
HAL Id: hal-02286097
https://hal.parisnanterre.fr/hal-02286097

Submitted on 27 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampling Methods in Genetic Programming Learners
from Large Datasets: A Comparative Study
Hmida Hmida, Sana Ben Hamida, Amel Borgi, Marta Rukoz

To cite this version:
Hmida Hmida, Sana Ben Hamida, Amel Borgi, Marta Rukoz. Sampling Methods in Genetic Program-
ming Learners from Large Datasets: A Comparative Study. Springer. Advances in Big Data, 529,
pp.50-60, 2016, Advances in Intelligent Systems and Computing, 978-3-319-47897-5. �10.1007/978-3-
319-47898-2_6�. �hal-02286097�

https://hal.parisnanterre.fr/hal-02286097
https://hal.archives-ouvertes.fr


Sampling Methods in Genetic Programming
Learners from Large Datasets: A Comparative

Study

Hmida Hmida1,2, Sana Ben Hamida2, Amel Borgi1, and Marta Rukoz2

1 Faculté des sciences de Tunis, Université Tunis El Manar, LIPAH, Tunis, Tunisia
2 Université Paris Dauphine, PSL Research University, CNRS, UMR[7243],

LAMSADE, 75016 Paris, France

Abstract. The amount of available data for data mining and knowledge
discovery continue to grow very fast with the era of Big Data. Genetic
Programming algorithms, that are efficient machine learning techniques,
are face up to a new challenge that is to deal with the mass of the pro-
vided data. Active Sampling, already used for Active Learning, might
be a good solution to improve the EA training from very big data sets.
This paper present a review of sampling techniques already used with
active GP learner and discuss their ability to improve the GP training
from very big data sets. A method in each sampling strategy is imple-
mented and applied on the KDD problem using very close parameters.
Experimental results show that sampling methods outperforms results
obtained with full dataset but some of them cannot be scaled to large
datasets.

1 Introduction
Genetic Programming GP[10] is an Evolutionary algorithm considered as a uni-
versal solving problem method. This paradigm have shown its potential by rein-
venting previously invented patents and by creating new patentable inventions.

Applied to supervised learning and classification problems, GP generates a
population of classifiers (genetic programs) by means of genetic operators. The
performance of each classifier is measured by a fitness function that needs the
evaluation (execution) of every program against the complete training dataset.
This leads to a computational overhead increased specially with large datasets
and proportional to the product of the number of instances in the dataset, the
population size and the number of generations that will be carried out during the
evolution process. Otherwise, using the full learning data might be impossible
when the input data doesn’t fit within the main memory which is often the case
with Big Datasets.

The problem of reducing this calculation cost can be addressed mainly with
two approaches:

– Speeding evaluation by means of hardware acceleration and parallelization.
– Reducing the number of evaluations by selecting a training subset much

smaller than the entire dataset: training set sampling.



A large variety of sampling methods was investigated in many classification
problems using GP and demonstrated a success comparing to the use of entire
training set[3, 5, 9, 21, 12]. However, the results obtained from the earlier exper-
iments cannot be cross-compared since they are based on different GP variants
(Linear GP, Standard GP, Cartesian GP), different datasets and different GP
parameters.

Large datasets are nowadays abundant, they are needed to reach an accurate
classifier. Nevertheless, the increasing size heightens the calculation time problem
of GP algorithms.

In this paper, we will try to put a representative set of sampling methods
in very close experimental conditions, in order to show their impact on learning
speed and accuracy.

2 Sampling Methods: a Review

The main objective of the studied sampling methods, in this paper, is to reduce
the original training dataset size by substituting it with a representative subset
much smaller and hence the evaluation cost of GP algorithm.
Two major classes of sampling techniques can be layed out : static sampling and
dynamic sampling.

2.1 Static Sampling Methods

With static sampling, the learner obtains all the input training set at once and
stills unmodified across the learning process. This type of sampling creates a
subset of patterns with a given size from the training dataset. These patterns
are selected independently from the training process in which they will be used.
Some methods use a unique subset during all GP runs. Other ones can assign
different subsets for each run. Hereafter, some techniques used to build this
subset.

