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ABSTRACT
Microstrip antennas have a major interest in aeronautical applications due to their low profile. This paper
deals with the impact of mechanical strain on the scattering properties of these antennas. Considering a
weak coupling between electromagnetism and mechanical behavior, the same 3D hexahedral finite ele-
ment discretization is used to solve both problems. A node-based approximation is used for mechanical
displacement, while for the determination of the electromagnetic fields, a vector finite approximation is
implemented to ensure a better consideration of electromagnetic boundary conditions. The weak electro-
magnetic formulation inducing integrals on open infinite domains, a Boundary Integral Method is used.

1. Introduction

Due to increasing needs in navigation, communication and
surveillance, aircrafts are equipped with more and more anten-
nal structures. The antennas implementation have drastic
backlashes on aircrafts design. Indeed, antennas reduce aircraft
aerodynamic efficiency, lead to structural weakening (drillings),
cannot be placed anywhere and induce a weight increase
through wiring. Thus, the decrease of antennas number and
locations on future aircrafts is a crucial stake in aeronautics.

Many researches focused on embedding antennas on air-
craft structural surfaces (fuselage, wings, tail, ...) have been
performed over the last 15 years in order to improve both struc-
tural efficiency and antenna performances [1]. These studies
especially led in the development of microstrip antennas which
are low profile and conformable to planar and warped sur-
faces. Hence, these antennas can easily be bounded on aircraft
structural surfaces. Moreover, the emergence of metamaterials
(new electromagnetic materials) will soon allow us to elaborate
multifrequencies microstrip antennas.

In flight conditions, planes are subjected to aerodynamic
loads leading to the structure distortion. Hence, the influences
of the structural surfaces distortions on the microstrip electro-
magnetic response have to be studied, independently of antenna
developments. The knowledge of mechanical strains could then
be used for smart tuning of the antennas.

A few papers dealing with curved antennas can be found
in the literature. In Antilla and Alexopoulos [2], a 3D hybrid
finite element-integral equation method has been developed
in general curvilinear coordinates. In Jacobs [3], planar and
curved radiative microstrip antennas are, for example, analyzed.
The influence of the curvature on the radar cross section (RCS)
is moreover shown for such antennas in Volakis et al. [4].
Nevertheless, for cavities antennas, only simple configurations
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like cylindrical surfaces are considered in these works. In
operating conditions, the strained surfaces of the antenna being
complex, specific tools have to be developed. On an other hand,
an overview of industrial coupling softwares (such as ANSYS,
COMSOL) has shown that these tools are not well suited to
solve this kind of coupled problem [5] and [6]. The novelty
of this work is to mix the mechanical and electromagnetic
problems using the same finite element in order to take into
account the physical distortion of the antenna.

The present work, focused on the development of a numer-
ical tool able to predict the impact of microstrip distortions on
electromagnetic fields, is part of the MSIE project (Intelligent
Materials and Structures for Electromagnetism), launched in
2008 by the competitiveness french cluster AStech with the view
of answering to the above problematic.

This paper presents the study of electromagnetic/mechanical
coupling modeling for the analysis of microstrip antennas scat-
tering. It derives from usual mechanical approach and specific
mathematic tools for free space problems [4], [7]. From a 3Ddis-
cretization of the structure, a classical mechanical finite nodal
element model is coupled with an electromagnetic finite vec-
tor element one, developed by Jin [8]. This leads to a partic-
ular finite element having both nodal mechanical and edges
electromagnetic degrees of freedom. Hence, the electromag-
netic/mechanical problem is solved using the same mesh. In
order to solve mechanical problems with warped or distorted
antennas, the considered finite element is an hexahedral one.
Using the usual boundary integral method, the electromagnetic
fields are obtained in the whole space.

In a first part, the microstrip antenna integrated on a com-
posite structure is described and the governing equations
are detailed. The finite element approximation is presented
in the second part and deals with the electromagnetic field
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Figure . The studied structure.

approximation, using the finite vector element approach and
the boundary integral method. In the last section, this recent
numerical tool is used through various configurations.

2. Problem description

2.1. Geometric description

The specific structure to be considered in the present work is
illustrated in Figure 1. It consists in a rectangular microstrip
patch antenna printed on a dielectric substrate. A ground plane
is glued underneath the substrate in order to stop electro-
magnetic waves propagation. The antenna thickness being far
smaller than the substrate one, it will be neglected in the follow-
ing developments. This structure is then supposed to be inte-
grated on composite aircraft panels.

