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Multiresolution strategies for the modeling of composite
shell structures based on the variable separation method

P. Vidal, L. Gallimard, O. Polit

1 INTRODUCTION

Nowadays, composites are widely used in the industrial field (eg, aerospace, automotive, marine, and medical industries)
due to their excellent mechanical properties, especially their high specific stiffness and strength. They are used for the
manufacturing of primary structures that have to ensure the integrity of those in service. Moreover, complex geometries
such as curved structures can be involved. Thus, accurate knowledge of displacements and stresses is required to design
reliable systems. One way consists in considering three-dimensional (3D) modeling. However, due to the complexity
of such numerical simulations, it is suitable to represent the problem as a two-dimensional (2D) model, leading to the
construction of shell theories. There are two ways to define the approximation of the displacement field. A “pure shell
model” can be considered, in which the displacement is associated with the local curvilinear vectors and strain and stress
are deduced using differential geometry.1 Alternatively, the shell-like solid approach2 to obtain a shell finite element (FE)
is widely used in commercial software, as it is more simple. In this case, the displacement vector is defined in the global
Cartesian frame, and Jacobian matrix transformation is used to express strain and stress with respect to the reference frame
defined on the middle surface in order to introduce the constitutive law. In this approach, differentiation is simplified, and
the curvatures are not directly calculated.3 Moreover, the designer has to solve some specific problems: (i) uncertainties in
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the manufacturing process of such materials and (ii) the optimization of the structure (material and geometry) to improve
the performance. These call for the resolution of numerous problems. Hence, the development of efficient computational
models for the analysis of shells appears to be of major interest.

According to published research, various theories based on the FE method for composite shells have been developed. In
the following, most of the mentioned works refer to the pure shell model. Thus, it is nowadays admitted that two families
of models4 can be identified.

• Equivalent single-layer models (ESL). Here, the classical shell theory (CST/Koiter) and first-order shear defor-
mation theory (Nagdhi) models are commonly used. Assumptions on the strain to derive different shell models can
be found in the work of Leissa.5 The CST suffers from inaccurate results when applied to composites because both
transverse shear and normal strains are neglected. The reader can refer to the works of Rao,6 Jeyachandrabose and
Kirkhope,7 and Qatu and Leissa8 for discussions on shallow laminated shells. The first-order shear deformation the-
ory is the most popular model due to the possibility of using a C0 FE; however, it needs shear correction factors, and
the transverse normal strain is always neglected (cf the works of Reddy,9 Chakravorty et al,10 Hossain et al,11 and
Asadi et al12). Thus, higher-order shear deformation theories have been developed to overcome these drawbacks. Dif-
ferent kinematics including five,13 seven,14,15 or nine parameters16 are considered. Note that various theories based on
Carrera's unified formulation (CUF) are addressed in the works of Carrera et al.17-19 In the equivalent single-layer model
context, a simple way to improve the estimation of the mechanical quantities consists in adding one zig-zag function
(Murakami) in the expression of the displacement to introduce the slope discontinuity at the interface between two
adjacent layers. It allows to describe the so-called zig-zag effect. This has been carried out in the works of Bhaskar and
Varadan,20 Jing and Tzeng,21 Brank,22 and Ganapathi et al.23

• Layer-wise models (LW). Here, the expression of the mechanical quantities is written over each layer. Some of these
works are based on a linear distribution of the in-plane displacements through each layer, without taking into account
the transverse normal stress. The transverse displacement is assumed constant across the thickness, such as in the
works of Botello et al24 and Zinno and Barbero,25 or in each layer, as in the work of Seide and Chaudhuri.26 However,
this type of approach fails to predict accurate transverse stresses, unless when using special post-treatments (see, eg,
the work of Zinno and Barbero25). Thus, higher-order approaches, taking into account the transverse normal effect,
have been developed. The 3D behavior law is used. The second-, third-, and fourth-order expansions are derived in the
works of Reddy,4 Basar and Ding,27 and Grigolyuk and Kulikov.28 In this framework, Kulikov and Plotnikova29 have
developed the sampling surfaces method (see also the previously mentioned work19). In all the aforementioned works,
it should be noted that the number of unknowns depends on the number of layers, affecting the performance in terms
of computational cost.

As an alternative, refined models have been developed in order to improve the accuracy of ESL models, avoiding the
additional computational cost of LW approaches. On the basis of physical considerations and after some algebraic trans-
formations, the number of unknowns becomes independent of the number of layers. The deduced model can be derived
from the CST30 and the higher-order shear deformation theory with a third-order theory31-35 or the sinus model.1 The
number of parameters varies from 5 to 15. Thus, for all these studies, the computational cost decreases, but the transverse
normal effect is introduced in none of them. This is achieved in the subsequent works of Zhen and Wanji36 and Icardi and
Ferrero.37

Note also the possibility of managing different kinematics through the thickness in the framework of the CUF
approach.38 The aforementioned literature deals with only some aspects of the broad research activity about composite
shells. An extensive assessment of the different approaches for various theories and/or FE applications can be found in
other works.39-47 For the present topics, the fundamental subject on the shear and membrane locking of the shell is not
addressed here.

