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APPLYING DYNAMIC TRAINING-SUBSET SELECTION METHODS
USING GENETIC PROGRAMMING FOR FORECASTING

IMPLIED VOLATILITY
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1Department of Mathematics and Computer Science, Paris West University, Nanterre, France
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Volatility is a key variable in option pricing, trading, and hedging strategies. The purpose of this article is to
improve the accuracy of forecasting implied volatility using an extension of genetic programming (GP) by means
of dynamic training-subset selection methods. These methods manipulate the training data in order to improve the
out-of-sample patterns fitting. When applied with the static subset selection method using a single training data
sample, GP could generate forecasting models, which are not adapted to some out-of-sample fitness cases. In order
to improve the predictive accuracy of generated GP patterns, dynamic subset selection methods are introduced to
the GP algorithm allowing a regular change of the training sample during evolution. Four dynamic training-subset
selection methods are proposed based on random, sequential, or adaptive subset selection. The latest approach uses
an adaptive subset weight measuring the sample difficulty according to the fitness cases’ errors. Using real data
from S&P500 index options, these techniques are compared with the static subset selection method. Based on mean
squared error total and percentage of non-fitted observations, results show that the dynamic approach improves
the forecasting performance of the generated GP models, especially those obtained from the adaptive-random
training-subset selection method applied to the whole set of training samples.

Received 9 May 2011; Revised 2 June 2014; Accepted 23 June 2014

Key words: genetic programming, implied volatility forecast, static training-subset selection, dynamic
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1. INTRODUCTION

Financial market volatility is a key variable in financial investment decisions and plays a 
central role in derivative valuation and in conducting dynamic hedging strategies. To assess 
the fair value of an option or to hedge market risk, an investor needs to specify his expec-
tations regarding future volatility. Because of their forward-looking nature, option prices 
are especially useful for extracting such information. A number of investigations supported 
the idea of using implied volatility as a good predictor of future volatility (Latané and 
Rendleman 1976; Chiras and Manaster 1978; Fleming 1993; Blair et al. 2001; Corrado 
and Miller 2005). Assuming that an option pricing model correctly represents investors’ 
behavior, the implied volatility can be derived from observed option prices by appropriately 
inverting the option pricing model. In contrast, genetic programming (GP) offers explicit 
formulas that can compute directly the implied volatility expressed as a function of option 
prices and other observable variables. This volatility’s forecasting approach should be free 
of strong assumptions and more flexible than parametric models. GP (Koza 1992) is an 
evolutionary-based search technique, which is based on the principles of natural evolution. 
Using its basic and flexible tree-structured representation, GP is capable of solving some 
difficult problems without requiring the user to know or specify the form or the structure of 
the solution in advance.
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General programming has been proven to be successful at forecasting time series
(TS) volatility in different markets, such as foreign exchange and index markets. Neely
and Weller (2002) have tested the forecasting performance of GP for USD-DEM and
USD-YEN daily exchange rates against that of the generalized autoregressive conditional
heteroskedasticity (GARCH) model (Baillie et al. 1996) and a related RiskMetrics volatil-
ity forecast over different time horizons. According to various accuracy criteria, GP has
produced significantly superior results. Using high frequency foreign exchange USD-CHF
and USD-JPY TS, Zumbach et al. (2001) have compared the GP forecasting accuracy to
that of historical volatilities and some popular ARCH type models, notably the GARCH
(1,1) model of Bollerslev (1986), the fractionally integrated GARCH model of Baillie
et al. (1996), and the heterogeneous ARCH model of Müller et al. (1997). According to
the root mean squared errors (MSEs), the generated GP volatility models have outper-
formed the benchmarks. Using historical returns of Nikkei 225 and S&P500 indices, Chen
and Yeh (1997) have applied a recursive genetic programming approach to estimate volatil-
ity by simultaneously detecting and adapting to structural changes. Results have shown
that recursive genetic programming is a promising tool for the study of structural changes.
Applying a combination of techniques such as evolutionary algorithms GA and GP, Ma
et al. (2006, 2007) have proposed a systematic approach to address specifically nonlinear
problems in the forecast of financial indices using intraday data of S&P100 and S&P500
indices. As a result, accuracy of forecasting has reached an average of over 75% sur-
passing other publicly available results on the forecast of any financial index. Abdelmalek
et al. (2009) have extended the studies mentioned earlier by forecasting the implied volatil-
ity of Black–Scholes (BS) from the S&P500 index call options instead of the integrated
volatility based on historical returns. They have considered the problem of managing too
large databases when training GP. As a consequence, they have proposed to split data into
smaller subsets by TS and moneyness-time to maturity (MTM) classes and to train GP
separately on all learning subsamples. The proposed approach is called static training-
subset selection method. According to the total and out-of-sample MSEs, results have
shown that TS models seem to be more accurate in forecasting implied volatility than
MTM models. Such an approach has provided some local solutions not adaptive to the
enlarged data set, especially when learning with a MTM sample. According to Gilli and
Schumann (2010), the relationship between in-sample fit and out-of-sample performance
is not monotonous and an optimal in-sample solution might be ineffective when applied to
out-of-sample data.