Fixed Sampling The Historical Subset Selection HSS (Gathercole and Ross
1994)[6] gathers misclassified instances from previous GP runs (seven for ex-
ample) at each generation using the best individual of population. The subset
contains not only difficult cases but also easy ones that are collected at earlier
generations. These preliminary runs are conducted using the full dataset.

Boosting This machine learning technique was applied to GP in [9, 16] but not
as a speeding method but rather to improve GP quality by evolving several sub-
populations with different training sets generated by selecting the base dataset
with replacement. Each training pattern has a weight reflecting his difficulty and
most difficult cases may appear more often since the target size is equal to the
original dataset size.



2.2 Dynamic Sampling Methods
Dynamic sampling methods are also referred to as active data selection meth-
ods as derived from Active Learning [2]. The underlying sampling techniques
are tightly related to the learning process evolution. Generally, it depends on a
particular feature like unresolved or difficult cases, the number of generations
carried out, the fitness...

Random Sampling The selection of fitness cases is based on a uniform prob-
ability among the training subset. This stochastic selection helps to reduce any
bias within the full dataset on evolution. In Random Subset Selection RSS[6],
at each generation g, the probability of selecting any case i is equal to Pi(g) such
that :

∀i : 1 ≤ i ≤ T, Pi(g) =
S

T
. (1)

where T is the size of the full dataset and S is the target subset size. The sampled
subset have a fluctuating size around S. Fixed Random Selection (FRS) [21] is
a very similar method with a fixed number of cases selected at every generation.
Stochastic Sampling SS (Nordin and Banzhaf 1997)[15] is another method us-
ing the same probabilistic selection to construct subsets for each individual per
generation.

The single parameter of this category of sampling is the subset size, whether a
crisp or flexible target, is set like other GP parameters (population size, crossover
probability, . . . ) and most likely by several GP runs.

Weighted Sampling. The selection of fitness cases that will be added to the
subset is based on a calculated weight which is a non uniform probability that
measures how much a pattern is worthy and can help to sharpen the population
quality. It is highly inspired by boosting technique in machine learning field,
originally used to improve accuracy of weak learners.
The very first algorithm in this category is Dynamic Subset Selection DSS [6, 7,
5]. This algorithm is intended to preserve training set consistency while alleviat-
ing its size by keeping only the d ifficult cases with ones not selected for several
generations. Each dataset record is assigned a difficulty degree Di(g) and an age
Ai(g) starting with 0 at first generation and updated at every generation. The
difficulty is incremented per one individual misclassification and reset to 0 if the
fitness case is selected. The age is equal to the number of generations since last
selection, so it is incremented when the fitness case has not been selected and
reset to 0 otherwise.
The resulting weight W of the ith case is calculated with this sum:

∀i : 1 ≤ i ≤ T, Wi(g) = Di(g)d +Ai(g)a. (2)

where d is the difficulty exponent and a is the age exponent. The selection
probability is biased by fitness case difficulty and age:

∀i : 1 ≤ i ≤ T, Pi(g) =
Pi(g) ∗ S∑
T
j=1Wj(g)

. (3)



DSS needs three parameters to be tuned: difficulty exponent, age exponent and
target size. Gathercole [6] tried different subset sizes, and different population
sizes with The thyroid classification problem 3 using a full training set size of
3772 . With 10000 individuals DSS realizes better results than neural networks.
DSS reduced evaluations by 20% whilst obtained similar classifiers.

Hierarchical Sampling. This kind of sampling is based on multiple levels of
sampling methods inspired by the concept of a memory hierarchy. It combines
several sampling algorithms that are applied in different levels.

RSS-DSS and DSS-DSS. Robert Curry and Malcom Heywood conceived an ex-
tension to DSS algorithm into a 3 levels hierarchy[4]. At level 0, the dataset was
first partitioned into blocks that were sufficiently small to reside within RAM
alone. Then, at level 1, blocks were then chosen from this partition based on RSS
or DSS. Finally, at level 2, the selected block is considered as the full datset on
which DSS was applied for several rounds. Depending on the level 1 algorithm, we
have RSS-DSS hierarchy or DSS-DSS hierarchy. Besides DSS parameters(see
Section 2.2), new parameters are added: level 0 block size, level 1 number of iter-
ations, level 2 iterations, maximum level 2 iterations and tournament iterations.
Only level 2 iterations is calculated by:

Ib(i) = Imax ∗ Eb(i− 1). (4)

Ib(i): number of level 2 iterations on block b in ith level 1 iteration.
Imax: maximum level 2 iterations.
Eb(i−1): error rate over block b performed by the best case at previous iteration.
A modified DSS in level 2 is used where two roulette wheels exist per block, one
is used to control the selection of patterns with respect to age and the other
difficulty, the roulette wheels being selected in proportion to the corresponding
probability for age and difficulty (2 additional parameters).
For the DSS-DSS hierarchy, block weight and block selection probability are
defined by Equation 5 to be used in level 1.

