }e
b b m m t t

3
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CDP model

The yield function of the CDP model can be written as the following form [35]:

f Q P( ¯ , ) 1
1

( ¯ ( ) ¯ ¯ 3 ¯) ¯ ( )pl pl c pl
c

max max= + (A.8)

P̄ is the hydrostatic pressure stress; Q̄ denotes the Mises equivalent effective stress; . is the Macauley bracket; pl
c and pl

t are equivalent plastic
strains in compression and tension. Parameter is defined as the follow:

1 ( / )
1 2( / )

b c

b c

0

0
=

(A.9)

where b0 and c are the biaxial and uniaxial compressive strength of the concrete, respectively. The function ( )pl is given as

( )
¯ ( )
¯ ( )

(1 ) (1 )pl
c pl

c

t pl
t= +

(A.10)

where c̄ and t̄ are, respectively, the effective compressive and tensile cohesion stresses. The parameter can be calculated as the below:

K
K

3( 1)
1 2

c

c
=

(A.11)

where Kc is the ratio of the tensile to the compressive meridian.

.

Appendix A

Von Mises yield function

f ( ) = x
2
x 3 x

2
z y

where
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