The cavity model, described in Jin [8] and illustrated in
Figure 2 can be used to represent the above structure. The
ground plane is then considered as an infinitemetallic plane and
the substrate is attended in all the cavity.

In the following developments, the infinity space located
above the cavity and the ground plane, and the inside of the cav-
ity will, respectively, be represented byV∞ andV symbols.

Studying the antenna scattering, the cavity is assumed to be
subjected to electromagnetic waves emitted by a source point
ofV∞.

Considering theCartesian coordinate system (O, x̂, ŷ, ẑ)pre-
sented in Figure 3

� any observation point M(x, y, z) of the infinity space
is located by the vector �r = −→OM whose euclidian norm
is defined by r = ‖�r‖ = √

x2 + y2 + z2, (note that M is
located byM(r, θ, φ) in the spherical frame (ρ̂, θ̂ , φ̂));

Figure . The cavity model.

Figure . The coordinate system.

� the �Einc and �Hinc field are emitted from a source pointM′,
located by�r′ = −−→

OM′, and received by the observation point
M.

Finally, it is assumed that the cavity is subjected to mechan-
ical strains and loads. The governing equations and variational
formulations are presented in the next subsections.

2.2. Mechanical governing equations and weak form

As previously underlined, the structural cavity V will be
bounded on composite panels which are distorted by exter-
nal loads. Hence, this distortion will affect V . The study of its
mechanical strains is then essential.

Considering a static approach, the mechanical governing
equations consists in the equilibrium equation, the constitutive
equation inV and the strain-displacement relationship [9]:

−→div T + �f = �0, (1)
T = a S(�u), (2)

S(�u) = 1
2
(grad �u + gradT�u), (3)

where T, S(�u), �f and a are, respectively, the stress tensor, the
strain tensor, the prescribed body forces vector applied toV and
the elastic stiffness tensor. In addition to these equations, one
has to take into account the mechanical boundary conditions:
a first one where mechanical vector displacement �u is imposed,
and the second one where a surface force vector �F is applied on
the boundary ∂VF .

The classical weak form of the mechanical problem is then
given by the following:

Find �u ∈ Uad such that∫
V
S∗(�u∗) : T(�u) dV =

∫
V
�u∗. �f dV +

∫
∂VF

�u∗. �F dS, (4)

for any admissible virtual displacement �u∗ ∈ U∗
ad .



This variational principle is the usual starting point for any
finite element approximations in mechanical modeling.

2.3. Electromagnetic governing equations

Considering a microstrip antenna, the electromagnetic govern-
ing equations in the V∞ space and the cavity V consist in the
Maxwell’s equations and the constitutive relationships. In addi-
tion, the boundary conditions, radiation conditions, jump con-
ditions and electromagnetic excitation are considered for the
mathematical formulation.

The usual time harmonic approach is considered in the fol-
lowing developments. As a consequence, all field quantities are
supposed to be harmonically oscillating functions with a single
frequency ω [8], [10].

2.3.1. TheMaxwell equations
Considering the time-harmonic modeling, the Maxwell’s equa-
tions can be written in a simplified form inV∞ andV :

−→rot �E = − jω �B, (5)
−→rot �H = jω �D, (6)
div �D = ρ, (7)
div �B = 0, (8)

where �E, �D, ρ, �H and �B are, respectively, the electric field inten-
sity, the electric flux density, the electric charge density, themag-
netic field intensity and the magnetic flux density.

2.3.2. The constitutive relations
They describe the macroscopic properties of the mediums.

�D = ε �E, (9)
�B = μ �H, (10)

where the constitutive parameters ε and μ are, respectively, the
permittivity and permeability of the medium. These parameters
are scalars for isotropic media.

In the present study, the cavity backed patch antenna is con-
sidered to be situated in free space. Then, V∞ is characterized
by the free-space permittivity (ε0) and permeability (μ0). More-
over, the cavity is supposed to be filled with an homogeneous
material represented by its relative permittivity εr = ε/ε0 and
relative permeability μr = μ/μ0. These two properties are here
scalars but would have been tensors in the case of inhomoge-
neous filling material.