[!ht]Block(i)weight =
%diff ∗Blockdiff (i)∑

j Blockdiff (j)
+

%age ∗Blockage(i)∑
j Blockage(j)

. (5)

P (Block(i)) =
Block(i)weight∑
j Block()weight

.

Where %diff and %age are difficulty and age weighting used by the two roulette
wheels; Blockdiff (i) and Blockage(i) are the respective block difficulty and age
for block i[4].
Tested against KDD’99[18] and Adult dataset[4], both algorithms realize com-
petitive results in very shorter time. DSS-DSS outperforms RSS-DSS in these
experiments.

3 See UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/



BB-DSS. An extension to this work is made in [3] with the Balanced Block
DSSby altering mainly the level 0 block selection with the goal of obtaining a
balanced block in level 1. A balanced block which does not reflect the original
datset classes’ distribution but a fixed ratio for each class regardless of their
original ratios. At level 0, the full dataset is sorted and divided into separate
class partitions. To create a level 1 block, one partition per class will be used.
The size of class partition depends on the level 1 block size and the class ratio.
For a block size equal to 1000 with 2 classes having respectively 25% and 75%
ratios, class partition sizes will be respectively 250 and 750. To apply DSS on
partitions, partition difficulty and age are defined to calculate partition weight
and selection probability[3]. BB-DSS was compared to RSS-DSS and CasGP4

against different datasets : Adult, Census, Shuttle and KDD’993. Experimental
results showed that Balanced Block algorithm is able to approach the classifi-
cation performance of the CasGP algorithm, whilst retaining the computational
speedup of the original RSS-DSS algorithm.

Incremental Sampling. The training subset starts with a few cases and ac-
quires more cases at every generation to reach the full subset size.
Zhang [21, 20] proposes to perform a uniform data crossover simultaneously with
genetic programs evolution. Data crossover means that when crossover opera-
tion is applied to genetic programs to produce new programs, their subsets are
crossed to obtain new offspring subsets inducing data inheritance through gen-
erations. This helps to preserve the knowledge acquired by the parents. This
method called Incremental Data Inheritance IDI starts with n0 sized subsets,
and increases by λ at every generation with respect to an import rate depend-
ing on a third parameter ρ. In addition to that Zhang uses an Adaptive Fitness
Function varying from an individual to another[21]. This method is applied to
the evolution of collective behaviors for multiple robotic agents[20] and was com-
pared to the standard GP and GP with Incremental Random Selection (IRS)
[20] with 100 training cases. In a second study [21], IDI was faced to full dataset
and FRS in a context of time series prediction problem.

Experimental evidence supports that evolving programs on an incrementally
selected subset of fitness cases can significantly reduce the fitness evaluation time
without sacrificing generalization accuracy of the evolved programs.

Topology Based Sampling. Inspired by the idea that structure influences the
efficiency of heuristics working on it [17, 19], this method consists at building a
topology of the problem from the knowledge acquired by individuals about fit-
ness cases. Lazarczyk [12] suggests a Fitness case Topology Based Sampling TBS
in which relationship between fitness cases in the training set is represented by
an undirected weighted graph. Vertices are fitness cases and edges have a weight
measuring a similarity or a distance induced from individuals performance. Then,

4 Cascaded GP: uses the RSS-DSS algorithm to provide the basis for building cascades
of GP classifiers, up to a predefined number of layers



cases having a tight relationship with respect to a threshold cannot be selected
together in the same subset assuming that they have an equivalent difficulty for
the population. Edge values start at 0 and are updated after evaluation phase
by increasing the weight of all edges between solved cases by each individual and
decreasing the weight of all edges by a loss rate λ.
This algorithm uses a unique subset for all the individuals renewed each gener-
ation after updating the topology graph. The TBS has the following steps:

1. Empty the set of selected fitness cases and initialize the candidate set with
all fitness cases.

2. while there are more candidate fitness cases and the target subset size not
reached do:
(a) Select randomly a fitness case into the subset from the set of candidate

fitness cases
(b) remove the selected case and all fitness cases connected to it with an

edge weight exceeding the threshold.