Over the past years, an a priori method called proper generalized decomposition (PGD)48-50 has shown interesting fea-
tures in the reduction model framework. It has been successfully used in the context of the separation of coordinate
variables for different types of composite structures in other works.51-55 Note that other reduction model techniques are
available in open literature. A posteriori methods that consist in computing a reduced basis from snapshots using proper
orthogonal decomposition or singular value decomposition are not addressed hereafter. The main goal of this work con-
sists in assessing a multiresolution strategy based on PGD to model cylindrical composite shell structures. Classically, the
present approach is based on the separation representation of the unknown displacements. In this way, the three displace-
ments are written under the form of a sum of products of 2D polynomials of (𝜉1, 𝜉2) and one-dimensional (1D) polynomials
of z. A piecewise fourth-order Lagrange polynomial is chosen for the three unknown z-functions. As far as the variation



of the in-plane coordinates is concerned, a 2D eight-node quadrilateral FE is used for the three unknown (𝜉1, 𝜉2) func-
tions. It should be noted that the LW unknown functions of z are global for the whole shell. Finally, the deduced nonlinear
problem implies the resolution of two linear problems alternatively. This process yields 2D and 1D problems in which the
number of unknowns is smaller than that in a classical layer-wise approach. The interesting feature of this approach lies
in the possibility of having a higher-order z-expansion and refining the description of the mechanical quantities through
the thickness without increasing the computational cost. This is particularly suitable for modeling composite structures.

This approach can be advantageously used to perform numerous computations in which some geometric or mate-
rial parameters change, with a low computational cost. It can be achieved in an optimization or a reliability process for
instance. Once a first computation is carried out for a fixed set of parameters, it is possible to reuse the 2D in-plane (𝜉1, 𝜉2)
functions previously built. Thus, only new 1D problems have to be solved for a new set of parameters. This method is an
extension of the so-called preliminary stage introduced in the works of Bussy et al56 and Boisse et al57 to solve nonlinear
problems with a time-space decomposition of the solution. If needed, only few 2D functions are computed to obtain an
accurate solution.

We now outline the remainder of this paper. First, the shell definition, the differential geometry, and the mechanical
formulation are described. Then, the principles of PGD are given. The particular assumption on the displacements yields
a nonlinear problem that is solved using a fixed-point method. The classical greedy algorithm is recalled, and a multireso-
lution version (1D problem) is given. FE discretization is also described. Finally, numerical tests are performed on L-angle
specimens that can be considered as representative structures. The variations of the stacking sequences, the geometry of
the shell, and the number of layers are addressed in the multiresolution process. The efficiency of the approach is proved,
and the accuracy of the results is assessed by a comparison with the layer-wise LD4 reference solution.

2 SHELL DEFINITIONS AND DIFFERENTIAL GEOMETRY

A shell  with a middle surface  and a constant thickness e (see Figure 1) is defined by58

 =
{

M ∈ 3 ∶ O⃗M(𝜉, 𝜉3 = z) = Φ⃗(𝜉) + z a⃗3; 𝜉 ∈ Ω;−1
2

e ≤ z ≤ 1
2

e
}
,

where the middle surface can be described by a map Φ⃗ from a parametric bidimensional domain Ω as

Φ⃗ ∶ Ω ⊂ 2 −→  ⊂ 3

𝜉 = (𝜉1, 𝜉2) −→ Φ⃗(𝜉).
(1)

In Figure 1, the map Φ⃗ describing the shell middle surface (in gray) and the local basis vectors are presented. The basis
vectors a⃗i are defined for a point on  , and the basis vectors g⃗i are defined for a generic point of the shell.

For a point on the shell middle surface, the covariant basis vectors defining the tangent plane to the middle surface are
usually obtained as follows:

a⃗𝛼 = Φ⃗(𝜉1, 𝜉2),𝛼 ; a⃗3 = a⃗1 × a⃗2||a⃗1 × a⃗2|| , (2)

where a⃗3 is the unit normal vector to the surface  (see Figure 1). In Equation (2) and further on, Latin indices i, j,…
take their values in the set {1, 2, 3}, whereas Greek indices 𝛼, 𝛽, … take their values in the set {1, 2}. The summation

e

a1

a2

a3 g1

g2

g3

FIGURE 1 The map Φ⃗ and the local basis vectors a⃗i and g⃗i for a shell panel



convention on repeated indices is used, and the partial derivative is denoted by (),𝛼 . A shell is characterized by the first
fundamental form a𝛼𝛽 and the second fundamental form b𝛼𝛽 . Their covariant, contravariant, and mixed-form definitions
are given by

a𝛼𝛽 = a⃗𝛼.a⃗𝛽 a𝛼𝛽 = a⃗𝛼.a⃗𝛽 b𝛼𝛽 = a⃗𝛼,𝛽 .a⃗3 b𝛽
𝛼 = a⃗𝛽 .a⃗3,𝛼. (3)

For a generic point of the shell, covariant basis vectors must be defined, and we have

g⃗𝛼 = O⃗M(𝜉, z),𝛼 =
(
𝛿𝛽𝛼 − zb𝛽

𝛼

)
a⃗𝛽 = 𝜇𝛽

𝛼 (z) a⃗𝛽 and g⃗3 = a⃗3, (4)

where 𝛿𝛽𝛼 is the Kronecker symbol and b𝛽
𝛼 is the mixed form of the second fundamental form. This basis g⃗i, illustrated

in Figure 1, must be used to define quantities for any point of the shell. The form 𝜇𝛽
𝛼 (z) introduced in Equation (4) defines

the transport from the shell middle surface to any point of the shell and is associated with the curvature variation along
the thickness direction z of the shell. The inverse tensor of the mixed tensor 𝜇𝛽

𝛼 is denoted m𝛽
𝛼 and is defined as

m𝛽
𝛼 = (𝜇−1)𝛽𝛼 = 1

𝜇

{
𝛿𝛽𝛼 + z

(
b𝛽

𝛼 − 2H𝛿𝛽𝛼

)}
, (5)

where we have introduced the determinant of the mixed tensor 𝜇 = det (𝜇𝛽
𝛼) = 1 − 2H𝜉3 + (𝜉3)2K and the invariants of

the second fundamental form H = 1
2
tr(b𝛽

𝛼) and K = det (b𝛽
𝛼). Finally, the surface element d and the volume element

d are given by

d =
√

a d𝜉1d𝜉2 d = 𝜇 ddz, (6)

where a is the determinant of the first fundamental form a𝛼𝛽 . The geometry of a shell can also be defined using a con-
travariant or mixed forms. Furthermore, covariant and contravariant differentiation involving Christoffel symbols is not
detailed here, and readers can refer to the book of Bernadou.58

