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Optimal location of piezoelectric actuators for active
vibration control of thin axially functionally graded beams

Isabelle Bruant • Laurent Proslier

Abstract Up to now, optimal location for active

control studies concern principally multilayers or

homogeneous structures. In the case of functionally

graded materials, very few papers exist and they only

concern cross section variations. In this way, this

paper deals with the optimization of piezoelectric

actuators locations on axially functionally graded

beams for active vibration control. For this kind of

structures, the free vibration problem is more compli-

cated as the governing equations have variable coef-

ficients. Here, the eigenproblem is solved using

Fredholm integral equations. The optimal locations

of actuators are determined using an optimization

criterion, ensuring good controllability of each eigen-

mode of the structure. The linear quadratic regulator,

including a state observer, is used for active control

simulations. Two numerical examples are presented

for two kinds of boundary conditions.

Keywords Axially FGM beam � Piezoelectric

actuators � Active control � Optimal location of

patches � Controllability gramian � LQR

1 Introduction

In recent years, a great number of research results has

been produced in optimal location of piezoelectric

actuators, for active vibration control of flexible struc-

tures. It is obvious that misplaced actuators lead to

problems such as the lack of controllability which

decreases strongly the performance of the control system.

Many papers dealing with the optimization of

actuators location can be found in the literature. An

exhaustive review until 2001 is presented in Frecker

(2003). Two approaches can be distinguished. The first

one consists of combining optimization of actuators

locations and controller parameters. For example Bru-

ant et al. (2001), Dhingra and Lee (1995), Kondoh

et al. (1990), Nam et al. (1996), Ramesh Kumar and

Narayanan (2008), Schulz et al. (2013) and Yang and

Lee (1993) propose a quadratic cost function taking

into account the measurement error and the control

energy. The spatial H2 norm of the closed-loop

transfer matrix from the disturbance to the distributed

controlled output is used as the optimization index

(Liu et al. 2006). The energy dissipation method has

been adopted as the criterion for the optimization of

the control system (Yang et al. 2005). This method is

based on the maximization of dissipation energy due

to the control action. Gney and Eskinat (2007)

and Hiramoto et al. (2000) suggest the simultaneous

design of a computationally simple H1 controller and

optimization of the location of actuators. In this first

approach, the optimization criteria are dependent on
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the choice of controllers. Therefore, the optimal

locations obtained using one controller may not be a

suitable choice for another one. In the second

approach, the optimal locations are obtained indepen-

dently of the controller definition. Several cost func-

tions are used. Arbel (1981), Biglar et al.

(2014), Bruant and Proslier (2005), Devasia et al.

(1993), Hac and Liu (1993), Jha and Inman (2003)

and Peng et al. (2005) propose the maximization of a

controllability criterion using the gramian matrix.

Wang and Wang (2001) suggests the maximization of

the control forces transmitted by the actuators to the

structure. Dhuri and Seshu (2006) proposes a modal

controllability index based on the same singular value

analysis of the control vector. An optimal placement

method using H2 norm is presented (Gawronski

1999; Halim and Reza Moheimani 2003; Qiu et al.

2007).

Additionally, new class of composite materials

known as ‘‘functionally graded materials’’ (FGMs),

first developed by Japanese Scientists in the late

1980s, has attracted much attention these last years.

For example, FGMs made of ceramic and metal are

capable of both suffering from high-temperature

environment because of better thermal resistance of

the ceramic phase and exhibiting stronger mechanical

performance of metal phase to guarantee the structural

integrity of FGMs. They also can be used to increase

the mechanical strength of structures. Due to these

superior properties, FGMs find extensive applications

in various industries, such as reactor vessels, fusion

energy devices, biomedical sectors, aircrafts, space

vehicles, defense industries and other engineering

structures (Mahamood and Akinlabi 2012).

In the case of functionally graded beams or plates,

gradient variation may be oriented in the cross-section

or/and in the axial/in-plane direction. Researches have

been published about dynamic response and active

vibration control of FGMs structures, with function-

ally graded in the thickness direction.

For examples, Bruant and Proslier (2014) and Gharib

et al. (2008) focused on active vibration control of FGM

beams, Fakhari and Ohadi (2010), Fu et al. (2013), He

et al. (2001), Kargarnovin et al. (2007), Liew et al.

(2003), Mirzaeifar et al. (2008), Yiqi and Yiming

(2010) considered active control of FGM plates,

and Kiani et al. (2013), Narayanan and Balamurugan

(2010), Sheng and Wang (2009) and Zheng et al. (2009)

the shells’ one.

For graded structures in the axial/in plane direc-

tions, the free vibration problems become more

complicated because of the governing equation with

variable coefficients. Less researchers have treated this

kind of structures. Sarkar and Ganguli (2014), Shahba

and Rajasekaran (2012) and Wu et al. (2005) found the

natural frequencies of axially FGM beams which

stiffness and material density are polynomials func-

tions. Li et al. (2013) proposed exact frequency equa-

tions of free vibration of exponentially axially FG

beams. Finite elements of FGM beam have been

developed to study free vibration (Alshorbagy et al.

2011; Shahba et al. 2011). The free and forced

vibration of a laminated FGM beam under heat

conduction is considered in Xiang and Yang

(2008). Caddemi and Calio (2009, 2013) focused on

the first frequency on beams structures with a decrease

of the rigidity. Huang and Li (2010) has studied free

vibration of axially functionally graded beams with

non uniform cross section. In their work, natural

frequencies are determined by Fredholm integral

equations. The Mathematica solver was used as the

tools for programming of derived new equations of the

FGM beam finite element with spatially varying

material properties including several features as the

effects of the large axial forces, shear forces and elastic

foundation (Aminbgahai et al. 2012; Murin et al.

2010, 2013). Huang et al. (2013) presented a new

approach to calculate the frequencies of axially

functionally graded Timoshenko beams with non

uniform cross section. Simsek et al. (2012) studied

the dynamic behavior of an axially FGM beam under

action of a moving harmonic load. Liu et al. (2010)

and Uymaz et al. (2012) have considered the case of

FGMs plates frequencies. Liu et al. (2010) used a semi

analytic Levy-integration, while the vibrations solu-

tions are obtained using the Ritz method and the

Chebyshev polynomials in Uymaz et al. (2012).

