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Abstract. With the growing number of available databases having a
very large number of records, existing knowledge discovery tools need
to be adapted to this shift and new tools need to be created. Genetic
Programming (GP) has been proven as an efficient algorithm in partic-
ular for classification problems. Notwithstanding, GP is impaired with
its computing cost that is more acute with large datasets. This paper,
presents how an existing GP implementation (DEAP) can be adapted
by distributing evaluations on a Spark cluster. Then, an additional sam-
pling step is applied to fit tiny clusters. Experiments are accomplished on
Higgs Boson classification with different settings. They show the benefits
of using Spark as parallelization technology for GP.

Keywords: Genetic Programming· Machine Learning· Spark · Large
Dataset · Higgs Boson Classification

1 Introduction

Digital transformation that we witness in organizations and companies have
generated a huge volume of data. High storage capacities facilitated this phe-
nomenon and provided organizations with their own data lakes3.

To discover hidden knowledge in this data, many Artificial Intelligence (AI)
tools and techniques have been used such as Neural Networks, Decision Trees,
etc. Evolutionary Algorithms (EA), and in particular Genetic Programming
(GP) [14], are candidate solutions since they have shown satisfying results for
a wide range of problems (classification, time series prediction, etc.). However,
GP suffers from an overwhelming computational cost. This becomes more no-
ticeable when the handled problem has a very large dataset as input. In fact,
the evaluation step (see figure 1) is the Achilles heel of GP. It is at the origin of
the increasing computational time. Therefore, any solution that applies GP to
solve a large scale problem, has to focus on reducing the evaluation cost.

Summarily, mitigating this cost could be achieved by either parallelizing eval-
uations or reducing their number by means of dataset sampling, hardware ac-

3 ‘A data lake is a collection of storage instances of various data assets additional to
the originating data sources.’ (Source: Gartner)
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celeration or distributed computing. Hadoop MapReduce4 and Apache Spark5

are Big Data tools that implement a new programming model over a distributed
data storage architecture. They are de facto tools for data intensive applications.
However, according to our knowledge, neither Spark libraries, such as Spark
built-in library MLlib, nor existing ad hoc solutions do provide an implemen-
tation of GP adapted to Spark, which hinders its use in Big Data frameworks.
Moreover, recent machine learning problems more often than not need very high
computing power and resources in order to make a solution in a reasonable time.
The challenge of running GP on Spark becomes more defying when only Small
clusters are available.

This work outlines how we ported an existing GP implementation to Spark
context in order to take the most of its proven potential. We apply this solution
to the Higgs Boson classification problem (see section 2.4) and study the effect of
varying some GP parameters on learning performance and time. Additionally, we
include a sampling algorithm to GP and test it in the same environment configu-
ration used with the whole dataset. We discuss the contribution of this sampling
method to the learning process and the effect of varying number of generations,
population size and sample size on training time and classifier performance.

The remainder of this paper is organized as follows. Section 2 gives an intro-
duction to GP basics. It presents Spark and recent works that combine these two
concepts. Section 3, exposes how we adapted an existing GP implementation to
comply with Spark environment. Then, we show why and how a sampling phase
is added to GP. Details about experimental design followed by the obtained re-
sults are discussed respectively in Sections 4 and 5. Finally, we end with some
concluding remarks and perspectives.

2 Background and Related works

2.1 Genetic Programming (GP)

In the standard GP, the population is composed of tree-based individuals very
close to Lisp programs. It performs the common steps of any EA that are:

1. Randomly create a population of individuals where tree nodes are taken
from a given function and terminal sets. Then evaluate their fitness value by
executing each program tree against the training set.

2. According to a fixed probability, individuals are crossed and/or mutated to
create new offspring individuals.

3. New solutions are evaluated and a new population is made up by selecting
best individuals from parents and offspring according to their fitnesses.

4. Loop step 2 and 3 until a stop criteria is met.

The evaluation step is at the origin of the increase of the GP computing time.
In fact, it executes all programs (individuals) as many times as the size of the

4 https://hadoop.apache.org
5 https://spark.apache.org
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training set. In a classification problem, an individual is a program tree that rep-
resents a classification model. Figure 1 illustrates the evaluation of an individual
against the training set. Its phenotype is (if(IN3 > 0.3, IN3, IN0+IN1) < 0.6)
and is represented by the tree in the same figure. It depicts a single iteration
in the evaluation of a single individual within the population. The output is
translated in a class prediction and is compared to the given value from the
training set. The fitness value is computed, after looping on the whole training
set, according to the fitness function adopted (error rate, true positive rate, etc.).