3 REFERENCE PROBLEM DESCRIPTION

3.1 The definition of the strain field
For geometrically linear elastic analysis, the components of the strain tensor 𝜀i j expressed in the contravariant basis a⃗i are
obtained through covariant differentiation, denoted |, as follows:

𝜀 = 𝜀i𝑗 (a⃗i ⊗ a⃗𝑗)with
2 𝜀𝛾𝜆 = m𝛽

𝜆 (u𝛾 | 𝛽 − b𝛾𝛽 u3) + m𝛼
𝛾 (u𝜆 | 𝛼 − b𝜆𝛼 u3)

2 𝜀𝛾3 = u𝛾 | 3 + m𝛼
𝛾

(
u3,𝛼 + b𝜆

𝛼 u𝜆

)
𝜀33 = u3,3.

(7)

The mixed tensor m𝛽
𝜆 carries out the transport from any point of the shell to the shell middle surface, that is,

from g⃗
i to a⃗i.

3.2 Constitutive relation
The stress tensor is obtained from the strain tensor using the constitutive equations. For this purpose, all these tensors
must be referred to the covariant and contravariant basis vectors, a⃗i and a⃗i, respectively, associated with the middle surface
of the shell. In case of laminated shells composed of orthotropic plies, this reference frame ensures to consistently take
into account the different material orientations of the layers. The tensorial relation is

𝜎i𝑗 = Ci𝑗kl 𝜀kl with 𝜎i𝑗 (
a⃗i ⊗ a⃗𝑗

)
, Ci𝑗kl (a⃗i ⊗ a⃗𝑗 ⊗ a⃗k ⊗ a⃗l

)
, 𝜀kl

(
a⃗k ⊗ a⃗l) . (8)

It should be noted that the stress tensor is defined in the covariant reference frame, whereas the strain components
are defined in the contravariant frame. If the frame is assumed to be orthonormal, then the covariant and contravariant



components are equal, that is, the superscript and subscript are interchangeable. With this assumption and for a shell
made of NC perfectly bonded orthotropic layers, the 3D constitutive law of the kth layer is expressed in matrix notation by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎11
(k)(𝜉, z)

𝜎22
(k)(𝜉, z)

𝜎33
(k)(𝜉, z)

𝜎23
(k)(𝜉, z)

𝜎13
(k)(𝜉, z)

𝜎12
(k)(𝜉, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11
(k) C12

(k) C13
(k) 0 0 0

C22
(k) C23

(k) 0 0 0
C33

(k) 0 0 0
C44

(k) 0 0
sym C55

(k) 0
C66

(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀11
(k)(𝜉, z)

𝜀22
(k)(𝜉, z)

𝜀33
(k)(𝜉, z)

𝛾23
(k)(𝜉, z)

𝛾13
(k)(𝜉, z)

𝛾12
(k)(𝜉, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

ie, 𝝈(k) = C(k)𝜺(k),

where we denote C(k)
i𝑗 as the 3D stiffness coefficients of layer k, stress vector 𝝈, and strain vector 𝜺.

3.3 The weak form of the boundary value problem
The shell is submitted to a surface force density t defined over a subset 𝜕F of the boundary. We assume that a prescribed
displacement u = ud is imposed on ΓD = 𝜕 − 𝜕F . The mechanical problem is based on the variational principle, which
is given as follows: find u(M ) ∈ U (space of admissible displacements) such that

a(u, 𝛿u) = b(𝛿u), ∀𝛿u ∈ 𝛿U (10)

with

a(u, 𝛿u) = ∫ ∫ ∫
𝛿𝜺T𝝈 d

b(𝛿u) = ∫ ∫𝜕F

𝛿u · t d𝜕,
where U is the space of admissible displacements, ie, U = {u ∈ (H1())3∕u = ud on ΓD}. We have also
𝛿U = {u ∈ (H1())3∕u = 0 on ΓD}.

For the present work, 𝜕F is considered as the top or bottom surface of the shell, that is, z = zF with zF = ±e∕2. For the
sake of clarity, the body forces are neglected in the developments.

4 APPLICATION OF PGD TO A CYLINDRICAL SHELL

In this section, the application of PGD is developed in order to carry out numerous shell analyses. This work is an extension
of the previous studies on beam, plate, and shell structures.53-55

4.1 Cylindrical geometry
A cylindrical shell (see Figure 2) is described using the following map:

⎧⎪⎪⎨⎪⎪⎩
x1(𝜉1, 𝜉2) = R cos

(
𝜉1

R

)
x2(𝜉1, 𝜉2) = R sin

(
𝜉1

R

)
x3(𝜉1, 𝜉2) = 𝜉2.

(11)

Following Equation (3), the nonzero terms for the covariant and mixed forms are

a11 = a22 = 1 b11 = b1
1 = − 1

R
𝜇1

1 = 1 + z
R

m1
1 =

(
1 + z

R

)−1
(12)

and 𝜇 = 1 + z
R

.