The main focus of these previous papers is the

determination of the first eigenfrequencies. The

variation of mechanical coefficients induces a varia-

tion of their values and also of the eigenmodes

shapes. Consequently, the active vibration control

efficiency should be hit. To the best of author’s

knowledge, no previous papers deal with active

vibration control and optimal location of actuators

for axially FGMs. In this present work, the influence

of the variation of the Young modulus and mass

density on the optimal positions and on the active



control efficiency is considered. The main difference

in the FGM active control and optimization study

becomes from the determination of eigenfrequencies

and eigenmodes, as they depend on the Young

modulus and mass density.

The use of finite elements (FE) method induces

restriction for location of actuators: usually, the

actuators must located on some entire FE and not on

a part of some of them. Consequently, to be able to

locate actuators everywhere on the beam, we decide to

use here a semi-analytical approach. The original

method developed by Huang and Li (2010) is evolved

here to study FGM beams equipped with piezoelectric

actuators and sensors. In this way, the beam is divided

in subdivisions where Hermite interpolation is con-

sidered, ensuring regular properties of the eigenmodes

approximations.

To implement active control, two important pa-

rameters have to be considered: the location of

actuators and the control law. First, As seen before,

several optimization criteria exist to define the

actuators locations. In this work, an optimization

criterion using the gramian controllability matrix

components is considered. The great advantages of

this criterion are its computational simplicity, its non-

dependance with the external disturbances and with

the applied control law. Moreover, this criteria uses

homogeneous components from the controllability

matrix, allowing the study of all eigenmodes with the

same range. Concerning the choice of the control law,

previous work for homogeneous or multilayers struc-

tures showed the robustness of the linear quadratic

regulator (LQR). Especially, Balamurugan and Nar-

ayanan (2001) has compared different usual control

laws for active control of plates: the LQR optimal

control schemes are more effective than classical

controls. Therefore, this algorithm will be used here.

In Sect. 2, the active transversal vibration analytical

equations of thin FGM beams, equipped with piezo-

electric patches located on the top and bottom faces is

presented. The semi-analytical method, developed

in Huang and Li (2010), to solve free vibration of

axially graded beams is evolved to active control

problems. Section 3 deals with the optimization prob-

lem for actuators locations. The LQR method including

a state observer is computed to simulate the active

vibration control. In Sect. 4, three numerical tests are

presented.

2 Theoretical formulations

2.1 Axially functionally graded beam equipped

with piezoelectric patches

2.1.1 FGM constitutive equations

An axially functionally graded beam of length L,

width b, thickness h, with co-ordinate system

ðO; x; y; zÞ having the origin O is shown Fig. 1.

In this work, the Young modulus and the mass

density are varying continuously in the axial direction

(x-axis). For example, the cross section x ¼ 0 of the

FGM can be a metallic section and the cross section

x ¼ L a ceramic one. In this case, according to the

power law form, we have:

Eðx; pÞ ¼ E1 � E2ð Þ x

L

� �p

þE2 ð1Þ

qðx; pÞ ¼ q1 � q2ð Þ x

L

� �p

þ q2 ð2Þ

where E1; q1; E2 and q2 denote respectively values of

elasticity modulus and mass density of the right and

left ends of the beam and p is the volume fraction

index. It represents the material variation profile

through the beam length ð0� k�1Þ. The Poisson’s

ratio is considered constant. This power law distribution

is one of the most appropriate and also simplest models

for a two phase mixture, which is established by Voight-

Type estimate (Liu et al. 2010; Markworth et al. 2012).

The constitutive equation of the FGM beam is given

by the Hooke’s law:

e ¼ 1þ m
E

r� m
E

trðrÞ ð3Þ

where r; e and C are respectively the stress vector, the

strain vector and the usual constitutive matrix for

isotropic structure. Its coefficients are functions of x,

from Eðx; pÞ.

2.1.2 Piezoelectric constitutive equation

The beam is equipped with Na actuators and Ns

sensors. In order to consider only pure bending, each

actuator and sensor is made up of a pair of piezoelec-

tric materials attached symmetrically. They are as-

sumed to be perfectly bonded to the surface of the

structure, and their thickness is assumed to be small

compared to the structure thickness. In order to



simplify, we consider that the length and thickness of

all patches are fixed to Lp and hp, and the width of

piezoelectric is the same as the beam’s one.

The constitutive relationships describing the elec-

trical and mechanical interactions for piezoelectric

materials are given as:

r ¼ ce� eTE ð4Þ

D ¼ eeþ �E ð5Þ

Here D is the electric displacement vector, E ¼
�gradð/Þ is the electric field vector, / is the electric

potential, c is the elasticity matrix, e is the piezoelec-

tric constants matrix and � is the dielectrical permit-

tivity coefficient matrix. Equation (4) is usually used

to model piezoelectric actuators effects on the dy-

namic of the beam, while Eq. (5) yields to the output

equation of sensors (Preumont 1999).

In order to apply and sense electric potential on

piezoelectric actuators and sensors, each patch is

covered by electrodes at its top and bottom faces. Given

their small thickness, we can assume that the electric

field is constant and only the component Ez is nonzero.

It induces that:

Ez ¼ �
D/
hp

ð6Þ

where D/ is the potential difference across the

piezoelectric. Finally, the electric displacement satis-

fies the electrostatic equilibrium equation:

divD ¼ 0 ð7Þ

which reduces to:

dDz

dz
¼ 0 ð8Þ

2.1.3 Governing differential equation

The active vibration control with piezoelectric ac-

tuators are mostly used for thin structures. Thereby,

thin beams are considered in this work. For this kind of

beams, the Euler–Bernoulli theory yields accurate

frequency results (Giunta et al. 2011). Then, accord-

ing to the Euler–Bernoulli theory, the governing

bending differential equation of an axially FGM beam

equipped with piezoelectric actuators is similar to the

one of an homogeneous beam (Bruant et al. 1997;

Preumont 1999):

o2

ox2
Eðx;pÞI o2w

ox2

� �
þ qðx;pÞSo2w

ot2
¼ qðx; tÞ

� e31b hpþ 2h
� �XNa

i¼1

odaiþLp=2

ox
�

odai�Lp=2

ox

� 	
/aiðtÞ

ð9Þ

where w is the deflection, q is the distributed

transverse loading, I is the inertial moment of cross

sectional area, S is the cross sectional area, qðx; pÞS is

the mass distribution, ai defines the location of the

center of the ith actuator, /ai is the applied voltage of

the ith actuator and d is the Dirac function. In this

equation, as usually, the mass inertia moment distri-

bution qðx; pÞI is neglected.