2.3.3. The boundary conditions
Metallic materials being considered as perfect conductors, the
following conditions have to be verified on the ground plane and
on the surface of the patch antenna:

n̂ ∧ �E = �0, (11)
n̂ . �D = 0, (12)

where n̂ is the unit normal vector of the considered surface.

2.3.4. The radiation conditions
If the outer boundary of a domain recedes to infinity, this
domain is called unbounded or open. In this case, to make sure
that the solution of the problem is unique, an additional condi-
tion has to be specified at this outer boundary. It is referred to a
radiation condition as the Sommerfeld gauge [8]:

lim
r→∞ r [−→rot �E + jk0�r ∧ �E] = �0, (13)

lim
r→∞ r [−→rot �H + jk0�r ∧ �H] = �0, (14)

where k0 is the free-space wavenumber (k0 = 2π/λ0 =
ω

√
ε0 μ0).

2.3.5. The jump conditions
In the present problem, the conservation laws imply to satisfy
the following jump conditions across the interface between the
two mediasV∞ andV [11]:

n̂ . [[�D]] = 0, (15)
n̂ . [[�B]] = 0, (16)

n̂ ∧ [[�E]] = �0, (17)
n̂ ∧ [[�H]] = �0. (18)

2.3.6. Electromagnetic excitation
Studying the antenna scattering, an electric field intensity �Einc

is supposed to appear at a source point of V∞. It is considered
equals to

�Einc(�r) = �E0 e− j k0 k̂inc.�r, (19)

where �E0 and k̂inc are, respectively, the amplitude and propaga-
tion vectors (see Figure 3). The analytical expression of �E0, for a
polarization angle denoted α, is given by

�E0 = Rcs
inc

T �Esph
0 ,

where Rcs
inc is the cross matrix between cartesian and spherical

coordinates, and �Esph
0 is the electric polarization field in spherical

coordinates:

Rcs
inc =

⎡
⎣ sin θinc cos φinc sin θinc sin φinc cos θinc
cos θinc cos φinc cos θinc sin φinc −sin θinc

−sin φinc cos φinc 0

⎤
⎦

�Esph
0 = (0 cos α sin α)T .

The corresponding magnetic field intensity �Hinc equals to

�Hinc(�r) = 1
z0

(k̂inc ∧ �E0) e− j k0 k̂inc.�r, (20)

where z0 = √
μ0/ε0 is the free space wave impedance.

In the next sections, the usual approach which consists in
solving the problem according to �E is followed. Once �E is estab-
lished, the magnetic flux density can be obtained using the first
relationship of Maxwell’s equations.



2.4. Weak electromagnetic formulation

Themain difficulty in the resolution of an electromagnetic prob-
lem for antennas consists in estimating integrals on an open infi-
nite domain. Using numerical methods such as the Finite Ele-
ment Method (FEM), the discretized domain to be considered
has to be extended far from the source region in order to impose
the radiation condition. This leads to huge computing times.

Meanwhile, it is possible to avoid this problem using the
Finite Element-Boundary Integral (FEM-BIM)Method [8], first
developed in mechanical engineering and later introduced in
electromagnetism.

This method consists in introducing a fictitious boundary
which encloses the structures to be studied. Interior to this
boundary, the FEM is used to formulate the fields, whereas in the
exterior region, the fields are represented by a boundary integral.
The fields of the two regions are coupled at the fictitious bound-
ary via the field continuity conditions. This leads to a coupled
system for solution of the interior and boundary fields.

The analytical developments of this electromagnetic problem
are detailed in Jin [8]. The fields formulation in the V∞ space
using the boundary integralmethod leads to introduce the scalar
Green’s function G0.

Then, the weak form of the electromagnetic boundary value
problem can be presented in the following formulation [12]:

Find �E ∈ Ead such that

Fv (�E, �E∗) + Fs(�E, �E∗) = Fext (�E∗) (21)

for all admissible electric field �E∗ ∈ E∗
ad , with

Fv (�E, �E∗) =
∫
V

−→rot�E∗(�r)
1
μr

−→rot�E(�r) dV

− k20

∫
V
�E∗(�r) εr �E(�r) dV

Fs(�E, �E∗) = 2
∫
Sap

∫
Sap

div |r (n̂ ∧ �E∗
s (�r))G0(�r,�r′)...

div |r′ (n̂′ ∧ �Es(�r′))dS′dS

− 2k20

∫
Sap

∫
Sap

G0(�r,�r′)...