FIGURE 2 Middle surface of the cylindrical shell

4.2 The displacement
Let us denote (u1(𝜉1, 𝜉2, 𝜉3 = z),u2(𝜉1, 𝜉2, 𝜉3 = z),u3(𝜉1, 𝜉2, 𝜉3 = z)) as the curvilinear components of the displacement
field associated with the contravariant basis vectors a⃗i. Let Ω and Ωz be the bidimensional domain associated with the
mid-surface of the shell (see Equation (1)) and the unidimensional domain associated with the normal fiber, respectively.
This displacement solution is constructed as the sum of N products of functions of in-plane coordinates and the transverse
coordinate (N ∈ N is the order of the representation), ie,

u =
⎡⎢⎢⎢⎣

u1(𝜉, 𝜉3 = z)

u2(𝜉, 𝜉3 = z)

u3(𝜉, 𝜉3 = z)

⎤⎥⎥⎥⎦ =
N∑

i=1

⎡⎢⎢⎢⎣
𝑓 i

1(z)vi
1(𝜉)

𝑓 i
2(z)vi

2(𝜉)

𝑓 i
3(z)vi

3(𝜉)

⎤⎥⎥⎥⎦ =
N∑

i=1

⎡⎢⎢⎢⎣
𝑓 i

1(z)

𝑓 i
2(z)

𝑓 i
3(z)

⎤⎥⎥⎥⎦ ◦
⎡⎢⎢⎢⎣

vi
1(𝜉)

vi
2(𝜉)

vi
3(𝜉)

⎤⎥⎥⎥⎦ , (13)

where (𝑓𝑗
1 , 𝑓

𝑗
2 , 𝑓

𝑗
3 ) are defined in Ωz and (v 𝑗

1 , v 𝑗
2 , v 𝑗

3 ) are defined in Ω. The “◦” operator is Hadamard's element-wise prod-
uct. In this paper, a classical eight-node FE approximation is used in Ω, and an LW description is chosen in Ωz as it is
particularly suitable for modeling a composite structure.

4.3 The strain field for the cylindrical composite structure
The strain field in Equation (7) is free of any approximated shell kinematics. These strain components are simplified using
Equation (12), and we recover the following relations:

𝜀11 =
(

1 + z
R

)−1 (
u1,1 +

1
R

u3

)
𝜀22 = u2,2

𝜀33 = u3,3

𝛾23 = u2,3 + u3,2

𝛾13 = u1,3 +
(

1 + z
R

)−1 (
u3,1 −

1
R

u1

)
𝛾12 = u1,2 +

(
1 + z

R

)−1
u2,1,

(14)

where the covariant derivative becomes a classical derivative for the case of a cylindrical shell.



Equation (13) must be introduced at this level in order to obtain the compatible strain expansion along the normal
coordinate z of the shell. Hence, we obtain

𝜺(u) =
N∑
𝑗=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇−1
(
𝑓𝑗

1 v 𝑗
1,1 +

1
R
𝑓𝑗

3 v 𝑗
3

)
𝑓𝑗

2 v 𝑗
2,2(

𝑓𝑗
3
)′ v 𝑗

3(
𝑓𝑗

2
)′ v 𝑗

2 + 𝑓𝑗
3 v 𝑗

3,2(
𝑓𝑗

1
)′ v 𝑗

1 + 𝜇−1
(
𝑓𝑗

3 v 𝑗
3,1 −

1
R
𝑓𝑗

1 v 𝑗
1

)
𝑓𝑗

1 v 𝑗
1,2 + 𝜇−1 𝑓𝑗

2 v 𝑗
2,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where the prime stands for the classical derivative
(
𝑓 ′

i = d𝑓i
dz

)
, (),𝛼 stands for the partial derivative, and 𝜇 = 1 + z

R
.

4.4 The problem to be solved
The resolution of Equation (10) is based on a greedy algorithm. If we assume that the first m functions have been already
computed, the trial function for the iteration m + 1 is written as

um+1 = um +
⎡⎢⎢⎣
𝑓1 v1

𝑓2 v2

𝑓3 v3

⎤⎥⎥⎦ = um + f ◦v, (16)

where (v1, v2, v3) and ( f1, f2, f3) are the functions to be computed and um is the associated known set at iteration m
defined by

um =
m∑

i=1

⎡⎢⎢⎢⎣
𝑓 i

1 vi
1

𝑓 i
2 vi

2

𝑓 i
3 vi

3

⎤⎥⎥⎥⎦ . (17)

The test functions are

𝛿 (f ◦v) = 𝛿f ◦v + 𝛿v ◦ f (18)

with

v =
⎡⎢⎢⎣

v1

v2

v3

⎤⎥⎥⎦ f =
⎡⎢⎢⎣
𝑓1

𝑓2

𝑓3

⎤⎥⎥⎦ . (19)

Introducing the test function defined by Equation (18) and the trial function defined by Equation (16) into the weak
form given by Equation (10), the two following equations to be solved can be deduced:

• for the test function 𝛿f, we have

a(v ◦ f , v ◦ 𝛿f) = b(v ◦ 𝛿f) − a(um, v ◦ 𝛿f) ∀𝛿f ; (20)

• for the test function 𝛿v, we have

a(f ◦v, f ◦ 𝛿v) = b(f ◦ 𝛿v) − a(um, f ◦ 𝛿v) ∀𝛿v. (21)

This coupled nonlinear problem is solved using a classical strategy based on a fixed-point method. For each problem,
only an unknown 1D or 2D function has to be found. Hence, the approach leads to the process given in Algorithm 1. The
fixed-point algorithm is stopped when the distance between two consecutive terms is sufficiently small (cf Vidal et al54).



4.5 Multiresolution algorithm with a preliminary stage
In this section, a multiresolution algorithm is given, using the advantages of the present variable separation method. The
approach described here can be considered as an extension of the so-called preliminary stage introduced in the works of
Bussy et al56 and Boisse et al57 to improve the convergence rate of the LArge Time Increment (LATIN) method. Once some
couples (at least two) are built, the process consists in updating only all the 1D z-functions 𝑓𝑗

i (z), with the basis functions
v 𝑗

i (𝜉) being known. Thus, assuming that N1 couples are built, the problem to be solved can be written as

a

( N1∑
i=1

vi ◦ f i,

N1∑
i=1

vi ◦ 𝛿f i

)
= b

( N1∑
i=1

vi ◦ 𝛿f i

)
∀𝛿f i. (22)

The associated multiresolution algorithm is given in Algorithm 2. The first step consists in building N1 couples for
an initial set of parameters. Then, these 𝜉-functions v p are reused in the following calculations involving new sets of
parameters. Thus, only the z-functions are updated. The associated problem is 1D. If the residual error remains high, only
few new couples are computed to achieve the convergence in the so-called enrichment stage.



