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Abstract—The amount of available data for data mining and
knowledge discovery continues to grow very fast with the era
of Big Data. Genetic Programming algorithms (GP), that are
efficient machine learning techniques, are face up to a new
challenge that is to deal with the mass of the provided data. Active
Sampling, already used for Active Learning, might be a good
solution to improve the Evolutionary Algorithms (EA) training
from very big data sets. This paper investigates the adaptation of
Topology Based Selection (TBS) to face massive learning datasets
by means of Hierarchical Sampling. We propose to combine the
Random Subset Selection (RSS) with the TBS to create the RSS-
TBS method. Two variants are implemented and applied to solve
the KDD intrusion detection problem. They are compared to
the original RSS and TBS techniques. The experimental results
show that the important computational cost generated by original
TBS when applied to large datasets can be lightened with the
Hierarchical Sampling.

I. INTRODUCTION

Genetic Programming (GP) [1] is a meta heuristic that has
been used to solve a wide variety of machine learning prob-
lems. Applied for many classification problems, it has made
a very competitive results with other approaches like Neural
Networks, Decision Trees, etc. Nevertheless, this Evolutionary
Algorithm (EA) suffers from an increased computational cost
induced mainly by the evaluation step.

Applied to supervised learning and classification problems,
GP generates a population of classifiers (genetic programs) by
means of genetic operators. The performance of each classifier
is measured by a fitness function that needs the evaluation
(execution) of every program against the complete training
dataset. This leads to a computational overhead increased
specially with large datasets. It is proportional to the product
of the number of instances in the dataset, the population size
and the number of generations that will be carried out during
the evolution process. Otherwise, using the full learning data
might be impossible when the input data doesn’t fit within the
main memory which is often the case with Big Datasets.

To alleviate the number of evaluations, sampling the training
set has been successfully adopted in several works [2]–[6].
The proposed approaches vary from simple methods based
on a random data selection to complex methods using graphs
or hierarchical techniques. Topology Based Selection (TBS)
[6] is an active data selection algorithm1 that keeps in the

1derived from Active Learning [7], [8]: ‘any form of learning in which the
learning program has some control over the inputs on which it trains.’

sampled subset the cases that are quite different according to a
similarity graph constructed during the learning process. It was
applied to solve a set of machine learning problems (thyroid
problem, function approximation and the two intertwined
spirals problem) and compared to the random sampling and
the weighted sampling [9]. It was shown that TBS was able
to improve the performance of genetic programming thanks to
the data diversity control.

In this paper, we will try to adapt TBS to deal with problems
involving large scale datasets using Hierarchical Sampling [2].
The aim is to mix TBS with Random Subset Selection (RSS)
[3] in order to reduce the complexity and the computation cost
while taking advantage of the strengths of this method.
Our purpose is to apply the TBS on reduced samples that are
actively selected along evolution using random sampling or
balanced sampling on the whole training data. The aim is to
reduce the complexity thanks to the hierarchical strategy and,
at the same time, allow the GP to maximize its generalization
ability thanks to the data diversity enhanced by the TBS
method.

This paper is organized as follows. Section II exposes the
RSS, TBS and balanced sampling in addition to Hierarchi-
cal Sampling that inspired this work. A description of the
proposed RSS-TBS method is given in Section III. The last
section exposes intrinsic parameters used and discusses the
obtained results under these experimental conditions.

II. BACKGROUND

Two major classes of sampling techniques can be layed out:
static sampling and dynamic sampling. With static sampling,
the learner obtains all the input training set at once and
stills unmodified across the learning process. This strategy
is not efficient when learning from very large data sets,
and it might not be applicable with big data sets. Dynamic
sampling techniques are tightly related to the learning process
evolution. Generally, it depends on a particular feature like
unresolved or difficult cases, the number of generations carried
out, among others. The presented methods are part of the
dynamic sampling class.They are inspired by four techniques
in this category: the Random Subset Selection (RSS), the
Topologu Based Selection(TBS), the Hierarchical Selection
and the Balanced Sampling. These techniques are presented
in details in the following section.