The application of the active control methods in a

dynamic structural problem requires the use of a state

space model. To obtain this kind of equation, the

solution w is usually decomposed into a normalized

orthogonal structural modal basis:

wðx; tÞ ¼
X1
n¼1

anðtÞWnðxÞ ð10Þ

Fig. 1 A FGM beam

equipped with piezoelectric

devices



where Wn is the nth eigenmode. using the orthogon-

ality properties of eigenmodes, the equation of motion

becomes the following modal equation:

€anðtÞ þ x2
nanðtÞ ¼

XNa

i¼1

bni/aiðtÞ þ fnðtÞ

n ¼ 1. . .1
ð11Þ

an; _an and €an represent modal displacement, velocity

and acceleration, xn and fn are the natural frequency

and damping ratio of the nth mode, fn is the modal

external disturbance. bni represents the nth modal

actuator force due to the applied voltage of the ith

actuator and equals to:

bni¼Lp 2hþhp

� �
e31 W 0n aiþ

Lp

2

� 	
�W 0n ai�

Lp

2

� 	� 	

ð12Þ

2.1.4 Output sensors equations

In the same way, considering an open-circuit con-

figuration in which the total surface charge is assumed

to be zero, the voltage of the ith sensor is obtained by

integrating the electric field over the sensor (Jha and

Inman 2003). From Eq. (8) (Kargarnovin et al. 2007),

we get for the ith sensor:

1

2

Z

Se

Dz z ¼ �h=2ð Þ þ Dz z ¼ �h=2� hp

� �
dxdy ¼ 0

ð13Þ

where Se is the effective electrode surface, assumed

equals to Se ¼ Lp � l. By substituting the electric

displacement by the relations Eqs. (5) and (8), the electric

voltage of the ith sensor, located at si, is given by:

/si ¼
hpe31

Lp�33

hþ hp

2

� 	

ow

ox
si þ Lp=2
� �

� ow

ox
si � Lp=2
� �� �

ð14Þ

Using the decomposition of the transverse displace-

ment on the modal basis, the output equation of the ith

sensor becomes:

yiðtÞ ¼ /siðtÞ ¼
X1
n¼1

CinanðtÞ ð15Þ

Cin is the sensing constant of the ith sensor due to the

motion of the nth mode. It equals to:

Cin ¼
e31hp

�33Lp

hþ hp

2

� 	
W 0n si þ

Lp

2

� 	
�W 0n si �

Lp

2

� 	�

ð16Þ

In order to use these equations for active control

applications, the frequencies and eigenmodes have to

be calculated. We briefly remind the method in the

next section.

2.2 Calculation of the eigenmodes

and eigenfrequencies

2.2.1 Introduction to the Fredholm integral equations

Eigenmodes and eigenfrequencies are introduced from

the free vibration problem coupling to Eq. (9), where

the unknown function w is decomposed as:

wðx; tÞ ¼ WðxÞejxt ð17Þ

Here, the function W and the angular frequency x
must be solutions of:

o2

ox2
Eðx; pÞI o2W

ox2

� �
� qðx; pÞSx2W ¼ 0

8x 2 ½0; L�
ð18Þ

Introducing the following variables: n ¼ x
L

and

k ¼ x2L4, Eq. (18) can be rewritten as:

o2

on2
Eðn; pÞI o2W

on2

� �
� qðn; pÞSx2 ¼ 0 8n 2 ½0; 1�

ð19Þ

This equation is more complicated than for homoge-

neous beams because of variable coefficients.

A novel semi-analytical method is introduced

by Huang and Li (2010) using Fredholm integral

equations. The main steps are given here. For more

details, the reader can referred to Huang and Li

(2010). First, the Eq. (18) is converted to an integral

one. To this end, we integrate both sides 4th times with

respect to n from 0 to n, in order to avoid any

derivatives of W. It yields:

Eðn; pÞIWðnÞ þ
Z n

0

E00ðs; pÞIðn� sÞ � 2E0ðs; pÞI½

� 1

6
kqðs; pÞSðn� sÞ3�WðsÞds

¼ C1

6
n3 þ C2

2
n2 þ C3nþ C4 ð20Þ



The prime is the derivative with respect to n. C1; C2; C3

and C4 are integration constants. They are determined

in Huang and Li (2010) through considered boundary

conditions of both ends of the beam. The study of

several boundary conditions yields, for each case, to a

Fredholm integral equation as follows:

Eðn; pÞIWðnÞ þ
Z 1

0

K1ðn; s; pÞWðsÞds

þ k

Z 1

0

K2ðn; s; pÞWðsÞds ¼ 0

ð21Þ

K1ðn; s; pÞ and K2ðn; s; pÞ depend on the boundary

conditions and are respectively functions of E and q.

Their expressions are given in ‘‘Appendix’’ for simply

supported beam and clamped–pinned beam.

2.2.2 Approximation of W

For the resulting Fredholm integral equations, several

techniques may be employed to determine the numerical

solution. The unknown W is approximately expanded as

WðnÞ ¼
PN

n¼0 cnn
n, where cn are unknown coeffi-

cients (Huang and Li 2010). The choice of N is

difficult as it must be large enough but a high value can

induce instabilities because of bad conditioning. This

development is simplest, but the study of active control

vibration needs to well known the eigenmodes. More-

over, the use of piezoelectric actuators and sensors

introduce derivatives of eigenmodes in dynamic and

output equations Eqs. (12), (16), which induce the use

of functions of approximation with regular properties

(continuity, continuity of the derivatives).