Remark 1. The convergence rate of the classical Algorithm 1 can be improved by introducing the preliminary stage
at each iteration of the algorithm to update the 1D z-functions. The new associated algorithm is given in Algorithm 3.

4.6 FE discretization
To build the shell FE approximation, a discrete representation of the functions (v, f )must be introduced. We use a classical
FE approximation in Ω and a polynomial expansion in Ωz. The elementary vector of degrees of freedom (dofs) associated
with one element Ωe of the mesh in Ω is denoted qv

e. The vector of dofs associated with the polynomial expansion in Ωz
is denoted q f. The displacement fields and the strain fields are determined from the values of qv

e and q𝑓
e by

ve = N𝜉qv
e,  e

v = B𝜉qv
e,

fe = Nzq𝑓
e ,  e

𝑓 = Bzq𝑓
e ,

(23)

where
 eT

v = [v1 v1,1 v1,2 v2 v2,1 v2,2 v3 v3,1 v3,2]
and

 eT

𝑓 =
[
𝑓1 𝑓 ′

1 𝑓2 𝑓 ′
2 𝑓3 𝑓 ′

3
]
.

The matrices N𝜉 , B𝜉 , Nz, and Bz contain the interpolation functions, their derivatives, and the Jacobian components.

4.7 FE problem to be solved on Ω
For the sake of simplicity, the function f̃ (k), which is assumed to be known, will be denoted f̃ , and the function ṽ(k) to be
computed will be denoted v. The strain in Equation (21) is defined in matrix notations as

𝜺(𝑓 ◦ v) = Σz (𝑓 )v (24)

with

Σ𝐳(𝑓 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑓1∕𝜇 0 0 0 0 𝑓3∕(𝜇R) 0 0
0 0 0 0 0 𝑓2 0 0 0
0 0 0 0 0 0 𝑓 ′

3 0 0
0 0 0 𝑓 ′

2 0 0 0 0 𝑓3

𝑓 ′
1 − 𝑓1∕(𝜇R) 0 0 0 0 0 0 𝑓3∕𝜇 0

0 0 𝑓1 0 𝑓2∕𝜇 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

The variational problem defined on Ω from Equations (6) and (21) is

∫Ω
𝛿𝐯Tkz(𝑓 )𝐯√a dΩ

⏟⏟⏟
d𝜉 1d𝜉 2

= ∫Ω
𝛿vTtz(𝑓 )

√
adΩ − ∫Ω

𝛿𝐯T𝝈z(𝑓,um)
√

adΩ (26)



with
kz(𝑓 ) = ∫Ωz

Σz(𝑓 )TCΣz(𝑓 )𝜇dz (27)

tz(𝑓 ) = f̃ ◦ t𝜇 |z=zF (28)

𝝈z(𝑓,um) = ∫Ωz

Σz(𝑓 )TC𝜺(um)𝜇dz. (29)

Note that the calculation of Equations (27) and (29) is performed using an analytical integration.
The introduction of the FE approximation given by Equation (23) in the variational Equation (26) leads to the linear

system
Kz(𝑓 )qv = v(𝑓,um), (30)

where

• qv is the vector of the nodal displacements in the contravariant basis,

• Kz(𝑓 ) is the stiffness matrix obtained by summing up the elements' stiffness matrices Ke
z(𝑓 ) = ∫Ωe

BT
𝜉

kz(𝑓 )B𝜉

√
adΩe,

and
• v(𝑓,um) is the equilibrium residual obtained by summing up the elements' residual load vectors

e
v(𝑓,um) = ∫Ωe

NT
𝜉

tz(𝑓 )
√

adΩe − ∫Ωe

BT
𝜉
𝝈z(𝑓,um)

√
adΩe.

4.8 FE problem to be solved on Ωz

For the sake of simplicity, the function ṽ(k−1), which is assumed to be known, will be denoted ṽ, and the function f̃ (k) to
be computed will be denoted f. The strain in Equation (20) is defined in matrix notations as

𝜺(ṽ◦𝑓 ) = Σ𝛏(ṽ)f (31)

with

Σ𝛏(ṽ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ṽ1,1∕𝜇 0 0 0 ṽ3∕(𝜇R) 0
0 0 ṽ2,2 0 0 0
0 0 0 0 0 ṽ3

0 0 0 ṽ2 ṽ3,2 0
−ṽ1∕(𝜇R) ṽ1 0 0 ṽ3,1∕𝜇 0

ṽ1,2 0 ṽ2,1∕𝜇 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

The variational problem defined on Ωz from Equation (20) is

∫Ωz

𝛿T
f k𝜉 (ṽ)f𝜇dz = 𝛿fTt𝜉 (ṽ)𝜇 |z=zF − ∫Ωz

𝛿T
f 𝝈𝜉 (ṽ,um)𝜇dz (33)

with
k𝜉 (ṽ) = ∫Ω

Σ𝛏(ṽ)TCΣ𝛏(ṽ)
√

adΩ (34)

t𝜉 (ṽ) = ∫Ω
ṽ ◦ t

√
adΩ (35)

𝝈𝜉 (ṽ,um) = ∫Ω
Σ𝛏(ṽ)TC𝜺(um)

√
adΩ. (36)

The introduction of the FE discretization given by Equation (23) in the variational Equation (33) leads to the linear
system

K𝜉 (ṽ)q𝑓 = 𝑓 (ṽ,um), (37)
where q f is the vector of dofs associated with the polynomial expansion in Ωz, K𝜉 (ṽ) is a stiffness matrix defined by
Equation (38), and 𝑓 (ṽ,um) is an equilibrium residual defined by Equation (39), ie,