(n̂ ∧ �E∗
s (�r)).(n̂

′ ∧ �Es(�r′))dS′dS

Fext (�E∗) = −2 j k0
∫
Sap

(
n̂ ∧ �E∗

s (�r)
) (

k̂inc ∧ �Einc
)
dS,

where Sap = Saperture denotes the area of the cavity which is not
covered by the antenna (see Figure 2), n̂ its unit normal vector, �Es
the surface electric field and G0(�r,�r′) is the scalar Green’s func-
tion, given by [13]–[16]:

G0(�r,�r ′) = e− jk0|�r−�r ′|

4π |�r −�r ′|
Note that the integrals are here reduced to the inside of the

cavity and the aperture surface. Nevertheless, the resolution of
this weak form, will also give the far fields �E far and �H far, using
the following relationships [4], ∀ |�r| ≥ 1/k0:

�Efar(�r) = −z0
(
k̂inc ∧ �Hfar(�r)

)
, (22)

�Hfar(�r) = j
k0
z0

∫
Sap

G(�r,�r ′) .
(
n̂′ ∧ �Es(�r′)

)
dS′, (23)

where G(�r,�r ′) is the dyadic Green’s function, evaluated for far
zone.

Apparently, the functional Eq. (21) only depends on the elec-
tric field. Consequently, it may be discretized. However, due
to the singularity associated with the derivatives of the Green’s
function G0, the evaluation of the surface integral in Fs(�E, �E∗)
leads to a new difficulty.

3. The finite element approximations

This section is dedicated to the finite element approximations.
In the present work, the mechanical behavior of substrate

is supposed nonsensitive to the electromagnetic fields. Thus,
a weak coupling between electromagnetism and mechanical
behavior is assumed.At each time, the coupled problem can then
be processed in the following two steps:

� First, the mechanical part (Eq. 4) is solved using usual
node-based discretization. The mechanical displacement
is obtained by interpolating the nodal values of elements.

� Then, the electromagnetic problem (Eq. 21) is solved, tak-
ing into account the mechanical strain of the structure.

The specificity of the presentmethod lies in the use of a single
finite element having both nodal mechanical and edges electro-
magnetic degrees of freedom. The mechanical and electromag-
netic problems are then solved using the same mesh.

Moreover, the antenna curvatures are time-dependent. This
tool allows to predict how the electromagnetic response evolves
at each time.

3.1. Discussion about the finite element shapes

In order to ensure the solution of the electromagnetic problem to
verify the four Maxwell’s equations in the three directions, and
for a better consideration of electromagnetic boundary condi-
tion, the microstrip antenna needs to be discretized using 3D
finite elements. For meshes compatibility reasons, the substrate
is also discretized using 3Dfinite elements. Bothmechanical and
electromagnetic problem are thus solved in the 3D space.

Five main kinds of elements shape can be considered: brick,
tetrahedra, prism, pyramid and hexahedra. Brick elements are
suited to the study planar structures but they would lead to poor
results for warped or distorted antennas, which is our specific
study. Indeed, they are not able to automatically mesh arbitrary
structures unless staircasing is permitted [4]. Due to their sharp
form, the deformed shape of prisms, pyramids and tetrahedral
elements are known to lead to nonrealistic stress concentra-
tions inmechanical studies. Finally, the hexahedral elements (or
distorted brick element), able to automatically mesh arbitrary
structures, are best suited to model the warped antennas.

The finite element approximation of the coupled problem is
described in the following subsections.

3.2. The finite element approximation for the mechanical
part

3.2.1. Implemented finite element
The element implemented in the software developed for the
present study, is similar to the ANSYS SOLID45 element [17].
It consists in eight nodes linear brick element with three



degrees of freedom at each node (three translations in the nodal
directions).

3.2.2. The elemental matrices
Here, classical methods are used. Using the engineering formal-
ism, the strain and stress tensors can be written as vectors:

�S = {
S} = {S1 S2 S3 S4 S5 S6}T

�T = {T} = {T1 T2 T3 T4 T5 T6}T

Then, the stiffness tensor a can be written as a 6 × 6
matrix a.

Discretizing the studied structure using the FEM, nodal dis-
placements and strains of any element are approximated by

{u} = N {qe} and {S} = B {qe},
where the vector {qe} contains the element nodal displacements
and N and B are 6 × 24 matrices, respectively, containing the
interpolation functions and their derivatives.