The threshold is calculated during evolution process to have a value adapted to
the current topology. The threshold must not be too high or too low. In the first
case, there is no exclusion and TBS is equivalent to Stochastic Sampling. In the
second case, very few cases are selected and the target size could not be reached.
Threshold is calcultaed using a binary-search type algorithm.

Experimental results on classification problems (intertwined spirals [11] and
the Thyroid problems) demonstrated improvements in mean fitness value through
generations compared to DSS and SSS. However, the additional computational
cost of TBS caused by the threshold calculation algorithm and the topology up-
date has not been measured. Moreover, this method has not been tested on a
large dataset.

Other Sampling Techniques. Rational Allocation of Trials RAT is an al-
gorithm that allocates fitness cases only to those individuals for which the cost
of evaluating another fitness case is out weighed by the expected utility that
the new information will provide. Although, it is a proven speed up mechanism
and leads to a reduced and varying number of fitness cases per individual, it’s
not a training subset selection method -in my opinion- since it does not select
cases according to a certain probability but use a minimal set of fitness cases for
evaluation and then decides for each individual whether to carry on evaluation
with the next fitness case according to the probability that they might win some
tournament that they are losing or lose some tournament they are winning.

Balanced sampling [8] is a method aiming to improve classifiers accuracy by
correcting the original dataset imbalance within majority and minority class
instances. It has some methods based on the minority class size and thus reduce
the number of instances like the methods studied in this paper. The following
sampling methods are used with GP:

– Static Balanced Sampling: selects cases with uniform probability from
each class without replacement until obtaining a balanced subset with equal



number of majority and minority class instances of the desired size at every
generation.

– Basic Under-sampling: select all minority class instances and then an
equal number from majority class randomly.

– Basic Over-sampling: select all majority class instances and then an equal
number from minority class randomly with replacement.

– Under-sampling A/B: Multiple balanced samples are created at each gen-
eration with Basic under-sampling method. At every generation, all individu-
als are evaluated against all of the sample sets and are attributed the average
fitness across all the sample sets (and the minimum fitness for version B).

– Over-sampling A/B: Creates several balanced samples using Basic Over-
sampling. The final fitness is the average on all subsets (and the minimum
fitness for version B).

3 Design Issues for the Comparative Study

3.1 Cartesian GP.

CGP is a form of GP, proposed by Julian Miller[14], that represent genetic
programs as directed acyclic graphs and mostly inspired by digital circuits called
FPGA. In this graph, nodes representing functions many inputs and one output,
and are layed into two dimensional matrix very similar to neural networks. This
form of GP has the following advantages:

– Unlike trees, it allows more than one path between any pair of nodes per-
mitting the reuse of previous results.

– Highly competitive with other GP methods.

– Does not bloat.

– Is easy to implement.

– Can have multiple outputs and then solve many types of problems (eg. clas-
sification problems).

CGP parameters. The implementation of CGP involves different parameters
that determine its efficiency. A common approach in tuning GP is to undertake
a series of trials to make parameter choices for the final GP runs. Since the
main objective is to compare sampling methods in closely context, this tuning
procedure is not fully investigated.s The final design of CGP parameters used in
this work is summarized in Table 1.

3.2 Implemented Sampling Methods

RSS and DSS were implemented identically to their author’s description. The
remaining methods have been altered as described hereafter.

BRSS. This method is Balanced RSS in which the subset generated by RSS re-
flects the original dataset classes’ frequencies. The number of each class patterns
is calculated with respect to the target size.



Table 1. CGP parameters.