Then, two improvements are considered in this

work:

• the beam is discretized in Nd subdivisions, and the

approximation of W is conducted on each

subdivision:

WðnÞ ¼ WiðnÞ n 2 ni; niþ1½ � ð22Þ

• on the subdivision ½ni; niþ1�, W is expanded using

an Hermite interpolation:

WiðnÞ ¼ WiðniÞP0ðnÞ þWiðniþ1ÞP1ðnÞ
þW 0i ðniÞP2ðnÞ þW 0i ðniþ1ÞP3ðnÞ ð23Þ

WiðnÞ ¼
X3

j¼0

cijPjðnÞ n 2 ni; niþ1½ � ð24Þ

where the Hermite polynomials are:

P0ðnÞ ¼ 1þ 2
n� nið Þ

niþ1 � nið Þ

� 	
n� niþ1

niþ1 � nið Þ

� 	2

P1ðnÞ ¼ 1� 2
n� niþ1ð Þ
niþ1 � nið Þ

� 	
n� ni

niþ1 � nið Þ

� 	2

P2ðnÞ ¼ n� nið Þ n� niþ1

niþ1 � nið Þ

� 	2

P3ðnÞ ¼ n� niþ1ð Þ n� niþ1

niþ1 � nið Þ

� 	2

ð25Þ

Inserting Eq. (24) into the Fredholm integral equation

Eq. (21) leads to, 8n 2 ½ni; niþ1�:

X3

j¼0

cijPjðnÞEðn;pÞIþ
X3

j¼0

XNd

n¼1

cnj

Z nnþ1

nn

K1ðn;s;pÞPjðsÞds

þk
X3

j¼0

XNd

n¼1

cnj

Z nnþ1

nn

K2 n;s;pð ÞPjðsÞds¼0 ð26Þ

The continuity of Wi and its derivative W 0i induce:

Wi niþ1ð Þ ¼ ci1 ¼ ciþ1;0

W 0i niþ1ð Þ ¼ ci3 ¼ ciþ1;2

ð27Þ

Then, the number of unknown coefficients becomes

2ðNd þ 1Þ. They are calculated using the same process

than in Huang and Li (2010). We multiply both sides

of Eq. (26) by P0ðnÞ or P1ðnÞ, and then integrate with

respect to n between ni and niþ1.

It yields, for l ¼ 0 or 1:

X3

j¼0

cij

Z niþ1

ni

PlðnÞPjðnÞEðn; pÞIdn

þ
X3

j¼0

XNd

n¼1

cnj

Z niþ1

ni

PlðnÞ
Z nnþ1

nn

K1ðn; s; pÞPjðsÞdsdn

þ k
X3

j¼0

XNd

n¼1

cnj

Z niþ1

ni

PlðnÞ
Z nnþ1

nn

K2ðn; s; pÞPjðsÞdsdn ¼ 0

ð28Þ

and we obtain 2Nd equations:

X3

j¼0

cijdilj þ
XNd

n¼1

cnjK1ilj þ k
XNd

n¼1

cnjK2ilj

" #
¼ 0 ð29Þ

where



dilj ¼
Z niþ1

ni

PlðnÞPjðnÞEðn; pÞIdn

K1ilj ¼
Z niþ1

ni

PlðnÞ
Z nnþ1

nn

K1ðn; s; pÞPjðsÞdsdn

K2ilj ¼
Z niþ1

ni

PlðnÞ
Z nnþ1

nn

K2ðn; s; pÞPjðsÞdsdn

ð30Þ

These equations can be written in matrix form:

find ðk;UÞ solution of:

dþK1ð ÞU ¼ �kK2U ð31Þ

where UT ¼ ðc10; c11; c20; . . .cNdNd
Þ, size 2Nd þ 2, is

the unknown vector. In order to obtain a 2Nd � 2Nd

eigenvalue problem, the boundary conditions are used

to reduce the number of unknowns. The components

of matrix d; K1 and K2 are respectively in terms of

dilj; K1ilj; K2ilj.

The solution of problem Eq. (31) gives the eigen-

frequencies and eigenmodes of the axially FGM beam.

Therefore, the optimization of actuators locations for

active vibration control can be considered.

3 The optimization of actuators locations

To set up active control of beams, two main steps have

to be considered: the determination of piezoelectric

actuators locations and the implementation of the

control law. In this section, we briefly present the

optimization criterion for actuators locations.

3.1 The state equation

To use the automatic tools, Eqs. (11) and (15) are

written in an usual state-space form, considering the N

first eigenmodes and using the state vector x (size 2N):

x ¼ xnan _anf gT ð32Þ

d

dt
x ¼ Axþ BUþ g ð33Þ

y ¼ Cx ð34Þ

where Að2N;2NÞ; Bð2N;NaÞ and CðNs;2NÞ are the state,

control and output matrices given by:

A ¼ ½0� ½xn�
�½xn� � ½2fnxn�

� �
ð35Þ

BT ¼ ½0� ½bni�½ � ð36Þ

C ¼ ½Cin� ½0�½ � ð37Þ

U and y are respectively the input and output vectors

which their nth components are Un ¼ /anðtÞ and

yn ¼ /snðtÞ. The components�2fnxn are added in the

matrix A in order to take into account the natural

damping of each mode.

3.2 The optimization criterion for piezoelectric

actuators locations

The optimization criterion used in this paper is

instigated from the optimization function developed

for homogeneous structures in Bruant and Proslier

(2005). It ensures good controllability of each mode

considering them with homogeneity and not globally

as it is usually done.

The objective here is to find actuators locations that

minimize the control energy required to bring the

modal system (considering the N first eigenmodes) to a

desired state fxTg after some time T:

J ¼ min
U

Z T

0

UTUdt ð38Þ

The optimal solution gives the following optimal

control energy:

J ¼ eATx0 � xT


 �T
W�1ðTÞ eATx0 � xT


 �
ð39Þ

where WðTÞ is the controllability gramian matrix

defined by:

WðTÞ ¼
Z T

0

eAtBBTeATtdt ð40Þ

Minimizing J with respect to the actuators locations consists

in minimizing W�1ðTÞ or maximizing a measure of the

controllability gramian matrix (Hac and Liu 1993).