A. Random Subset Selection (RSS)

The selection of fitness cases is based on a uniform probabil-
ity among the training subset. This stochastic selection helps
to reduce any bias within the full dataset on evolution. In
Random Subset Selection RSS [9], at each generation g, the
probability of selecting any case i is equal to Pi(g):

∀i : 1 ≤ i ≤ T, Pi(g) =
S

T
. (1)

where T is the size of the full dataset and S is the target
subset size. The sampled subset have a fluctuating size around
S. Fixed Random Selection (FRS) [5] is a very similar method
with a fixed number of cases selected at every generation.
Stochastic Sampling SS [10] is another method using the same
probabilistic selection to construct subsets for each individual
per generation.

The single parameter of this category of sampling is the
subset size, whether a crisp or flexible target, it is set like
other GP parameters (population size, crossover probability,
etc.) and most likely by several GP runs.

B. Hierarchical Sampling

This kind of sampling is based on multiple levels of sam-
pling methods inspired by the concept of a memory hierarchy.
It combines several sampling algorithms that are applied in
different levels.

Robert Curry and Malcom Heywood conceived an extension
to Gathercole’s Dynamic Subset Selection algorithm (DSS)
[9] into a 3 levels hierarchy [12]. At level 0, the dataset
was first partitioned into blocks that were sufficiently small
to reside within RAM alone. Then, at level 1, blocks were
then chosen from this partition based on RSS or DSS. Finally,
at level 2, the selected block is considered as the full dataset
on which DSS was applied for several rounds. Depending
on the level 1 algorithm, we have RSS-DSS hierarchy or
DSS-DSS hierarchy. Besides DSS parameters, new parameters
are added: level 0 block size, level 1 number of iterations,
level 2 iterations, maximum level 2 iterations and tournament
iterations. Only level 2 iterations is calculated by:

Ib(i) = Imax ∗ Eb(i− 1). (2)

Ib(i): number of level 2 iterations on block b in ith level 1
iteration.
Imax: maximum level 2 iterations.
Eb(i−1): error rate over block b for the best case at previous
iteration.
A modified DSS in level 2 is used where two roulette wheels
exist per block, one is used to control the selection of patterns
with respect to age and the other to difficulty, the roulette
wheels being selected in proportion to the corresponding
probability for age and difficulty (2 additional parameters).
For the DSS-DSS hierarchy, block weight and block selection
probability are defined in [12].
Tested against KDD-99 [13] and Adult dataset [12], both
algorithms realize competitive results in very shorter time.
DSS-DSS outperforms RSS-DSS in these experiments.

An extension to this work is made in [2] with the Balanced
Block DSS by altering mainly the level 0 block selection with
the goal of obtaining a balanced block in level 1 with respect to
a fixed ratio. Experimental results showed that Balanced Block
algorithm is able to approach the classification performance
of the CasGP2 algorithm, whilst retaining the computational
speedup of the original RSS-DSS algorithm.

C. Topology Based Selection

Inspired by the idea that structure influences the efficiency
of heuristics working on it, this method consists at building
a topology of the problem from the knowledge acquired by
individuals about fitness cases. Lazarczyk [6] suggests a Fit-
ness case Topology Based Sampling TBS in which relationship
between fitness cases in the training set is represented by
an undirected weighted graph. Vertices are fitness cases and
edges have a weight measuring a similarity or a distance
induced from individuals’ performance. Then, cases having
a tight relationship with respect to a threshold cannot be
selected together in the same subset assuming that they have
an equivalent difficulty for the population. Edge values start
at 0 and are updated after evaluation phase by increasing the
weight of all edges between solved cases by each individual
and decreasing the weight of all edges by a loss rate λ.
This algorithm uses a unique subset for all the individuals re-
newed each generation after updating the topology graph.This
subset is constructed by selecting randomly a case from a
candidates set (initially equal to full dataset) until reaching
the target size or the candidates set is empty. All fitness cases
connected to it with an edge weight exceeding the threshold
are removed from candidates.
The threshold is calculated during evolution process, using a
binary-search like algorithm, to have a value adapted to the
current topology: it must not be too high or too low.