Parameter Value

Population size 512 for RSS, DSS, BUSS BRSS
and RSS-DSS

128 for IDS, TBS and Full Subset
Subpopuations number 1
Number of generations 500 for RSS, DSS, BUSS and BRSS

100 for IDS, TBS
depending on the RSS iteration for RSS-DSS

CGP nodes 300
Inputs/Outputs 49/1
Tournament size 4

Crossover/Mutation probability 0.9/0.04
Fitness Minimize classification errors

RSS-DSS. The implemented RSS-DSS here does not use the same fitness as
proposed by authors. It uses the same fitness function as the other implemented
methods. The effect of this transformation will discussed in Section 5. Two con-
figurations was tested as shown on the Table 4 changing target size, RSS and
DSS iterations simultaneously. The second configuration is referred to with RSS-
DSS2.

IDI. Since we use a fixed subset grow increment, the full dataset size is not
reached at the last generation.

TBS. We calculated the threshold applying a more simpler steps:

1. Use the lowest edge weight as the initial threshold to have the smallest
possible subset.

2. Repeat until target size reached.

(a) Apply TBS selection using current threshold on the remaining patterns.

(b) remove the selected patterns.

(c) If the subset size is too small, the new threshold value is the next edge
weight and the previsouly excluded patterns are added to the candidate
ones.

BUSS. KDD-99 have a normal class and 4 attack classes. The subset selection
uses the U2R attack (52 patterns) class as minority class and then randomly
selects an equal number of patterns from the remaining 3 attacks to obtain 208
attack patterns. In a first experiment, 52 normal were added obtaining a subset
of 260 patterns. In the second experiment (referred to as BUSS2), 208 normal
patterns were chosen to get a final subset of 416 patterns. Sampled subsets are
renewed each generation.



3.3 Performance Metrics
By the end of each run, the best individual based on the fitness function is
tested on the whole dataset and then the test dataset. Results are recorded in
a confusion matrix from which accuracy, True Positive Rate (TPR) and False
Positive Rate (FPR) are calculated.

Accuracy =
True Positives+ True Negatives

Total patterns
. (6)

TPR =
True Positives

True Positives+ False Negatives
. (7)

FPR =
False Positives

False Positives+ True Negatives
. (8)

The training time is the amount of elapsed seconds between the first and the
last generation (see Table 1 for the number of generations ).

4 Experimental Design
4.1 Evolutionary Framework
ECJ. Among several evolutionary computation frameworks, Sean Luke’s ECJ
[13] was used in this work to implement and test the sampling algorithms. ECJ
implements evolutionary algorithms like GP, Evolution Strategies, Genetic Algo-
rithms... It’s an open source framework written in Java, offering the most com-
plete range of GP representations (Koza, linear, grammatical, ...). This frame-
work provides a very flexible API using parameter files well documented in the
ECJ owner’s manual.
ECJ is an active project at George Mason University’s Evolutionary Compu-
tation Laboratory having frequent releases5 and benefit of many contribution
packages as the one used here for implementing Cartesian GP developed by
David Oranchak[1].

4.2 Learning Data
We used here a large dataset, which was firstly created for the competition held
at the Fifth International Conference on Knowledge Discovery and Data Mining
KDD-99 and is about intrusion detection problem. The original training dataset
contains 5 million lines conveying data about connections from the simulated
traffic and their labels. Another set was called corrected set, constructed with
the same way is used as test dataset. The training process is run on the derived
10% KDD-99 dataset to learn how to classify normal connections and attacks.
The best individual of each run is then tested on the test set. Both datasets are
presented in Table 2.
4.3 GP Design
The EA used for the experimental study is the Cartesian GP (CGP). With CGP,
programs are coded with integer linear chromosome divided into groups. Each
group corresponds to a position in a 2-D array.

5 The last release is ECJ23 on June 15th 2015.



Table 2. KDD-99 datasets composition.

Class
Number of Patterns

10% Training Set Test Set

Normal 97278 60593

Dos 391458 229853

probe 4107 4166

R2L 1126 16347

U2R 52 70

Total Attacks 396743 250436

Total Patterns 494021 311029

Terminal and function sets. The terminal set includes input variables which are
the 41 KDD-99 features set with 8 randomly generated constants.
The function set includes basic arithmetic, comparison and logical operators
reaching 17 functions.

Table 3. Terminal and function sets for GP.