K𝜉 (ṽ) = ∫Ωz

BT
z k𝜉 (ṽ)Bz𝜇dz (38)



𝑓 (ṽ,um) = NT
z t𝜉 (ṽ)𝜇 |z=zF − ∫Ωz

BT
z 𝝈𝜉 (ṽ,um)𝜇dz. (39)

Remark 2. For the preliminary stage, the same type of computation has to be performed. The system to be solved can
be written under the following form:

KPS(v1, … , vm−1)q𝑓 1m−1 = 𝑓 (v1, … , vm−1), (40)

where

• KPS(v1, … , vm−1) is the assembly of matrices K𝜉 (vi, v𝑗)=∫Ωz

BT
z k𝜉 (vi, v𝑗)Bz𝜇dz with k𝜉 (vi, v𝑗)=∫Ω

Σ𝛏(vi)TCΣ𝛏(v𝑗)
√

adΩ,

• 𝑓 (v1, … , vm−1) is written with the submatrices NT
z t𝜉 (vi)𝜇 |z=zF , and

• q𝑓 1m−1 T = [q𝑓 1 T · · · q𝑓m−1 T].

In fact, the computational cost of this stage is mainly due to the calculation of the integrals. The order of magnitude
is proportional to Nz × Nx × Ny × Ncouple, where Nx,Ny are the number of elements in the 𝜉1, 𝜉2 directions, respectively.
Nz is the number of numerical layers (number of elements in Ωz), and Ncouple is the number of couples built in the PGD
process. Nevertheless, as shown in the work of Vidal et al,54 the estimation of the total computational time is proportional
to N3

x × N𝑦 × Ncouple (for Nx > Ny, and a high value of Nx × Ny, Nz). Thus, the additional cost of the preliminary stage
remains low.

5 NUMERICAL RESULTS

In this section, an eight-node quadrilateral FE based on the Serendipity interpolation functions is used for the unknowns
depending on the in-plane coordinates. The geometry of the shell is approximated by this classical FE in the parametric
space. The geometrical transformation is based on an explicit map Φ⃗. A Gaussian numerical integration with 3 × 3 points
is used to calculate the elementary matrices.

In the framework of multiparametric processes, it is required to reduce significantly the cost of the analyses, which can
be numerous. Hereafter, as explained in Section 4.5, we take advantage of the possibility offered by the present method
to reuse the basis of space 𝜉 functions built during the first resolution. Indeed, once a first analysis has been carried out
for a set of geometric/material parameters chosen a priori, the following are based on the built space basis, and only
the z-functions are updated. If the residual error remains too high, only few new couples are computed to achieve the
convergence. Note that this idea has already been used in other works59-62 in the framework of nonlinear problems with
a time-space decomposition to perform multiparametric analysis. Here, it is extended to the space decomposition in the
framework of the composite shell structure.

Several static tests are presented, validating our approach (denoted VS-LD4) and evaluating its efficiency. First, the
dedicated approach is assessed by varying the stacking sequences of the laminates. Usual stacking sequences used in
aeronautics are addressed. Then, the multiresolution process is carried out for different geometries of the shell. Finally,
the possibilities of the approach are illustrated by considering a variation of both the geometry and the number of layers.
We pay special attention to the assessment of the out-of-plane stresses that are of relevant importance in the damage
phenomenon of such structures. Note that the accuracy of the results is assessed by a comparison with a fourth-order
layer-wise model (denoted LD4), referring to the systematic work of Carrera and Carrera's unified formulation.63,64

All of the following numerical assessments are based on the configuration proposed in the work of Charrier et al.65

It concerns L-angle specimens that are usually used in the junction between different perpendicular panels of the
aeronautical structures. It is described as follows.

Geometry: a very thick composite cylindrical shell with 𝜙 = 𝜋∕2. The number of layers (NC) with the
stacking sequences and the radius R are precise in each section. All layers have the same
thickness.

Boundary conditions: a shell clamped along one straight edge and free on the other sides, subjected to a constant global
pressure: q(𝜉) = q0 = 1 MPa.



TABLE 1 Geometry of the shell

n No. of Layers Layer Thickness, mm 𝜙 R, mm Ly, mm

SP1 1 16 0.262 𝜋∕2 6.095 20
SP2 2 32 0.262 𝜋∕2 12.19 40
SP3 – 8 0.262 𝜋∕2 6.095 20

Material properties: the T700GC/M21 laminates are considered with the following characteristics:
EL = 115 GPa , ET = 8.5 GPa , GLT = 4.5 GPa ,
GTT = 3.0357 GPa , 𝜈LT = 0.32, 𝜈TT = 0.4, where L refers to the fiber direction, T refers
to the transverse direction.

Mesh: The mesh consists of (Nx = 16) × (Ny = 16) elements in the 𝜉1 and 𝜉2 directions, respectively. It
is considered as a suitable mesh for the present test cases.

Number of dofs: N do fxy = 3(Nx + 1)(Ny + 1) and N do fz = 12 × 𝛼NC + 3 are the number of dofs of the two
problems associated with vi

𝑗 and 𝑓 i
𝑗 , respectively. 𝛼 is the number of numerical layers per physical

layer. Hence, the total number of dofs is N do fxy + N do fz.
Reference values: LD4 model.