Population Evaluation

Training Set 

IN0 IN1 IN2

0.01 0.25 0.55

IN3 target

0.44 1

<

if

> +

0.6

0.3IN3

IN3

IN3 IN3 Prediction = 1

Fig. 1. GP Evaluation.

2.2 Spark and MapReduce

MapReduce is a parallel programming model introduced by Dean et al. in [5]
and made popular with its implementation Apache Hadoop. The main idea of
this model is that moving computation is cheaper than moving data. On a clus-
ter, data is distributed over nodes and processing instructions are distributed
and performed by nodes on local data. This phase is known as the Map phase.
Finally, at the Reduce phase, some aggregation is performed to produce the final
output. Hadoop Distributed Files System (HDFS) ensures data partitioning and
replication for MapReduce. However, it needs many serialization operations and
disk accesses. In addition to that, Hadoop MapReduce does not support iterative
algorithms which is the case for EA.

Apache Spark is one of many frameworks intended to neutralize the limita-
tions of MapReduce while keeping its scalability, data locality and fault toler-
ance. It is up to 100 times faster than MapReduce owing to in-memory com-
puting. The keystone of Spark is the Resilient Distributed Datasets (RDD) [19].
An RDD is a typed cacheable and immutable parallel data structure. Opera-
tions on RDDs are of two types: transformations (map. filter, join, . . . ) and
actions (count, reduce, reduceByKey, . . . ). Spark DAGScheduler, computes an
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optimized Directed Acyclic Graph exploiting lazy evaluation and data local-
ity. Spark is compatible with different cluster managers (Built-in Standalone,
Hadoop YARN, Mesos and Kubernetes) [13].

2.3 Previous works

Recently, several works deal with parallelizing EA in distributed environments.
Rong-Zhi Qi et al. [17] and Padaruru et al. [15] apply Genetic Algorithms (GA)
on software test suite generation where input data is a binary code. Both give a
Spark based implementation that parallelizes fitness evaluation and genetic op-
erators. In Chávez et al. [4], the well-known EA library ECJ is modified in order
to use MapReduce for fitness evaluations. This new tool is tested using GA to
resolve a face recognition problem over around 50MB of data. Only time mea-
sure was considered in this work. In Peralta et al. [16], the MapReduce model
is applied to implement a GA that preprocesses big datasets (up to 67 millions
instances). It applies an evolutionary feature selection, in a map phase, to create
a vector per mapper on top of disjoint subsets from the original dataset. The
reducer aggregates the previously created vectors. Funika et al. [7] implement
an ‘Evaluation Service’ that can be solicited through a REST API. It is not an
implementation of a specific EA algorithm but rather an outsourcing of the eval-
uation. This service can be used by any algorithm that requires the evaluation
of an expression over a given dataset. They tested this service for 3 different
expressions on datasets varying from 1MB to 1024MB. Al-Madi et al. [1] present
a full GP implementation based on MapReduce. It relies on creating a mapper
for each individual by storing the population on HDFS. Each mapper, calcu-
lates the fitness value for the involved individual. Then, the reducer collects the
population and performs selection, crossover and mutation to create the new
population. The focus is on increasing population size (until 50000) and only
with small datasets classification problems.

Our proposal is inspired by all these works and mostly by Chávez et al. [4]
where the authors have integrated the MapReduce model to the ECJ library in
order to run EA on a hadoop cluster. Their goal was to evolve very large popula-
tions (up to 3 million individuals), which was achieved by using the checkpointing
feature and serializing individuals in an HDFS file. This work is focused on pop-
ulation and did not study the use of massive datasets. Our proposal is rather
concerned with training dataset. We both give a transformation of an existing
tool, but our solution uses a different underlying infrastructure which is Spark
engine and handles a big dataset to assess the advantages of distributing GP
evaluation. Another difference is the EA algorithm applied. While Chávez used
GA, we use standard tree-based GP. Finally, we extend this solution with a
sampling technique.