The present article investigates the application of a dynamic subset selection method,
in which the training-subset samples change during the GP run. This allows GP to learn
simultaneously on all training subsamples rather than just a single subset, which seems to
have better generalization ability. This technique aims to intensify search space exploration
and thus enhance the robustness of GP with large data set. Robustness is an important
feature of an evolved program (Ito et al. 1996). It is defined as the ability to cope with
noisy or unknown situations. The use of the dynamic training-subset selection method could
reduce the problem of fitting out-of-sample patterns and could improve the forecasting
accuracy. The major contribution of this article is the use of the adaptive subset selec-
tion (ASS) method, which is performed in proportion to a ratio of difficulty associated to
each training sample. Two other selection methods are used for purposes of comparison:
the random subset selection (RSS) method where samples are selected in a random way
and the sequential subset selection (SSS) method where samples are selected in a regular
way. Comparative experiments are provided to show how dynamic training subset-selection
methods are applied to improve the robustness of GP to generate general models relative to
static training-subset selection method. Using the total MSE and percentage of non-fitted
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observations (NFO) as performance criteria, results show that the forecasting accuracy is
improved with the ASS.

The remainder of the article is organized as follows. Section 2 presents the research
objectives and theoretical foundation regarding forecasting implied volatility and useful-
ness of subset selection methods. Section 3 illustrates the research design and methodology.
Section 4 provides a description of the dynamic subset selection methods implemented.
Section 5 reports and discusses the results of the comparison between static and dynamic
selection methods. Finally, Section 6 summarizes and gives perspectives.

2. RESEARCH OBJECTIVES AND THEORETICAL FOUNDATION

This article addresses the application of GP by means of a dynamic subset selec-
tion method for the purposes of forecasting implied volatility. The objective is to improve
forecasting accuracy.

In financial volatility forecasting, it is important to find accurate models fitting a maxi-
mum number of input cases from learning data. The goal is to correctly predict the volatility
of new input data. By considering the assumption that there are inherently many different
patterns in financial series (Povinelli 1999), instead of using one formula (model) to explain
the entire data, a better idea would be to select a set of best models that could be combined
and used to forecast future implied volatility values. As a consequence, the main interest
of this work lies in applying a dynamic subset selection method for training GP on the full
training samples, so that the entire input data become in-learning-sample. The main contri-
bution of this article is the use of the ASS method. This method is inspired by the dynamic
subset selection proposed by Gathercole and Ross (1994). It is based on the assumption
that there is a benefit in focusing the GP’s abilities on difficult training samples, that is,
the ones that have the highest MSE. The challenge is to make GP adaptive to all training
samples and be able to generate general models. The originality of this method is to assign
weights to each training-subset and update these weights through the generations. Initial
weight is assigned according to the initialization method adopted (random or sequential)
and increases each time an individual is not able to solve the corresponding fitness sample
cases. This approach lightens the training task for GP and favors the discovery of solutions
that are more robust across different data samples.

In the following subsections, background information regarding implied volatility is
first introduced. Second, a discussion about the usefulness of subset selection methods is
made. This is to explain the originality of the dynamic selection methods created versus the
use of previous sampling methods.