Hac and Liu (1993) has shown that instead of using

WðTÞ, a steady state Wc can be considered to

eliminate the dependency of the solution T. Wc tends

to a diagonal form with the nth diagonal term equals to

ðWcÞnn ¼ ðWcÞnþN;nþN ¼¼
XNa

j¼1

b2
nj

4fnxn

¼ 1

4fnxn

XNa

j¼1

b2
nj ð41Þ



ðWcÞnn equals to the energy transmitted from the

actuators to the structure for the nth eigenmode.

Hence, if the eigenvalue ðWcÞnn is small, the nth

eigenmode is difficult to control: there is no control-

lability for the system.

The usual criteria take into account globally the

eigenmode. Instead of maximizing a global norm of

Wc which means minimizing the electrical energy, a

first optimization criterion could be: to find the

actuators location which maximize

min
n¼1;...N

Wcða1; . . .aNa
Þð Þnn ð42Þ

But as the components of Wc have not the same range,

solving this problem can induce the study of particular

modes instead of each of them, and then the obtained

locations will not be optimal.

Consequently, each term ðWcÞnn is divided by its

maximal value obtained when the nth mode is the

specific mode to be controlled. This maximal value is

the maximal energy which can be transmitted from the

actuators for the nth eigenmode.

Hence, using the homogeneous components, the

optimization problem becomes: to find the actuators

location which maximize

JA ¼ min
n¼1;N

Wc a1; . . .aNa
ð Þð Þnn

maxa1;...aNa
Wc a1; . . .aNa
ð Þð Þnn

¼ min
n¼1;N

PNa

j¼1 b2
nj

maxa1;...aNa

PNa

j¼1 b2
nj

ð43Þ

and, 8n ¼ 1; . . .N 0� ðWcða1;...aNa ÞÞnn

maxa1 ;...aNa
ðWcða1;...aNa ÞÞnn

� 1

The greatest advantage of this criterion is that all

modes are studied with the same range. Furthermore,

the expression inside Eq. (43) has a physical meaning:

it is the mechanical energy transmitted for the nth

mode divided by the maximal mechanical energy that

could be received.

4 Numerical examples

In this section, a first test is carried out to show the

effectiveness of the suggested approximation of the

eigenmodes. Then, two applications are presented.

The first one deals with the optimal location of one

actuator on a simply supported beam. In the second

one, the optimization of one and two actuators is

considered in the case of a clamped–pinned beam. For

theses two applications, the FGM beams are equipped

with actuators made of PZT5A piezoelectric patch.

One PVDF piezoelectric sensor is used, located in

x ¼ 0:2 m. Piezoelectric rigidity and mass are neglect-

ed in the mechanical equation. The active control of

the four first eigenmodes is computed and simulations

show the influence of the parameter p in results.

For each application, the number and length of

actuators are fixed. The criterion (43) is used to find

the optimal location of actuators. As the studied

structures are beams, there is one variable optimiza-

tion for each actuator. In this way, there is not need to

use specific numerical optimization method. For more

complex structures, the use of biologically-inspired

optimization techniques (like genetic algorithm, ant

colony optimization, particle swarm optimization...)

should well suited.

4.1 Free vibration analysis of two axially FGM

beams

In this subsection, a numerical example presented in

Huang and Li (2010) is studied. It considers the case of

Young modulus and mass density of trigonometric

functions:

EðxÞ ¼ E0 1þ acosðpxÞ½ �;
qðxÞ ¼ q0 1þ 4acosðpxÞ½ � ð44Þ

The geometrical and mechanical properties of the

beam are detailed in Table 1.

For several values of a, the first three non-dimen-

sional natural frequencies, given by Huang and Li

(2010) Xn ¼ xnL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0S=E0I

p
are calculated from our

suggested approximation (with the Hermite interpo-

lation on 11 subdivisions). Results are compared with

those of Huang and Li (2010), the results obtained

using the FGM finite element developed in Al-

shorbagy et al. (2011) (with 300 elements) and the

analytical solution (when a equals 0). They are shown,

for a simply supported beam and a clamped–pinned

beam, respectively, in Tables 2 and 3. The results

given by the different methods are very similar. The

suggested improvements induce frequencies close to

analytical solution and finite element results. Values

are much precise than with the polynomial approxima-

tion, especially for the clamped–pined beam.



4.2 Optimal location of one actuator on a simply

supported beam

4.2.1 Description of the test

In this test, a simply supported FGM beam is

considered. The Young’s modulus and the mass

density are given by Eqs. (1) and (2). The geometrical

and mechanical properties of the beam and piezo-

electrics are detailed in Tables 4, 5 and 6. The material

1 is ceramic and material 2 is metallic. Frequencies are

given Table 7 for different values of p. p ¼ 0 means

that the beam is homogeneous made of ceramic

material, instead of p ¼ 50 is the case of a quasi-

homogeneous metallic beam. It induces that frequen-

cies decrease according to p as the beam becomes

more flexible. The influence of the parameter p on the

eigenmodes can also be shown. For several values of

p, the beam becomes not materially symmetric and

consequently, the shapes of the eigenmodes are

modified. Figures 2, 3, 4 and 5 shows the normalized

eigenmodes in the case of p ¼ 0 and the much

different case, obtained with p ¼ 1:5. There is a small

shift between the two curves. Especially, the maximal

values of each eigenmode are obtained for different

values of x. Even if the difference of the two curves

seems to be light, these variations can affect the

optimization and active vibration results.