Substituting these relationships in each integral of the weak
formulation (4) restrained to elementary volumeVe and surface
Se, the following elemental stiffness matrix and loads vector are
obtained:

Ke =
∫
Ve

BT a B dVe,

{Fe} =
∫
Ve

NT { f } dVe +
∫
Se
NT {F} dSe,

where { f } and {F} are vectors containing the body and surface
loads applied to the element nodes.

3.2.3. The discretized problem
Assembling the elemental matrices over the volume, the
mechanical problem can be expressed in the usual following
global form:

K {q} = {Fmecha}, (24)

where {q} contains themechanical displacement degrees of free-
dom of the structure and {Fmecha} corresponds to the applied
external mechanical loads.

The stiffness matrix K being symmetric and the equation
being linear, classical numerical schemes can be used to solve
the mechanical problem.

3.3. The finite element approximation for the electro-
magnetic part: the use of vector finite elements

Node-based expansions for finite element solutions are suitable
for modeling scalar quantities but typically not so for simu-
lating electromagnetic vector fields. As a consequence, a new
approach, recently used in electromagnetism, uses the vector
finite elements or edge elements which assign degrees of free-
dom to the edges rather than to the nodes of the elements. These
types of elements have been described by Krantz [18]. They have
been shown to be free of the shortcomings of node-based expan-
sions [8], [19]. Especially, the occurrence of nonphysical solu-
tions, also called spurious solutions and generally attributed to

Figure . The electromagnetic element.

lack of enforcement of the divergence condition is avoided. Sev-
eral investigations and applications can be found in the literature
[4], [7], [19], and [20].

3.3.1. Vector finite elements
The electromagnetic problem represented by the weak formula-
tion (21) will be solved using a classical hexahedral edge element
presented in Figure 4.

Here, ξ , η and ζ represent the reduced coordinates, varying
in [−1; 1]3, in the (O, ξ̂ , η̂, ζ̂ ) system of reference. Each edge is
assigned by a number i:

� i = 1 to 4 for edges parallel to ξ̂ ,
� i = 5 to 8 for edges parallel to η̂,
� i = 9 to 12 for edges parallel to ζ̂ .
The electrical field in the element is then approximated by

�Ee =
12∑
i=1

−→W v
i (ξ , η, ζ )Ee

i . (25)

The functions −→W v
i are the basis functions and are given in

Appendix A. The use of these basic functions leads to the fol-
lowing two important features to be underlined:

� The continuity of the tangential field across all element
edges is guaranteed.

� The divergence condition div−→W v
i = 0 within the element

is satisfied.
The Eq. (25) can thus be written in a followingmatrix form:

�Ee =
⎧⎨
⎩
Ee
x

Ee
y

Ee
z

⎫⎬
⎭ = Wv {Ee} (26)

with

Wv =

⎡
⎢⎣

−→W v
1 . x̂ −→W v

2 . x̂ ...
−→W v

12 . x̂−→W v
1 . ŷ −→W v

2 . ŷ ...
−→W v

12 . ŷ−→W v
1 . ẑ −→W v

2 . ẑ ...
−→W v

12 . ẑ

⎤
⎥⎦ (27)

and {Ee} is the vector of components Ee
i (size 12 × 1).

Considering the weak formulation Eq. (21), two kinds of
terms can be distinguished: terms depending on volume inte-
grals and terms depending on surface ones. All integrals are esti-
mated using the above hexahedral edge element. Meanwhile, it



is necessary to impose one coordinate equals to one for surface
integrals. The basis functions

−→
Ws

i so obtained are gathered in the
Ws matrix.

3.3.2. The elemental matrices
Substituting Eq. (26) into each integral of Eq. (21) restrained to
elementary volumeVe and surface Se gives the following elemen-
tal matrices for a curved structure:

Kv
e =

∫
Ve

WT
v ROT

T μr
−1 ROTWT

v dVe,

Mv
e =

∫
Ve

Wv
T εr Wv dVe,

Ms
e = 2

∫
Se

∫
Se
Ws

T NT G0(�r,�r ′
)N′ Ws dS′

e dSe,

Ks
e = 2

∫
Se

∫
Se
Ws

T NT DIVT G0(�r,�r ′
)DIV′N′ Ws dS′

e dSe,

{Fext
e } = 2

∫
Se
Ws

T NT kincw Rcs {Esph
0 } dSe,

where ROT is the rotational operator:

ROT =
⎡
⎣ 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0

⎤
⎦. (28)

N is the matrix associated to n̂ ∧ . with n̂ = nxx̂ + nyŷ + nzẑ:

N =
⎡
⎣ 0 −ny nz

nz 0 −nx
−ny nx 0

⎤
⎦ (29)

andDIV is the divergence operator, defined by

DIV = [
∂/∂x ∂/∂y ∂/∂z

]
. (30)

N′ andDIV′ are, respectively, associated to the source pointM′.
Their expressions are similar to N andDIV.

3.3.3. The discretized problem
Assembling the elemental matrices over the microstrip antenna
volume, the electromagnetic problem can be expressed in a very
global compact form as follows:

Y{qE} = {F}emag, (31)

where {qE} contains the electric field degrees of freedom, and

Y = k20(M
v + Ms) + (Kv + Ks),

{F}emag = jk0{F}ext .
Mv,Ms,Kv,Ks and {F}emag are the generalizedmatrix and vector.

This relationship is similar to the classical static mechanical
one. In the electromagnetic case, the equivalent stiffness matrix
is made of two terms:

� k20Mv + Kv which is the contribution of the antenna struc-
ture discretized using the FEM.

� k20Ms + Ks which is the contribution of the space (con-
taining the electromagnetic sources), discretized using the
Boundary Integral Method.

Matrices Mv, Kv, Ms and Ks being symmetric and Eq. (31)
being linear, its resolution seems to be easy. Meanwhile, the
evaluation of these last two matrices needs some attention: the
green function, which has to be integrated, presents singulari-
ties at some particular points of the elements. This difficulty can
be avoided using different Gauss points when integrating with
respect to surfaces S and S′.

Moreover, k20Ms + Ks is a fullmatrix. In order to reduce com-
puting times, it is converted into a sparse matrix using usual
numerical technics [4].

4. Numerical examples

Our numerical tool was validated in Adnet [12]. In this section,
it is used to model rectangular microstrip patch antennas, inte-
grated on curved or strained structures. The first two tests deal
with curved microstrip antennas on cylindrical and spherical
surfaces. In the two last examples, the structure is subjected to
mechanical loads. The impact of strains on the microstrip elec-
tromagnetic response is discussed.

Considering a scattering problem, the usual output parame-
ter of interest is the RCS in the far field. Indeed, this parameter
is an evaluation of the fields scattered from the structure: higher
this coefficient is, more detectable is the structure. The RCS scat-
tering is given by Refs. [4], [8]:

σ = lim
r→+∞ 4πr2

|�Hsca|2
|�Hinc|2 ,

where �Hsca is the scattered magnetic field intensity obtained by
the far zone expression (Eq. 22).

It is usually represented in logarithmic coordinates and can
be normalized with respect to the wavelength λ as follows [4],
[8]:

σ = 10 log10(σ ), (dBsm),

σ ′ = 10 log10
(

σ

λ2

)
, (dB).

In the next applications, the influence of microstrip curva-
tures on electromagnetic performances will be hereafter ana-
lyzed through RCS diagrams.

4.1. A curved microstrip antenna on cylindrical surface

This test is about a patch antenna inserted in a metallic cylinder
(Figure 5). It is vertically illuminated and two kinds of polariza-
tions (vertical α = 90◦ and horizontal α = 0◦) are considered.
This antenna has been studied by Kempel et al. [22] and Volakis

Figure . A curved microstrip antenna on cylindrical surface.
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Figure . Ameshed curvedmicrostrip antenna on cylindrical surface with R=  m.

Figure . A meshed curved microstrip antenna on cylindrical surface with
R= . m.

et al. [4], for several radius values: R = 0.05 m, 0.1 m, 0.15 m,
0.2 m and 2 m (the last case being similar to a planar antenna).
The authors used cylindrical FE bricks to model the structure.
Our meshes, with hexahedral FE for R = 2 m and 0.05 m, are
shown in Figures 6 and 7.