Different stacking sequences (reported in the work of Charrier et al65), which can be considered as a large class of lay-up
types, are addressed. They are described as follows:

• LU1: any laminate [0◦∕45◦∕90◦∕ − 45◦∕0◦∕45◦∕ − 45◦∕90◦], it has no symmetry;
• LU2: a highly oriented laminate [0◦3∕45◦∕90◦2∕ − 45◦∕0◦]ns, usually used to be subjected to high uniaxial tensile loading;
• LU3: a quasi-isotropic laminate [(45◦∕90◦∕ − 45◦∕0◦)2]ns, usually used in order to be subjected to complex multiaxial

loadings;
• LU4: a highly disoriented laminate [45◦2∕0◦∕ − 45◦3∕90◦∕45◦]ns designed mainly to be subjected to in-plane shear

loading, including 75% of ±45◦ plies.

The different geometries of the shell involved in the subsequent examples are summarized in Table 1. In particular, n
is given. Each configuration will be denoted LUI-SPJ, where I ∈ {1, 2, 3, 4} and J ∈ {1, 2, 3}.

5.1 Initial solution
First, the LU2-SP2 specimen with 32 layers is considered as the initial set of parameters. Eight couples are built to
obtain the solution. The distributions of the in-plane functions v 𝑗

i (𝜉) and the thickness functions 𝑓𝑗
i (z) are given in

Figures 3 and 4. In Figure 3B, v 𝑗
1 (𝜉) is associated to the displacement along the radius in the curvilinear coordinate system.
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In Figure 4B, v 𝑗
3 (𝜉) is associated to the transverse displacement. This function is plotted with respect to the undeformed

shape of the structure (red cross) in the plane 𝜉2 = Ly∕2, and the amplification ratio 𝛼i is given for all couples, allowing us
to compare them against each other. 𝑓𝑗

i (z) are normalized such that max |𝑓𝑗
i (z)| = 1. The two first functions represent the

main contributions to the displacement solution. They can be considered as global modes. On the contrary, the following
functions involve local corrections that are localized close to the clamped or free edges. For the latter, the distribution of
the associated z-functions through the thickness is rather complex. Thus, highly refined models are required to capture
the variations of the mechanical quantities.

5.2 Multiresolution: different lay-up configurations
Once the eight couples are built for the LU2-SP2 specimen, they are now used for two subsequent configurations, namely,
the LU3 and LU4-SP2 shells. The new z-functions associated to the LU3-SP2 shell are given in Figure 5. The change of
stacks requires the correction of the thickness functions. It should be noted that the two first 𝑓𝑗

3 (z) functions remain
quasi-constant and linear. To assess the accuracy of the results, the error rate of the local stresses 𝜎11, 𝜎13, and 𝜎33 at
𝜉1 = L𝜉∕4, 𝜉2 = Ly∕2 is first evaluated, as it is located in an area with the highest stresses. The results are summarized
in Table 2. The calculation of these stresses with the initial functions drives an important error rate. This can be reduced
significantly by updating the eight z-functions 𝑓𝑗

i (z). The maximum error rate becomes 3.7%. The accuracy can be
improved by enriching the basis with only three functions (error of less than 1.8%). For further assessment, the
distributions of 𝜎11 and 𝜎13 through the thickness are compared for the initial basis and the updated version with three
new couples in Figure 6. Significant corrections are provided to the initial solution. The accuracy of the results becomes
very good with respect to the LD4 model. The complex behavior of the out-of-plane stress is also well described. The
continuity of this stress is fulfilled. For this test case, the order of magnitude of the transverse shear and normal stresses

TABLE 2 Multiresolution process from LU2-SP2 𝜉 basis functions – 32 layers

Lay-Up LU3 LU4
Initial Basis Initial Basis

f j
i Not Updated f j

i Updated Only New
(

f j
i , v j

i

)
f j

i Not Updated f j
i Updated Only New

(
f j

i , v j
i

)
𝜎max

11 (𝜉1 = L𝜉∕4, 𝜉2 = L𝑦∕2, z) −16.21 (49%) −31.81 (0.4%) −32.04 (0.3%) −18.91 (43%) −33.12 (0.3%) −32.86 (1%)
𝜎max

13 (𝜉1 = L𝜉∕4, 𝜉2 = L𝑦∕2, z) −3.22 (10%) −2.89 (1.1%) −2.87 (1.8%) −3.18 (11%) −2.78 (3%) −2.85 (0.5%)
𝜎max

33 (𝜉1 = L𝜉∕4, 𝜉2 = L𝑦∕2, z) −2.32 (9%) −2.50 (2.3%) −2.57 (0.6%) −2.32 (5.8%) −2.37 (3.7%) −2.46 (0.2%)
Number of new couples 0 0 3 0 0 3
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is the same in each configuration. Note that the maximum values are located at about z = −e∕4. To illustrate the capa-
bility of the present method to provide quasi-3D results, the distribution of stresses over the plane 𝜉2 = Ly∕2 is also
shown in Figures 7, 8, and 9. The results appear in very good agreement with the LD4 model. Even the local effects,
such as the clamped-edge ones, are rather similar. Ignoring this effect, the area where solicitation is most significant
is also very well described (around 𝜉1 = L𝜉∕4 and z = −e∕4). Finally, despite the strong gap between the initial solu-
tion (only the initial functions) and the final solutions (with three new couples) illustrated in Figure 6, a very good
accuracy level is achieved with only few new couples. The method can be carried out for a large variety of stacking
sequences.

FIGURE 7 𝜎11(𝜉1, 𝜉2 = Ly∕2, z) – LU3-SP2 – 32 layers. A, VS-LD4; B, LD4 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 𝜎13(𝜉1, 𝜉2 = Ly∕2, z) – LU3-SP2 – 32 layers. A, VS-LD4; B, LD4 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 𝜎33(𝜉1, 𝜉2 = Ly∕2, z) – LU3-SP2 – 32 layers. A, VS-LD4; B, LD4 [Colour figure can be viewed at wileyonlinelibrary.com]
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5.3 Multiresolution: different geometries
The same procedure is tested, considering a variation of the geometry. In this study, the involved parameters are the
thickness of each layer eply, the radius of the shell R, and the opening angle𝜙. The initial basis consists of 13 couples for the
LU4-SP1 configuration (16 layers). A simple mapping of the 1D domain (for eply and R) or the 2D domain (for𝜙) is achieved
for the following computations. The results are given in Tables 3, 4, and 5. As previously, a local error on the stresses
is provided. Wide domains of variation of the geometry have been considered. For a variation of 10% of the parameters,
no additional couple is required to obtain an accurate solution; only the z-functions have to be updated. Beyond this
value, only one or two couples are built despite the high geometric modification. Note that the basis 𝜉-functions seem to
be sufficiently rich to represent the changes of the opening angle as the update of the z-functions allows us to decrease
drastically the error rate (see Table 5).