The optimal location of the piezoelectric actuator is

determined by Eq. (43) for several values of coeffi-

cient p. Results are given Table 8. For p ¼ 0, the beam

is homogeneous and the material properties are

constant. The beam being symmetric, it is obvious to

obtain two symmetric optimal locations since more

than one mode is considered. For the other values of p,

the material symmetry of the beam disappeares and it

induces only one optimal location. The maximal

difference between optimal location for homogeneous

beam and FGM beam is obtained with p ¼ ½1; 1:5�. In

this case, the length between the two optimal locations

equals 0:1123 m. For this kind of application, the use

of the optimal location of actuator obtained for

Table 1 Geometrical and

mechanical characteristics

of the beam, example 1

Length L (m) 1

With (m) 0.01

Thickness (m) 0.005

q0 ðkg m�3Þ 3000

E0 (GPa) 151

m 0.3

Table 2 Non-dimensional

natural frequencies for the

simply supported beam with

the Young modulus and

mass density given by (44)

n Huang Finite element Our approach Analytical solution

a ¼ �0:2

1 9.8696 9.8696 9.8696

2 42.5405 42.5383 42.5383

3 98.9439 96.7488 96. 7494

a ¼ �0:1

1 9.8696 9.8696 9.8696

2 40.1979 40.1969 40.1970

3 90.4469 90.4251 90.4255

a ¼ 0

1 9.8696 9.8696 9.8696 9.8696

2 39.4791 39.4784 39.4784 39.4784

3 88.8481 88.8264 88.8268 88.8264

a ¼ 0:1

1 9.8696 9.8696 9.8696

2 40.1979 40.1969 40.1970

3 90.3370 90.4251 90.4255

a ¼ 0:2

1 9.8696 9.8696 9.8696

2 42.5522 42.5383 42.5383

3 98.6659 96.7488 96.7494



homogeneous beam, for an FGM axially beam, can

induce not efficient active control. To evaluate the

sensitivity of the FGM properties on the efficiency of

the active control, we suggest the use of a degree of

controllability in the next subsection.

4.2.2 A comparison parameter: a degree

of controllability

To compare the efficiency of the obtained locations,

we use the following degree of controllability, and

defined, in the general case, for the mode n by:

DEGCn ¼
PNa

j¼1 b2
nj

maxone actuator b2
n1

� 100 ð45Þ

It equals to the energy transmitted from the actuators

to the structure for the nth mode divided by the

maximal value energy obtained if the ith mode is

optimally controlled by one actuator (if one actuator is

located in order to optimally control this mode). When

Table 3 Non-dimensional

natural frequencies for the

clamped–pinned beam with

the Young modulus and

mass density given by (44)

n Huang Finite element Our approach Analytical solution

a ¼ �0:2

1 14.2117 14.2117 14.2117

2 51.5819 51.5187 51.5136

3 112.9319 110.8641 110.8505

a ¼ �0:1

1 14.7850 14.7862 14.7850

2 50.2210 50.1997 50.1932

3 108.2707 105.6123 105.5935

a ¼ 0

1 15.4182 15.4195 15.4182 15.4213

2 49.9742 49.9726 49.9649 49.9708

3 107.4485 104.2708 104.2484 104.2441

a ¼ 0:1

1 16.1235 16.1250 16.1235

2 51.1459 51.1525 51.1435

3 110.4157 106.3207 106.2945

a ¼ 0:2

1 16.9107 16.9124 16.9106

2 54.4812 54.4753 54.4640

3 119.2732 113.9421 113.9095

Table 4 Geometrical characteristics of the simply supported

beam and the piezoelectric patch

Beam Piezoelectric patch

Length (m) 0.5 0.06

With (m) 0.01 0.025

Thickness (m) 0.005 0.001

Table 5 Characteristics of piezoelectric patch PVDF and

PZT5A

Piezoelectric sensor

(PVDF)

Piezoelectric actuator

(PZT5A)

�33 ðF m�1Þ 1.062e-8 1.5e-8

e31 ðC m�2Þ 0.046 -7.209

Table 6 Mechanical characteristics of the FGM beam

Zirconia (ceramic) Aluminium (metal)

q ðkg m�3Þ 3000 2700

E (GPa) 151 70

m 0.3 0.3

d 1e-4



the 4 first degrees are over 100 % it means that each

mode ðn ¼ 1; . . .4Þ is better controlled than when it is

specifically controlled by one actuator.

In Table 9, for each value of parameter p, the

degree of controllability of each mode is given, for:

• case 1: the actuator is located at the optimal

location obtained for the FGM beam, with pa-

rameter p,

• case 2: the actuator is located at one of the optimal

locations obtained for the homogeneous beam.

Table 7 Frequencies of the

simply supported beam
p value 0 1 1.5 2 3 50

Frequency 1 (Hz) 64.3 55.9 53.4 51.7 49.6 46.2

Frequency 2 (Hz) 257.4 223.1 214.7 209.2 202.3 184.8

Frequency 3 (Hz) 579.1 501.5 483.4 471.4 456.5 415.99

Frequency 4 (Hz) 1025.5 891.3 859.5 838.5 812.3 739.9
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Fig. 2 First eigenmode of simply supported FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)
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Fig. 3 Second eigenmode of simply supported FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)
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Fig. 4 Third eigenmode of simply supported FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)
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Fig. 5 Fourth eigenmode of simply supported FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)



Results show that the use of the optimal location

obtained for the homogeneous beam, in the case of an

FGM beam, can strongly change the quality of the

active control of one or several eigenmodes. The most

important aim is to optimize the controllability degree

of all modes: they should be over a minimal value, to

insure a ‘‘good level of controllability’’. For example,

for p ¼ 1:5, case 1 induces a worst degree of

controllability equals to 44 % (for modes 1 and 4)

instead of, in case 2, the worst degree of controllability

is 10 % (for mode 3). It means that this eigenmode will

be very badly controlled. This variation can be shown

Figs. 6, 7, 8 and 9, where each degree of controlla-

bility is plotted in relation with the actuator location.

For p ¼ 1:5, the controllability degrees decrease over

the beam length as the beam is stiffener at the right end

ðx ¼ LÞ.