Experimental results on classification problems (intertwined
spirals [14] and the thyroid problems) demonstrated improve-
ments in mean fitness value through generations compared to
DSS and SSS. However, the additional computational cost
of TBS caused by the threshold calculation algorithm and
the topology update has not been measured. Moreover, this
method has not been tested on a large dataset.

D. Balanced sampling

Balanced sampling [15] is a method aiming to improve
classifiers accuracy by correcting the original dataset imbal-
ance within majority and minority class instances. It has some
methods based on the minority class size and thus reduce the
number of instances like the methods studied in this paper.
The following sampling methods are used with GP:

• Static Balanced Sampling: is a static sampling method
that selects cases with uniform probability from each
class without replacement until obtaining a balanced
subset with equal number of majority and minority class
instances of the desired size at every generation.

2Cascaded GP: uses the RSS-DSS algorithm to provide the basis for
building cascades of GP classifiers, up to a predefined number of layers



• Basic Under-sampling: select all minority class in-
stances and then an equal number from majority class
randomly. This method produces balanced subsets having
a reduced size especially when the gap between minority
and majority classes is very important. We integrated
this method in our approach to take advantage of its
contribution to reduce the sample size, while keeping a
balanced sample (see Section III-B).

• Basic Over-sampling: select all majority class instances
and then an equal number from minority class randomly
with replacement.

• Under-sampling A: Multiple balanced samples are cre-
ated at each generation with Basic Under-sampling
method. At every generation, all individuals are evaluated
against all of the sample sets and are attributed the
average fitness across all the sample sets.

• Under-sampling B: Identical to Under-sampling A but
uses the minimum fitness instead of the average.

• Over-sampling A: Creates several balanced samples us-
ing Basic Over-sampling. The final fitness is the average
on all subsets.

• Over-sampling B: Uses the same sampling method as
Over-sampling A and the minimum fitness.

III. HIERARCHICAL SAMPLING WITH TBS

GP based learning algorithms using TBS are limited to
those in the original paper [6] where training set does not
exceed few thousands of cases. TBS accelerates evolutionary
search with a high diversity and good average fitness of
the evolved population. This sampling method relies on a
complete undirected graph having its edges updated after each
evaluation phase. It is expected that the cost of maintaining
this topology for a high volume of datasets will be very
important. In this section, we propose a method inspired by
the Hierarchical Sampling to overcome this additional cost by
combining the use of RSS, TBS and Basic Under-Sampling
(BUSS). The main idea is to apply TBS on different training
sets with reduced size that are selected randomly from a fixed
set of blocks. Blocks are created proportionally to the training
set (the RSS-TBS method) or balanced according to BUSS (the
BUSS-RSS-TBS method). We describe below the two methods
in details.

A. RSS-TBS

At level 0, the full training set is first partitioned into blocks
with a fixed size and then saved into hard disk. The number of
cases per class is proportional to the initial training set. Then,
at level 1, RSS is applied to randomly select a block. At the
last level, previously selected block is sampled with TBS.
The general algorithm is shown below (Algorithm 1).

At step 13, the number of TBS iterations is calculated
using Equation 2 in which the error rate is for the actual best
individual of the run.
We used a modified TBS that calculates the threshold through
the steps described by Algorithm 2

Algorithm 1 RSS-TBS
1: Divide dataset into blocks {level 0}
2: repeat {level 1 iterations}
3: Conduct Block Selection {level 1 algorithm: RSS}
4: repeat {level 2 iterations <= maximum iterations}
5: Conduct Subset Selection {level 2 algorithm: TBS}
6: repeat {Tournament iterations}
7: Conduct tournament selection
8: Train tournament individuals on Subset
9: until Tournament End

10: Update topology graph
11: Apply genetic operators
12: until level 2 iterations = calculated in 13
13: Update level 2 iterations to be performed on this block

at next selection
14: until level 1 end

Algorithm 2 Threshold calculation
1: Use the lowest edge weight as the initial threshold to have

the smallest possible subset
2: repeat
3: Apply TBS selection using current threshold on the

remaining patterns
4: Remove the selected patterns
5: if the subset size is too small then
6: Threshold value ← next edge weight
7: Previously excluded patterns are added to candidates
8: end if
9: until target size reached