The monostatic RCS are presented in Figures 8 and 9 for ver-
tical and horizontal polarizations. In spite of the use of different
meshes, they are similar with results provided by Kempel et al.
[22] and Volakis et al. [4]. The case R = 2 m is similar to results
obtained with a planar antenna. Near the resonance frequency
(5.20 GHz for vertical polarization and 3.62 GHz for horizontal
polarization), the level of RCS increases when radius decreases.
These simulations show that the scattering of a curved antenna
on cylindrical surface is upper than the one of a planar antenna.
The antenna is thus failed.

Figure . RCS of the antenna on cylindrical surface, vertically illuminated with
α = 90◦ .

Figure . RCS of the antenna on cylindrical surface, vertically illuminated with
α = 0◦ .

Figure . A curved microstrip antenna on spherical surface.

4.2. A curved microstrip antenna on spherical surface

In this test, the patch antenna is inserted in a spherical metal-
lic surface (Figure 10). It is vertically illuminated by an incident
wave with two kinds of polarizations (vertical α = 90◦ and hor-
izontal α = 0◦). Four radius values are considered: R = 0.05 m,
0.1 m, 0.2 m and 2m.Mesh for R= 0.05 m is given in Figure 11.
The RCSmono static are plotted Figures 12 and 13. Conclusions
are similar to the cylindrical case. At the resonance frequency,
the antenna scattering strongly depends on the curvature. The
antenna again becomes less adapted when R decreases.

The two previous tests deal with antennas on conformal con-
figurations. The simulations show that the ability of hexahedral
elements to take into account each node coordinates allows both
planar and conformal configurations to be simulated using the
same element. This is not true for brick elements: computing
planar and conformal cases needs to, respectively, implement
two brick elements: a planar element [8] and a curved element
[4].Moreover, theRCSpredictions show the influence of the sur-
face curvature on the antenna scattering.

Figure . A meshed curved microstrip antenna on spherical surface with
R= . m.



8 N. ADNET ET AL.

Figure . RCS of the antenna on spherical surface, vertically illuminated with
α = 90◦ .

Figure . RCS of the antenna on spherical surface, vertically illuminated with
α = 0◦ .

From these results, the study of mechanical behavior of the
antenna and the evaluation of the impact of mechanical strains
on the electromagnetic signals must be done. In the next tests,
two antennas are considered, subjected to sinusoidal pressure.
These simulations need mechanical solution from Eq. (24). The
electromagnetismproblem (Eq. 31) is solved taking into account
the obtainedmechanical strain of the structure. As specified pre-
viously, the same FE and, consequently the same mesh, are used
for mechanical and electromagnetic problems.

4.3. A strained planar patch antenna

The following test is about a planar patch antenna, subjected to
a sinusoidal pressure (Figure 14). This antenna is supposed to
be a 0.03 m × 0.02 m rectangular patch lying on the top of a
0.06 m × 0.05 m × 7.874 10−4 m dielectric filled cavity. The
dielectric constant and permeability of the filling substrate are
εr = 2.17 and μr = 1.00, and its Young modulus E is about 1
GPa. The structure is clamped at faces defined by x = −0.03

Figure . Planar patch antenna under sinusoidal pressure.

Figure . Vertical displacement for P0 = . N/m2 .

Figure . Vertical displacement for P0 = . N/m2 .

Figure . RCS for P0 = . N/m2 .

m and x = 0.03 m. Moreover, the structure is supposed to be
vertically illuminated.

The mechanical pressure equals to

P(x) = P0

∣∣∣∣ sin
(

π x
L

) ∣∣∣∣,
where L is the length of the dielectric.

The sensitivity of electromagnetic variables is studied for hor-
izontal and vertical polarizations, with respect to two pressure
magnitudes: case 1: P0 = 0.025N/m2 and case 2: P0 = 0.05N/m2.

Themaximal vertical displacement value is given in Figure 15
for case 1 and in Figure 16 for case 2. The RCS prediction are
plotted Figures 17 and 18. “Def1” and “Def2” means, respec-
tively, results for cases 1 and 2.

The impact of mechanical strains on the electromagnetic
behavior cannot be neglected. Especially for case 2, where a
24.7% RCS shift is noticed for a maximal displacement value
equals to 0.0042 m. It induces an increasing of the antenna
detectability.

Figure . RCS for P0 = . N/m2 .
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Figure . A conformal antenna with five patches on a strained ring.