TABLE 5 Error rate on stresses at (𝜉1 = L𝜉∕4, 𝜉2 = Ly∕2, z) – multiresolution process from LU4-SP1 𝜉 basis
functions – parameter 𝜙 – 16 layers

𝝓= 𝟑
𝟒
𝝅

𝟐 (−25%) 𝝓= 𝟏
𝟐
𝝅

𝟐 (−50%)
Initial Basis Initial Basis

f j
i Not Updated f j

i Updated Only New
(

f j
i , v j

i

)
f j

i Not Updated f j
i Updated Only New

(
f j

i , v j
i

)
𝜎max

11 122% 0.6% – 880% 0.8% 0.7%
𝜎max

13 97% 0.9% – 447% 2.7% 1.7%
𝜎max

33 34% 0.3% – 30% 0.1% 0.9%
New couples 0 0 – 0 0 1

-8 -6 -4 -2 0

-0.5

0

0.5

thickness e

-6 -4 -2 0

-0.5

0

0.5

thickness e

 LD4
 VS-LD4
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1

2
R

FIGURE 10 Distribution of 𝜎13(𝜉1 = L𝜉∕2, 𝜉2 = Ly∕2, z) and 𝜎33(𝜉1 = L𝜉∕2, 𝜉2 = Ly∕2, z) along the thickness – multiresolution process
from LU4-SP1 basis 𝜉-functions – parameter eply, R – 16 layers [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 𝜎11(𝜉1, 𝜉2 = Ly∕2, z) – LU4-SP1 – 16 layers. A, VS-LD4; B, LD4 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 12 𝜎13(𝜉1, 𝜉2 = Ly∕2, z) – LU4-SP1 – 16 layers. A, VS-LD4; B, LD4 [Colour figure can be viewed at wileyonlinelibrary.com]

For further comparison, the distribution of the out-of-plane stresses through the thickness is presented in Figure 10
for eply = 0.1 mm and R = 18 mm. It can be shown that the results are in excellent agreement with the reference LD4
solution. The top/bottom conditions are fulfilled. Then, the distribution of 𝜎11 and 𝜎13 over the plane 𝜉2 = Ly∕2 for 𝜙 = 𝜋

4
is given in Figures 11 and 12. It can be also inferred from these figures that the accuracy of the results is very satisfactory.
The localization of the in-plane stresses is well captured near the clamped edge.

5.4 Multiresolution: different geometries with different numbers of layers
In this section, the multiresolution process is performed with different numbers of layers and different total thicknesses.
We take advantage of the separation of the solution between the in-plane and out-of-plane functions. Thus, using the

TABLE 6 Error rate on stresses at (𝜉1 = L𝜉∕4, 𝜉2 = Ly∕2, z) – multiresolution
process from LU4-SP1 𝜉 basis functions – different lay-ups

32 Layers LU2-SP2 8 Layers LU1-SP3
f j

i Updated New
(

f j
i , v j

i

)
f j

i Updated New
(

f j
i , v j

i

)
𝜎max

11 1.2% 0.7% 15% 0.9%
𝜎max

13 5.2% 0.04% 19% 1.1%
𝜎max

33 3.7% 0.6% 9% 0.1%
New couples 0 2 0 2

-20 0 20
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2
initial solution LU4-SP1
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0
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2
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0

1

2
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2

-4 -2 0 2
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0
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2
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FIGURE 13 Distribution of 𝜎11(𝜉1 = L𝜉∕4, 𝜉2 = Ly∕2, z), 𝜎13(𝜉1 = L𝜉∕4, 𝜉2 = Ly∕2, z), and 𝜎33(𝜉1 = L𝜉∕2, 𝜉2 = Ly∕2, z) along the thickness –
multiresolution process from LU4-SP1 𝜉 basis functions – geometry – 16 layers [Colour figure can be viewed at wileyonlinelibrary.com]
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13 in-plane functions computed for the LU4-SP1 shell (16 plies), the solution can be built for the LU2-SP2 (32 plies;
e = 8.384 mm) and LU1-SP3 (eight plies; e = 2.096 mm) configurations. Table 6 shows that two new couples allow us
to have an error rate of less than 1.1%. The comparison of the initial solution (LU4-SP1) and the final solution (LU1-SP3
[eight plies]) is given in Figure 13. The solutions are deeply different. This figure shows also that the distribution of the
in-plane and out-of-plane stresses through the thickness is very accurate when compared with the LD4 model.

This test case allows us to show the possibilities of the method to address many shell configurations.

6 CONCLUSION

In this paper, PGD is advantageously performed in the framework of the multiresolution process for modeling composite
shell structures. Indeed, the in-plane functions built for one fixed set of parameters can be reused for the subsequent
configurations, reducing the computational cost to a 1D problem. If needed, only few new couples are computed. The
performance of the method is illustrated for a wide type of shell structures. The changes of stacking sequences, geometry
(radius, thickness, and open angle), and number of layers have been addressed. The good accuracy of the results is shown
by a comparison with a quasi-3D layer-wise reference solution. Thus, the potential of the approach seems to be very
interesting in the framework of multiparametric modeling of composite structures.
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