B. BUSS-RSS-TBS

This method differs from the previous one by level 0 block
creation. In fact, BUSS is performed at this level and then
block size becomes calculated according to minority class.
KDD-99 have a normal class and 4 attack classes. The subset
selection uses the U2R attack (52 patterns) class as minority
class and then randomly selects an equal number of patterns
from the remaining 3 attack classes gathering 208 attack
patterns. In a first experiment, 52 normal were added obtaining
260 patterns in a single block. In the second experiment, 208
normal patterns were chosen to get a final level 0 block of
416 patterns. RSS and TBS are then applied in the same way
as in Section III-A

IV. EXPERIMENTS AND RESULTS

A. Learning Data

We used here a large dataset, which was firstly created
for the competition held at the Fifth International Conference
on Knowledge Discovery and Data Mining KDD-99 and is
about intrusion detection problem. The original training dataset
contains 5 million lines conveying data about connections from
the simulated traffic and their labels as Normal connections
and four attack classes. Another set, called corrected set is
constructed with the same way and used as test dataset. The



TABLE I
KDD-99 DATASETS COMPOSITION

Class Number of Patterns
10% Training Set Test Set

Normal 97278 60593
Dos 391458 229853
probe 4107 4166
R2L 1126 16347
U2R 52 70
Total Attacks 396743 250436
Total Patterns 494021 311029

training process is run on the derived 10% KDD-99 dataset
to learn how to classify normal connections and attacks. The
best individual of each run is then tested on the test set. Both
datasets are presented in Table I.

B. Cartesian GP (CGP)

CGP is a form of GP, proposed by Julian Miller [16], that
represents genetic programs as directed acyclic graphs and
mostly inspired by digital circuits called FPGA. In this graph,
nodes representing functions have many inputs and one output,
and are layed into two dimensional matrix very similar to
neural networks. This form of GP has the following advantages
[17]:

• Unlike trees, it allows more than one path between any
pair of nodes permitting the reuse of previous results.

• Highly competitive with other GP methods.
• Does not bloat.
• Is easy to implement.
• Can have multiple outputs and then solve many types of

problems.

We use here a CGP implementation done by David Oran-
chak [17] as a contribution package to Sean Luke’s ECJ
[18]. ECJ is an open source evolutionary computation frame-
work implementing evolutionary algorithms like GP, Evolution
Strategies, Genetic Algorithms etc., and offering the most
complete range of GP representations (Koza, linear, grammat-
ical, etc.).

1) CGP parameters: The implementation of CGP involves
different parameters that determine its efficiency. The final
design of CGP parameters used in this work is summarized in
Table II.

2) Terminal and function sets: The terminal set includes
input variables which are the 41 KDD-99 features set with 8
randomly generated constants.
The function set includes basic arithmetic, comparison and
logical operators reaching 17 functions (see Table III).

C. Performance Metrics

By the end of each run, the best individual based on the
fitness function is tested on the whole dataset and then on the
test dataset. Results are recorded in a confusion matrix from

TABLE II
CGP PARAMETERS

Parameter Value
Population size 512 for RSS, and RSS-TBS

128 for TBS
Subpopuations number 1
Number of generations 500 for RSS

100 for TBS
depending on the RSS iterations

for RSS-TBS
CGP nodes 300

Inputs/Outputs 49/1
Tournament size 4

Crossover/Mutation probability 0.9/0.04
Fitness Minimize classification errors

TABLE III
TERMINAL AND FUNCTION SETS

Function (node) set
Arithmetic operators: +, −, ∗, %

Comparison operators: <, >, <=, >=, =
Logic operators: AND, OR, NOT, NOR, NAND

Other : NEGATE, IF (IF THEN ELSE),
IFLEZE(IF <=0 THEN ELSE)

Terminal set
KDD-99 Features 41

Ephemeral Random Constants 8 in [−2, 2[

which Accuracy, True Positive Rate (TPR) and False Positive
Rate (FPR) are calculated.

Accuracy =
True Positives+ True Negatives

Total patterns
. (3)

TPR =
True Positives

True Positives+ False Negatives
. (4)

FPR =
False Positives

False Positives+ True Negatives
. (5)

The training time is the amount of elapsed seconds between
the first and the last generation (see Table II for the number
of generations ).