Table 8 Optimal location of actuator (m) for the simply

supported beam

p = 0 1 1.5 2 3 50

0.2 0.0875 0.0886 0.0905 0.0937 0.2

0.3 0.3

Table 9 Degree of controllability for each optimal actuator location on the simply supported beam

Case 1: degree of controllability

using optimal location for FGM

beam (%)

Case 2: degree of controllability

using the first optimal location for

homogeneous beam: a1 ¼ 0:2 m (%)

Degree of controllability using

the second optimal location for

homogeneous beam: a1 ¼ 0:3 m (%)

p = 0

Mode 1 90 90

Mode 2 34.5 34.5

Mode 3 34.5 34.5

Mode 4 89 89

p = 1 a1 ¼ 0:0875 m

Mode 1 44.7 99 74

Mode 2 92 16 33

Mode 3 92.5 43 12

Mode 4 44.7 48 62

p = 1.5 a1 ¼ 0:0886 m

Mode 1 44 100 68

Mode 2 91 17 35

Mode 3 92 46 10

Mode 4 44 51 63

p = 2 a1 ¼ 0:0905 m

Mode 1 42 100 69

Mode 2 90 17 37

Mode 3 94 46 10

Mode 4 42 56 67

p = 3 a1 ¼ 0:0937 m

Mode 1 38.4 98 72

Mode 2 90 20 40

Mode 3 92 45 12

Mode 4 38.4 66 75

p = 50

Mode 1 90 90

Mode 2 34.5 34.5

Mode 3 34.5 34.5

Mode 4 89 89



In order to show the possible impact of the choice of

actuator location to the efficiency of active control, the

LQR method (Bruant and Proslier 2014; Kailath

1980), including a state observer, is developed from

the state equations Eq. (33) considering the 4 first

eigenmodes. In these applications, the matrix Q used

in the LQR method is chosen so that xTQx represents

the mechanical energy. The matrix R is considered

diagonal such that the maximal values of U are less

than the maximal admissible values for the piezoelec-

tric materials under consideration.

4.2.3 Some results of active control

According to the applied load and if several eigen-

modes are considered, the efficiency of the active

control will decrease when the optimal location

obtained for the homogeneous beam is used in the

case of FGM beam. We present two examples.
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Fig. 6 Variation of the controllability degree for mode 1 of the

simply supported FGM beam for p ¼ 0 (red line) and p ¼ 1:5
(blue cross). (Color figure online)
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Fig. 7 Variation of the controllability degree for mode 2 of the

simply supported FGM beam for p ¼ 0 (red line) and p ¼ 1:5
(blue cross). (Color figure online)
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Fig. 8 Variation of the controllability degree for mode 3 of the

simply supported FGM beam for p ¼ 0 (red line) and p ¼ 1:5
(blue cross). (Color figure online)
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Fig. 9 Variation of the controllability degree for mode 4 of the

simply supported FGM beam for p ¼ 0 (red line) and p ¼ 1:5
(blue cross). (Color figure online)



(a) Release test

A first example is the case of a release test where the

third mode is excited:

x3a3ðt ¼ 0Þ ¼ 2; xnanðt ¼ 0Þ ¼ 0 n ¼ 1; 2; 4

ð46Þ

To show this sensitivity, we consider the FGM

beam with p ¼ 1:5 and we use three possible locations

for the actuator:

• the optimal location for p ¼ 1:5: a1 ¼ 0:0886 m

• the first optimal location for p ¼ 0: a1 ¼ 0:2 m

• the second optimal location for p ¼ 0: a1 ¼ 0:3 m.

Test 1 compares the two first locations. The sensor

output and the required input actuator voltage are

plotted in Figs. 10 and 11. The second test compares

the first and last locations. Results are given in

Figs. 12 and 13.

In test 1, the results are quite similar. The time

response of the output sensor is lightly more reduced

using the optimal location of p ¼ 1:5. On the other

hand, in the second test, the plots are very different.

The efficiency of the active control decreases strongly

when the actuator is located in a1 ¼ 0:3 m. This is due

to the 3th mode of the FGM beam which degree of

controllability is\10 %.
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Fig. 10 Test 1: the output of sensor for a1 ¼ 0:0886 m and

a1 ¼ 0:2 m
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Fig. 11 Test 1: the input actuator for a1 ¼ 0:0886 m and

a1 ¼ 0:2 m
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Fig. 12 Test 2: the output of sensor for a1 ¼ 0:0886 m and

a1 ¼ 0:3 m
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Fig. 13 Test 2: the input actuator for a1 ¼ 0:0886 m and

a1 ¼ 0:3 m



(b) A sinusoidal load

Here, a sinusoidal load is applied along the FGM

beam, which load frequency value is near to the

second frequency of the FGM beam:

FðtÞ ¼ 5:104sinð1340tÞ

We consider again the FGM beam with p ¼ 1:5 and

two possible locations for the actuator are used:

• the optimal location for p ¼ 1:5: a1 ¼ 0:0886 m

• the second optimal location for p ¼ 0: a1 ¼ 0:3 m.

The sensor output and the required input actuator

voltage are plotted in Figs. 14 and 15. The vibrations

are actively controlled in\0.6 s in the two cases. But,

the second case needs twice more electric energy than

the first case.

4.3 Optimal location of one and two actuators

on a clamped–pinned beam

In this last example, we consider a clamped–pinned

FGM beam equipped with one or two actuators. Here,

material 1 is metallic and material 2 is ceramic. The

geometrical properties are given in Table 10. Material

properties are the same than in the previous example.

Frequencies and eigenmodes are given Table 11 and

Figs. 16, 17, 18 and 19. Here, the beam is more flexible

for p ¼ 0. There is again a shift between curves for

each eigenmode which can involve variation of

optimal location in respect with the parameter p.

The optimization of actuators location was studied

for different values of p. Here we present results for

the two values of p which induce maximal differences:

p ¼ 0 and p ¼ 1:5.

4.3.1 Optimal location of one actuator

First, in the case of one actuator, we get:

• for p ¼ 0: a1 ¼ 0:02 m

• for p ¼ 1:5: two optimal locations are obtained:

a1 ¼ 0:02 m or a1 ¼ 0:5875 m

In this two cases, the location a1 ¼ 0:02 m is

optimal or almost optimal. This is due to the clamped

edge of the beam. Consequently, in the case of one

actuator, the use of the optimal location of homoge-

neous beam, for FGM beam will give good results.