Function (node) set

Arithmetic operators: +, −, ∗, %
Comparison operators: <, >, <=, >=, =

Logic operators: AND, OR, NOT, NOR, NAND
Other : NEGATE, IF (IF THEN ELSE),

IFLEZE(IF <=0 THEN ELSE)

Terminal set

KDD-99 Features 41
Ephemeral Random Constants 8 in [−2, 2[

4.4 Specific Parameters for Sampling Methods
The values of additional parameters brought by each sampling method are as-
signed with respect to original method paper. Some of theses methods have been
modified in a order to fit in a comparable context. The Table 4 below shows each
method configuration.

5 Experimental Results
Experiments are performed on an Intel i7-4810MQ (2.8GHZ) workstation with
8 GB RAM running under Windows 8.1 64-bit Operating System. GP programs
are trained to distinguish between normal and attack patterns. To compare the
performance of the implemented sampling methods, six measures are recorded
cross the 21 runs performed for each technique: the best and the mean values for
the accuracy, TPR and FPR metrics. The best measures are illustrated by the
Figure 3 whereas the mean values are presented in the figures 1 and 2. Otherwise,
to compare the methods according to the computational cost, the spent time to
complete each run and to find the best of run individual for all the trials are



Table 4. Specific methods’ parameters.

Method Parameter Value

Standard CGP - -

RSS Target Size 5000

BRSS
Target Size 5000

Balancing method Full dataset distibution

DSS
Target Size 5000

Difficulty/Age exponent 1/3.5

RSS-DSS
Target Size(level 2 block size) 2500 then 100

Level 0 block size 5000
RSS iterations 200 then 500

Max DSS iterations 20 then 50
Individuals evaluated 100

per DSS iteration (20% of population size)
Difficulty/Age exponent 1/3.5
Difficulty/Age Roulette 70%/30%

TBS
Target Size 1000
Loss Rate 0.7
Iterations see paragraph below

IDI
Initial Subset Size 1000

Increment 10
Diversity Factor 0.3

Basic Under (BUSS) - -

recorded. Figure 4 illustrates the corresponding mean values for all implemented
techniques. Experimental results show that introducing a sampling method to

Fig. 1. Mean Data Set Performance Metrics

the GP system improves its performance when training from large data sets. All
the implemented sampling methods have better results than the conventional



Fig. 2. Mean Test Set Performance Metrics

Fig. 3. Best Individual against Test dataset

GP trained on the whole data set (FSS), and this is according to the three
performance metrics (Figure 2.

From Figures 1 and 2, we can make the following observations. Except for the
basic version of RSS-DSS technique, all the implemented sampling techniques
have given satisfactory results. As shown in the Figure 3, the accuracy and the
True Positive Rate of the best solutions given by all the methods are quite
similar. However, this finding is not available for the best FPR values. Indeed,
according to the Accuracy and TPR metrics of the best solutions, BUSS method
performed better than all the other sampling approach, but it has the 2nd worst
TPR value (after the RSS-DSS method).

For the two methods BUSS and RSS-DSS, we tried a second configuration
mentioned as BUSS2 and RSS-DSS2 (see Section 3.2). BUSS2, while using a
larger subset (more normal cases than BUSS), has lost accuracy and TPR but
realizes a much better FPR. With RSS-DSS2 settings, this method enhances its
performance but FPR remains very high.



TBS, IDI and FSS have been tested with a reduced number of generations,
population size, and target subset size due to the huge amount of time needed for
each generation. Nevertheless, TBS and IDI reached a comparable performance
level. All 3 methods have a very increased run time. Moreover, both IDI and
TBS spent more time than using the full dataset assuming that the computing
time needed for training set sampling is very high compared with the evaluation
time.

Fig. 4. Time Measures

From Figure 4, we can see that RSS-DSS in both settings finds the best
individual of run in the very first generations. BUSS makes the fastest runs be-
cause it uses the smallest subset size but this result depends on the classification
problem itself and classes of the learning data.

6 Conclusion
The aim of this study was to compare dynamic sampling methods and their be-
havior when faced with large datasets under fixed parameters. Those parameters
(CGP parameters) were not tuned for each sampling method.

IDI and TBS, even though they had shown good results with smaller training
sets, they suffer from a very high computing time and cannot be applied to large
datasets.

RSS-DSS, in this experimental context has lost its performance. The main
change with earlier experiments is the use of a different fitness function.