2.4 HIGGS dataset

A Higgs or Z Boson is a heavy state of matter resulting from a small fraction of
the proton collisions at the Large Hadron Collider [3].
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From the machine learning point of view, the problem can be formally cast
into a binary classification problem. The task is to classify events as a signal
(event of interest) or a background. Baldi et al. [2] published for benchmark-
ing machine-learning classification algorithms a big dataset of simulated Higgs
Bosons that contains 11 million simulated collision events [10].

In this work, we propose to handle the whole dataset, which is a big challenge
when using EA. Table 1 summarizes the main characteristics of the dataset.

Table 1. Higgs dataset composition.

Total of events 11 millions
Number of Attributes 28 real-valued (21 low-level and 7 high-level variables)
Percentage of signals 53%
Training set size 10.5 millions events
Test set size 500K events

3 Porting DEAP to Spark

DEAP (Distributed Evolutionary Algorithms in Python) [6] is presented as a
rapid prototyping and testing framework that supports parallelization and mul-
tiprocessing. It implements several EA: GA, Evolution Strategies (ES) and GP.
We decided to use this framework for the following reasons: (1) it is a Python
package which is one of the 3 languages supported by Spark, (2) it implements
standard GP with tree based representation and (3) it is distributed ready. The
third point means that DEAP is structured in a way that facilitates distribution
of computing tasks. DEAP is not natively compliant with Spark and do not use
any of its parallel data structures (RDDs, DataFrames or DataSets).

To adapt DEAP for a parallel computing engine, the usual method is to
replace the map method, of the Toolbox class, by a code that calls the desired
parallelized operation. Unfortunately, Spark has a constraint that prohibits nest-
ing RDDs. To evaluate an individual, we need to access our dataset stored in an
RDD. Consequently, this solution is not feasible. The following paragraph shows
how we transformed DEAP to benefit from Spark RDDs.

3.1 Implementation model

From recent works described in 2.3, two main scenarios for distributing any EA,
and in particular GP, can be laid out:

1. Distribute the whole GP process: each mapper is an independent run that
uses local data. It is very close to the co-evolution scheme or island model.
By the end of this scenario, an aggregation is required to obtain the final
solution. This aggregation is run on the driver program. For example, ag-
gregation can be made through a voting using the best individual of each
population in a classification problem. Another way is to take the best in-
dividual after a test on the whole training set. This solution needs more
resources on the cluster.
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2. Distribute population: this is suitable when a single population is evolved.
Parallelization can be reached by partitioning the population using RDDs.
Therefore, individuals are distributed on nodes, and each node processes the
local individuals in spite of the total population. To proceed the following
phase of the GP (see 2.1), the output of the previous phase is collected as a
new RDD. It is composed of the modified individuals (RDDs are immutable).

The evaluation represents more than 80% of the total time cost in EA [9, 7]. We
suggest to focus on evaluation which can be easily distributed on Spark cluster
even with limited resources seeing that we do not need independent populations.
Besides, for machine learning problems involving big training sets, data must be
parallelized and then we cannot parallelize population. The fitness function con-
sidered in this problem is to maximize correct predictions. To adapt fitness com-
puting to Spark, a first alternative is to replace the default evaluation function
used in DEAP. Map operation on TrainingRDD does not use the individual but
a function (func) representing the Genetic Program. This alternative makes as
many reduce operations as the size of population. This generates an important
cost even for small populations. A key rule in Spark optimization is to reduce the
number of action operations with regard to transformations. Thus, we altered
DEAP evaluation so it maps all the population on the TrainingRDD. This dimin-
ishes action calls to one call per generation. Figure 2 gives the global flowchart of
the modified DEAP evaluation algorithm. First, training set is transformed into
an RDD (TrainingRDD) from a file stored on HDFS and is cached (Figure 3, line
3). Then, at each generation, the population is evaluated against the training
set by mapping their functions on TrainingRDD partitioned over worker nodes
(Figure 3, line 9). To get fitness values, a reduce operation is performed (Fig-
ure 3, line 12). After, offspring can be generated on the driver node by applying
mutation and crossover. The offspring replaces the old population and program
loops until maximum generation number is reached.