D. Specific Parameters for Sampling Methods

The values of additional parameters brought by each sam-
pling method are assigned with respect to the original method
paper. Some of theses methods have been modified in order to
fit in a comparable context. The Table IV shows each method
configuration.

E. Experimental Results

Experiments are performed on an Intel i7 − 4810MQ
(2.8GHZ) workstation with 8GB RAM running under Win-
dows 8.164− bit Operating System. GP programs are trained
to distinguish between normal and attack patterns.

To compare the performance of the implemented sampling
methods, six measures are recorded cross the 21 runs per-
formed for each technique: the best and the mean values of
the accuracy, TPR and FPR metrics for both training and test
datasets. The best measures are illustrated by the Figures 4, 5



TABLE IV
SPECIFIC METHODS’ PARAMETERS

Method Parameter Value
RSS Target Size 5000

TBS Target Size 1000
Loss Rate 0.7

RSS-TBS Target Size(level 2 block size) 2500 then 100
Level 0 block size 5000

RSS iterations 200 then 500
Max TBS iterations 20 then 50

Individuals evaluated 100
per TBS iteration (20% of population size)

BUSS-
RSS-TBS

Target Size(level 2 block size) 2500 then 100
Level 0 block size 260 then 416 (calculated)

RSS iterations 50 then 40
Max TBS iterations 40 then 50

Individuals evaluated 100
per TBS iteration (20% of population size)

Fig. 1. Mean Accuracy

Fig. 2. Mean Recall (TPR)

and 6 whereas the mean values are presented in Figures 1, 2
and 3.

Otherwise, to compare the methods according to the com-
putational cost, the spent time to complete each run and to find
the best of run individual for all the trials are recorded. Table V
illustrates the corresponding mean values for all implemented
techniques.

From Table V, it is obvious that all three hierarchical sam-
pling methods are more faster than TBS while having larger

Fig. 3. Mean FPR

Fig. 4. Best Individual Accuracy

Fig. 5. Best Individual Recall (TPR)

population and performing a greater number of generations
due to the two level iterations. These methods also spend less
time than RSS.
Meanwhile, it’s noticeable that the best classifier is found very
early according to the whole run. Regarding resulting best
classifier quality (Figure 4) in terms of accuracy, RSS-TBS
and BUSS-RSS-TBS (2 variants) merely outperforms RSS and
TBS. The last two methods have very similar results. At the
same time, recall and FPR increased remarkably for the three
hierarchical methods. Whenever the second configuration of
BUSS is used as in BUSS2 and BUSS-RSS-TBS2 the FPR



Fig. 6. Best Individual FPR

TABLE V
TIME MEASURES

Method Mean Run Time Mean ‘Best of Run’Time
BUSS 75.612 20.135
BUSS2 102.428 43.054
TBS 11174.507 1494.977
RSS 1493.788 530.038
RSS-TBS 714.414 9.524
BUSS-RSS-TBS 157.485 1.712
BUSS-RSS-TBS2 236.029 4.687

falls down.
Another evidence, based on Figures 1,2 and 3 is that

hierarchical sampling obtains the worst mean performance
indicators (accuracy, recall and FPR) assuming that results are
very divergent.

V. CONCLUSION

In this paper, we have shown the glaring computational cost
of TBS when used within a supervised learning process using
GP algorithm. Then we gave a solution to this problem by
mounting a cascade of different sampling methods inspired by
the RSS-DSS algorithm. In a first scenario, TBS was mixed
with RSS and in a second one BUSS is deployed to build first
level blocks.

Experimental results demonstrates this speed gain with
RSS-TBS whilst reaching a slightly better accuracy than the
original TBS and RSS. In addition to that BUSS registers an
increase in FPR.
Though, the three hierarchical sampling methods suffer from
an early convergence and could be handled with using a
suitable Fitness Function. Moreover, in this paper we used

a topology graph for each level 1 subset generated at each
RSS iteration and thus the previous similarity measures is lost.
Keeping a full topology graph could save some extra time.
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