4.4. A conformal antenna with five patches on a strained
ring

This last test deals with a conformal antenna made with fives
patches, embedded on a ring and subjected tomechanical loads.
The geometry of the antenna is given in Figure 19. The thick-
ness of the substrate is 0.8779 10−3 m. The angle between two
patches equals to 72◦. The dielectric constant equals to εr = 2.17.
Its youngmodulus is 1GPa. The structure is excited by five cylin-
drical pressures P which are applied periodically on areas with-
out patches (see two of them Figure 19). Their expression is

P(x) = P0 sin
(

π θ

θ0

)
, (32)

where θ0 is defined in Figure 19.
The structure is clamped on the lateral face, where y= −25.5

× 10−3 m.
The mesh is presented in Figure 20, and the mechanical dis-

placement induced is given in Figure 21. Maximal displace-
ments are located on the free faces of the antenna and equal to
0.0082 m.

The antenna is vertically illuminated by a planar wave with
horizontal polarization. Four frequencies are considered: 0.5
GHz, 1 GHz, 2 GHz and 4 GHz. For each case, bistatic RCS are

Figure . Ring Mesh.

Figure . Displacement field of the ring.

Figure . Bistatic RCS for . GHz frequency.

Figure . Bistatic RCS for  GHz frequency.

Figure . Bistatic RCS for  GHz frequency.

Figure . Bistatic RCS for  GHz frequency.

plotted Figures 22–25, for initial and strained configurations.
The impact of mechanical strains seems to be negligible. This
can be explained by the small influence of mechanical displace-
ment on the electrical field plotted Figures 26–29.

In conclusion, in this application, in spite of the maximal
value of displacement, the mechanical loads do not affect the
RCS curves and the efficiency of the antenna. The antenna is
always in good running.



Figure . Undeformed case for . GHz frequency.

Figure . Deformed case for . GHz frequency.

Figure . Undeformed case for  GHz frequency.

Figure . Deformed case for  GHz frequency.

5. Conclusion

This work deals with the modeling of the electromagnetic patch
antennas subjected tomechanical stresses. It has beenmotivated
by the MSIE project from the competitiveness French Cluster
Astech, where the development of metamaterial strip antennas
for aeronautical application is evaluated. Such antennas which
are thin and conformable can be embedded on any aircrafts sur-
faces, subjected to mechanical loads. Consequently, the influ-
ence of mechanical strains on electromagnetic signals has to be
evaluated.

In this way, a recent numerical tool is presented in this
paper, taking into account the weak coupling between electro-
magnetism and mechanical behavior to predict the microstrip
antenna scattering. The same hexahedral finite element is devel-
oped with a classical nodal formulation for mechanical fields,
while the electromagnetic ones are expressed by an edge formu-
lation with vector finite elements.

From the weak formulation, an FEM/BIM approach is used
to avoid the discretization of overall space. It consists in intro-
ducing a fictitious boundary that encloses the structure to be
studied. Classical FEM is used to approximate the fields in the
closed domain, whereas the fields in the opened region are eval-
uated by the BIM.

Then, the 3D finite element developed in this work allows
to distort the antenna subjected to mechanical loads and to
simultaneously obtain the modified electromagnetic fields (the
antenna curvatures are time-dependent).

The numerical simulations presented in this paper show that
the distortion ofmicrostrip antenna can affect its scattering. This
is the case of the three first examples. Moreover, sometimes, this
impact can be negligible even if mechanical displacements are
nonzero. For example, in the last test, themaximal displacement
of the radius cylinder is close to 5.5%, but simulations show that
the antenna is always well running.

Consequently, the study of the coupling between electromag-
netism and mechanical behavior is necessary and insightful for
antenna scattering. This is also the case for radiative antenna
which is the subject of our next work.
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Appendix A. The basis functions for the hexahedral 
edge element

The expression of the shape functions along each edge of the
hexahedral element are [4]

−→W v
k (ξ , η, ζ ) = lek

8
(1 + ηkη) (1 + ζkζ )

−−→grad ξ for edges parallel to �ξ,

−→W v
k (ξ , η, ζ ) = lek

8
(1 + ξkξ ) (1 + ζkζ )

−−→grad η for edges parallel to �η,

−→W v
k (ξ , η, ζ ) = lek

8
(1 + ηkη) (1 + ξkξ )

−−→grad ζ for edges parallel to �ζ ,

where ξk, ηk, ζk denotes the edge’s location in (O, ξ̂ , η̂, ζ̂ ) and lek
denotes its length.
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