3.2 Data sampling

GP is a costly algorithm and this is intensified with big datasets like HIGGS. For
clusters with a small number of nodes, running GP for such problems remains of
high-cost. Furthermore, in these datasets, redundancy is inescapable. Sampling
is a very suitable technique to deal with this situation. Additionally, depending
on the underlying algorithm, sampling may counter overfitting, enhance learning
quality and allow large population or more generations per run.

For these reasons, we investigated the use of sampling with the previous
implementation. In this work, we started by a simple sampling method which
is Random Subset Selection (RSS) [8]. RSS combines simplicity with efficiency.
Spark makes available two operations: sample and takeSample. They produce
samples with an oscillating size around the specified target. For efficiency, we
used sample which is an RDD transformation. takeSample is an action and
cannot be optimized by Spark DAG Scheduler. The training sample is renewed
at each generation before evaluating the population.
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Fig. 2. Flowchart of the modified evaluation.

The commented code snippet in Figure 3 outlines the steps we made to adapt
the DEAP standard GP.

4 Experimental settings

4.1 Framework

Software framework The details of used software are as follows: Spark version:
2.1.0, Hadoop version: 2.9.1, Resource Manager: YARN, Operating System: SMP
Debian 4.9.130 and DEAP version: 1.2.2.

Spark cluster We used a tiny cluster composed of 4 worker nodes. Each node has
a 16 core Intel Core processor at 2.397GHZ, 45GB of RAM and 1TB of HDFS
storage space.

In the following experiments, Spark application is submitted to the cluster
via spark-submit script. We used the same YARN directives that are optimized
for the cluster size and the used dataset accordingly to guidelines in [12] for all
the GP runs in order to neutralize the effect of this configuration on results.

On this cluster, 4 Spark executors are deployed per node. The number of
available nodes does not allow us further investigation of hardware effect on GP
performance.

4.2 GP settings

General settings Based on few runs, we set parameter values (Table 2) for GP.
The process of tuning GP settings is beyond the scope of this work and have not
been thoroughly studied.
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1 from pyspark import SparkContext

2 sc = SparkContext(appName="DEAPSPARK")

3 TrainingRDD = sc.textFile("training.csv").cache() #parallelize training set

4 initGP()

5 while(generation<maxGeneration): # GP loop

6 # serialize population and map it on training subset

7 popFunctions = [toolbox.compile(ind) for ind in population]

8 fitnessRDD = TrainingRDD.map(lambda line:\

9 [getPrediction(func,line) for func in popFunctions])

10 # compute final fitness using reduce

11 fitnessValues =\

12 fitnessRDD.reduce(lambda v1,v2:list(map(operator.add,v1,v2)))

13 updatePopulationFitnesses(population, fitnessValues)

14 # Select the next generation individuals

15 offspring = select(population)

16 # Apply genetic operators

17 offspring = evolve(offspring, crossoverProb, mutationProb)

18 population[:] = offspring

Fig. 3. Modified DEAP GP loop.

Terminal and function sets The terminal set includes 28 features of the bench-
mark Higgs dataset with a random constant. The function set includes basic
arithmetic, comparison and logical operators reaching 11 functions (Table 3).

Table 2. GP settings.

Parameter Value

Initialization Ramped half
and half

Tournament size 4

Tree limit 17

Crossover probability 0.9

Mutation probability 0.04

Generations and 61 different
population size combinations

Table 3. GP terminal and function sets.

Function (node) set

Arithmetic operators +, −, ∗, /
Comparison operators <, >, =
Logic operators AND, OR, NOT
Other IF (IF THEN ELSE)

Terminal set

Higgs Features 28
Random Constants 1
Boolean values True, False

5 Results and discussion

Since the main objective is to tackle computation cost of GP in supervised learn-
ing problems, the first recorded measure is learning time. It comprises the elapsed
time from the initialization of the first population until the last generation. It
does not include the time for evaluation against the test set.

Reducing time must not be at the expense of learning quality. Then, by the
end of each run, the best individual based on the fitness function is evaluated on
the test dataset. Results are recorded in a confusion matrix from which accuracy,
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True Positive Rate (TPR) and False Positive Rate (FPR) are calculated. The
objective function used with GP is the classification accuracy:

Accuracy =
True Positives + True Negatives

Total patterns
(1)

We tried 61 different configurations obtained by varying population size,
generation number and sample size. Each configuration is run 11 times. Then we
compute the average learning time and the overall best individual performance
metrics. By these experiments, we intend to trace the speed gain in learning time
and how it reacts to population size and generations number changing.
The results are reported in Figure 4 in which 3 population sizes are tested (32,
64 and 128 with 30 generations) and 3 generations numbers (30, 50 and 70 with
32 individuals per population) with full dataset (FSS).
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Fig. 4. FSS Mean Time.