To deal with run time problem of IDI and TBS, mixing them with other
sampling methods in a hierarchical sampling is a promising solution. Fitness
function affects the quality of GP results and this needs to be experimented on
the sampling methods tested here.

References

1. CGP: Cartesian gp website, http://www.cartesiangp.co.uk



2. Cohn, D., Atlas, L.E., Ladner, R., Waibel, A.: Improving generalization with active
learning. In: Machine Learning. pp. 201–221 (1994)

3. Curry, R., Lichodzijewski, P., Heywood, M.I.: Scaling genetic programming to large
datasets using hierarchical dynamic subset selection. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Part B - Cybernetics 37(4), 1065–1073 (2007)

4. Curry, R.C., Heywood, M.: Towards efficient training on large datasets for ge-
netic programming. Lecture Notes in Computer Science 866(Advances in Artificial
Intelligence), 161–174 (2004)

5. Gathercole, C.: An Investigation of Supervised Learning in Genetic Programming.
Thesis, University of Edinburgh (1998)

6. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning
in genetic programming. In: Parallel Problem Solving from Nature - PPSN III.
Lecture Notes in Computer Science, vol. 866, pp. 312–321. Springer (1994)

7. Gathercole, C., Ross, P.: Small populations over many generations can beat large
populations over few generations in genetic programming. In: Genetic Program-
ming 1997: Proc. of the Second Annual Conf. pp. 111–118. Morgan Kaufmann,
San Francisco, CA (1997)

8. Hunt, R., Johnston, M., Browne, W.N., Zhang, M.: Sampling methods in genetic
programming for classification with unbalanced data. In: Australasian Conference
on Artificial Intelligence. Lecture Notes in Computer Science, vol. 6464, pp. 273–
282. Springer (2010)

9. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proc. of the
Genetic and Evolutionary Computation Conf. GECCO-99. pp. 1053–1060. Morgan
Kaufmann, San Francisco, CA (1999)

10. Koza, J.R.: Genetic programming: On the programming of computers by means of
natural selection. Statistics and Computing 4(2), 87–112 (1994)

11. Lang, K.J., Witbrock, M.J.: Learning to tell two spirals apart. In: Proceedings
of the 1988 Connectionist Models Summer School, pp. 52–59. Morgan Kaufmann
(1988)

12. Lasarczyk, C.W.G., Dittrich, P., Banzhaf, W.: Dynamic subset selection based on
a fitness case topology. Evolutionary Computation 12(2), 223–242 (2004)

13. Luke, S.: Ecj, a java-based evolutionary computation research system, http://cs.
gmu.edu/~eclab/projects/ecj/

14. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of the
Third European Conference on Genetic Programming (EuroGP-2000). LNCS, vol.
1802, pp. 121–132. Springer Verlag, Edinburgh, Scotland (2000)

15. Nordin, P., Banzhaf, W.: An on-line method to evolve behavior and to control a
miniature robot in real time with genetic programming. Adaptive Behaviour 5(2),
107–140 (1997)

16. Paris, G., Robilliard, D., Fonlupt, C.: Artificial Evolution: 5th International Con-
ference, Evolution Artificielle, EA 2001 Le Creusot, France, October 29–31, 2001
Selected Papers, chap. Applying Boosting Techniques to Genetic Programming,
pp. 267–278. Springer, Berlin, Heidelberg (2002)

17. Tad Hogg, T.: Refining the phase transition in combinatorial search. Artif. Intell.
81(1-2), 127–154 (1996)

18. UCI: Kdd cup (1999), http://archive.ics.uci.edu/ml/

machine-learning-databases/kddcup99-mld/kddcup99.html

19. Walsh, T.: Search in a small world. In: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31
- August 6, 1999. 2 Volumes, 1450 pages. pp. 1172–1177 (1999)



20. Zhang, B.T., Cho, D.Y.: Genetic Programming with Active Data Selection, vol.
1585, chap. Simulated Evolution and Learning, pp. 146–153. Springer, Berlin, Hei-
delberg (1999)

21. Zhang, B.T., Joung, J.G.: Genetic programming with incremental data inheritance.
In: Proceedings of the Genetic and Evolutionary Computation Conference. vol. 2,
pp. 1217–1224. Morgan Kaufmann, Orlando, Florida, USA (13-17 July 1999)