4.3.2 Optimal location of two actuators

In this subsection, the beam is equipped with two

actuators. We get:
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Fig. 14 A sinusoidal load: the output of sensor for a1 ¼
0:0886 m and a1 ¼ 0:3 m
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Fig. 15 A sinusoidal load: the input actuator for a1 ¼ 0:0886 m

and a1 ¼ 0:3 m

Table 10 Geometrical characteristics of the clamped–pinned

beam and the piezoelectric patch

Beam Piezoelectric sensor

and actuator

Length (m) 0.7 0.04

With (m) 0.01 0.025

Thickness (m) 0.004 0.001



• for p ¼ 0: a1 ¼ 0:02 m and a2 ¼ 0:317 m

• for p ¼ 1:5: a1 ¼ 0:02 m and a2 ¼ 0:614 m

The location of the second actuator is very different

for the two considered cases. In Table 12, the degree

of controllability of each mode is given, for:

• case 1: the actuators are located at the optimal

locations obtained for the FGM beam, with

parameter p ¼ 1:5,

• case 2: the actuators are located at the optimal

locations of the homogeneous beam.

Table 11 Frequencies of

the clamped–pinned FGM

beam

p value 0 1 1.5 2 3 50

Frequency 1 (Hz) 29.4 36.56 37.59 38.29 39.19 41.01

Frequency 2 (Hz) 95.29 116.05 119.41 121.72 124.73 132.87

Frequency 3 (Hz) 198.82 241.03 248.21 253.10 259.41 277.15

Frequency 4 (Hz) 340.01 411.45 423.87 432.28 443.02 473.79
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Fig. 16 First eigenmode of clamped–pinned FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)
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Fig. 17 Second eigenmode of clamped–pinned FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)
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Fig. 18 Third eigenmode of clamped–pinned FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)
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Fig. 19 Fourth eigenmode of clamped–pinned FGM beam for

p ¼ 0 (blue cross) and p ¼ 1:5 (red line). (Color figure online)



If the optimal locations obtained for p ¼ 0 are used

for the FGM beam, the minimal degree of controlla-

bility becomes 71 %, due to the third frequency. In this

case, as in the previous example, vibrations induced by

initial conditions or external loads exciting especially

the third eigenmode, won’t be efficiently controlled.

Results for the release test with a3ðt ¼ 0Þ ¼ 1 and

a1ðt ¼ 0Þ ¼ a2ðt ¼ 0Þ ¼ a4ðt ¼ 0Þ ¼ 0 are plotted

Figs. 20, 21 and 22. Vibrations vanish in \1 s in the

first case, instead of in the second case it needs 2 s.

5 Conclusion

In this paper, the optimization of actuators location is

considered for active vibration control of thin axially

FGM beams. The optimization approach consists in

maximizing a measure of the homogeneous compo-

nents of the gramian controllability matrix. The

variation of mechanical properties along the beam

induces a more complex vibration equations than for

homogeneous beams. Eigenmodes and eigenfrequen-

cies are obtained from Fredholm integral equations,

considering an Hermite interpolation of eigenmodes,

on each subdivision of the FGM beam.

Table 12 Degree of controllability for the FGM clamped–pinned beam with p ¼ 1:5

Case 1: degree of controllability

using optimal locations for FGM beam (%)

Case 2: degree of controllability using the

optimal locations for homogeneous beam (%)

Mode 1 131.9 130

Mode 2 149.9 113

Mode 3 154 71

Mode 4 129 95
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Fig. 20 Output actuators for clamped–pinned FGM beam,

locations of case 1
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Fig. 21 Output actuators for clamped–pinned FGM beam,

locations of case 2
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Fig. 22 Output sensor (located in s1 ¼ 0:2 m, for clamped–

pinned FGM beam, cases 1 and 2



The simulations point out, for simple structures like

beams, that the optimal actuators locations for FGM

structures can be very different with the ones obtained for

homogenous structures. Therefore, the use of homoge-

neous beam locations in the case of FGM beams can

decrease the efficiency of the active control as some

eigenmodes are less controllable. Vibrations can be

controlled slowly and/or the vibration control need higher

electric input. The use of others optimization criteria

would give same comments.

This work shows that the optimization of actuators

location must be solved taking into account the FGM

properties of the considered structure. Conclusions

can be extended to sensors location, as the optimiza-

tion approaches are similar. In future works, this study

could be applied to more complex structures like FGM

in plane-plates and shells equipped with several

piezoelectric actuators and sensors. Some others

investigations could be to use this work for cracked

structures.

Appendix: Expressions of K1ðn; s; pÞ and K2ðn; s; pÞ

The following expressions are given in Huang and Li

(2010).

For simply supported beam

K1ðn; s;pÞ ¼ ðn� 1ÞI E00ðs;pÞsþ 2E0ðs;pÞ½ �; 0� s�n

¼ nI ðs� 1ÞE00ðs;pÞþ 2E0ðs;pÞ½ �; n� s�1

ð47Þ

K2ðn;s;pÞ¼
S

6
qðs;pÞsð1�nÞ n2þs2�2n

� �
; 0�s�n

¼S

6
qðs;pÞnð1�sÞ n2þs2�2s

� �
; n�s�1

ð48Þ

For clamped–pinned beam

K1ðn; s;pÞ ¼
1

2
n2ðn� 3ÞI E00ðs;pÞð1� sÞ� 2E0ðs;pÞ½ �

þ IE00ðs;pÞ n� sð Þ� 2IE0ðs;pÞ;

0� s�n¼ 1

2
n2 n� 3ð ÞI E00ðs;pÞð1� sÞ½

�2E0ðs;pÞ�; n� s�1 ð49Þ

K2ðn; s; pÞ ¼
S

12
qðs; pÞs2ðn� 1Þ

sðn2 � 2n� 2Þ � 3ðn2 � 2nÞ

 �

;

0� s� n ¼ S

12
qðs; pÞn2ðs� 1Þ

nðs2 � 2s� 2Þ � 3ðs2 � 2sÞ

 �

;

n� s� 1 ð50Þ
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