It is noticeable that parallelizing GP on Spark, facilitates its use for solving
large classification problem like Higgs Boson classification. With only 4 nodes, a
GP run takes on average 4864.541 seconds in 70 generation with 32 individuals
and 9779.379 seconds in 30 generations with 128 individuals. A serial execution
of GP on a single node takes more than 20 seconds to evaluate one individual
against the total dataset which could take more than 44800 seconds for 70 gen-
erations with 32 individuals. Parallelizing evaluations under Spark achieves a
speedup over nine times. This can be boosted by deploying more nodes on the
cluster. Otherwise, learning time increases linearly with respect to the popula-
tion size and generations number when using the same Spark settings.

Then, to allow using large populations and more generations without adding
nodes, we injected RSS to the modified GP. We used the same settings but
more population size values (from 32 to 8192) and generation numbers (from
30 to 1500) with a sample size fixed at 10000 instances. Results are exposed in
Figure 5. The mean learning time for 1500 generations evolving 128 individuals
is 3116.744 seconds and for 30 generations with 8192 individuals is 763.9 seconds.
The two curves have the same pace. This is owing to the fact that evaluation

is the predominant phase in GP. Also, with low values of population size and
generations number, time curve is almost flat or with slight slope. It means that
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Fig. 5. RSS Mean Time.

time is affected mainly by Spark scheduling delays. This is tightly related to the
cluster use tuning. This remains valid for target sample size (Table 4).

We tried the values: 1000, 5000, 10000, 50000 and 100000 instances per sam-
ple. While population size and generations number are set to 128 and 300.

To weigh the differences between using the whole dataset and a sampled subset

Table 4. RSS sample size effect on time.

Sample size 1000 5000 10000 50000 100000

Mean time (S) 384.748 411.198 547.839 971.921 1684.747

for training, we juxtapose the results of full dataset (FSS) with those obtained by
RSS with the same number of generations and population size in Figure 6. Also,
we keep an eye on learning performance in Figure 7. Undoubtedly, RSS outper-
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Fig. 6. RSS vs FSS mean learning time.

forms GP without sampling for the 5 different target sizes. As regards learning
performance, in terms of accuracy, experiments using RSS are less efficient with
low number of generations or population size. It surpasses using the full dataset
with large populations or more generations. On the one hand, in Figure 7(a),
it’s for more than 50 generations that all RSS variants have best accuracy. On
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the other hand, Figure 7(b) shows that RSS outperforms the use of the entire
dataset only with a population size of 128. It is important to notice that we
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Fig. 7. RSS vs FSS Best individual accuracy.

do not focus on enhancing learning performance and do not use any enhancing
technique (e.g. feature engineering). Nevertheless, the best accuracy obtained is
66.93% with RSS (popultaion: 128, generations: 1500, sample: 10000) in 3190.02
seconds. The best result in [18] is 60.76% realized with logistic regression.

6 Conclusion

We presented, in this paper, details about reshaping DEAP library by paralleliz-
ing evaluation on Spark cluster. We obtained encouraging results that proclaim
Spark as an efficient environment and is suitable for distributing GP evaluations.
Then, we integrate a simple sampling technique that preserves learning perfor-
mance while providing the possibility to probe GP with large populations or for
a high number of generations. We studied experimentally the effect of varying 3
parameters: population size, generations number and sample size.

This work provides a Spark compliant GP implementation without the need
to code it from scratch. Thus, it can be used in resolving different machine
learning problems. Although it has been successfully tested on a small cluster, the
size of the underlying cluster on the overall performance has to be investigated.

A logical extension is to study the impact of different Spark configurations
(number of nodes, RDD partitioning, partition sizes, etc.). This will help to find
the most suitable execution settings. A second path is to check the feasibility of
adding other sampling techniques and in particular active sampling that prove
to be advantageous in the context of machine learning. Hierarchical sampling,
that we used in [11], is a promising candidate.
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