2.1. Implied Volatility

There are two approaches to generate volatility forecasts. One is to extract information
about the variance of future returns from their history and the second is to elicit market
expectations about the future volatility from observed option prices. Options markets pro-
vide market participants and policy makers with a rich source of information for gaging
market sentiment. An option contract is a derivative security that gives the holder the right
to buy (call) or to sell (put) the underlying asset by a certain date for a certain price. The
price in the contract is known as the exercise price or strike price. The date in the contract is
known as the expiration date or maturity. American options can be exercised at any time up
to the expiration date. European options can be exercised only on the expiration date itself.
Options contracts can be divided into several classes according to either moneyness or term



COMPUTATIONAL INTELLIGENCE

to expiration. By the term to expiration, an option contract can be short term, medium term,
and long term. By the moneyness, a call option can be in-the-money (ITM) if the stock
price is above the strike price (S>K), out-of-the-money (OTM) if the stock price is below
the strike price (S<K), and vice versa for a put option. If the strike price is closest to the
current value of the underlying stock (SDK), the option contract is said to be at-the-money
(ATM). The difference between the stock price and the strike price represents the intrinsic
value for a call option. It can be a positive number or zero otherwise. The total value of an
option called premium is basically the sum of its intrinsic value and its time value.

In the BS framework, the option price is a function of variables, which are directly
observable except for the volatility. The price of an option therefore depends on the market’s
opinion about the future volatility of the underlying asset upon which the option is written.

The Black and Scholes (1973) option pricing model assumes that volatility is constant.
It was first derived for the European call option written on a non-dividend paying stock, as
defined in Equation (1).

CBS D Sˆ.d1/ � Ke�r£ˆ.d2/ (1)

where d1 D
ln. S

K/C.rC0:5¢
2/£

¢
p
£

; d2 D d1 � ¢
p
£.

CBS denotes the price of a European call option, S is the market price of the underlying
asset, K is the strike price of the option, r is the risk-free interest rate, £ is the time to
maturity, ˆ is the cumulative normal distribution function, and ¢ is the volatility.

By equating the observed market price C�t of an option with the BS price CBS and
implicitly solving for ¢ , an implied volatility can be found.

9Š¢BS
t .K;T/ � 0;

CBS
�
St;K; £; ¢BS

t .K;T/
�
D C�t .K;T/

(2)

According to the BS assumptions, this implicitly calculated volatility should be constant.
However, it can be easily shown empirically that the implied volatility is not constant
and changes with different option strike prices and expiry dates. For example, short-dated
options will be less sensitive to implied volatility, whereas long-dated options will be more
sensitive. This is based on the fact that long-dated options have more time value priced into
them, whereas short-dated options have less. Besides, options with strike prices that are near
the money are most sensitive to implied volatility changes, whereas options that are further
ITM or OTM will be less sensitive to implied volatility changes.

Implied volatility represents the expected volatility of a stock over the life of the option.
As expectations change, option premiums react appropriately. Implied volatility is directly
influenced by the supply and demand of the underlying options and by the market’s expec-
tation of the share price’s direction. As expectations rise, or as the demand for an option
increases, implied volatility will rise. Options that have high levels of implied volatility will
result in high-priced option premiums. Conversely, as the market’s expectations decrease, or
demand for an option diminishes, implied volatility will decrease. Options containing lower
levels of implied volatility will result in cheaper option prices. This is important because
the rise and fall of implied volatility will determine how expensive or cheap time value is to
the option.
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2.2. Subset Selection Methods: A Discussion

Evolving programs is often a time-consuming task particularly in terms of fitness evalu-
ation’s effort. When using GP with the large set of training cases and a large population size,
a very large number of tree evaluations must be carried out every generation. Many meth-
ods try to reduce the number of such evaluations by selecting a small subset of the training
data set during fitness evaluation. These methods differ in how they choose proper subsets
from the set of all fitness cases1 for evaluation. The simplest technique is to use a static sub-
set. However, using a single learning sample might lead to a local optimum that solves only
a part of the fitness cases. To reinforce learning from different parts of the search space,
some solutions were proposed such as carrying out several runs using one subset for each
run and selecting the appropriate model from different resulting models (Abdelmalek et al.
2009). The historical subset selection (Gathercole and Ross 1994) extends the static subset
selection by recording all fitness cases that are not solved by the best population member
in any given generation over a small number of runs. These fitness cases become part of a
static subset and are used in further GP runs.

A more flexible method is to pick a variety of subsets during the course of a training
run. There are many ways to select different subsets from the training set. The goal is to
pick the right subsets to allow the learning algorithm to proceed as fast and as accurately
as possible. The simplest method for picking a different set for each generation is random.
RSS (Gathercole and Ross 1994) chooses a new subset for each generation. Each learning
data instance is selected independently with equal probability, which leads to varying subset
sizes. Stochastic sampling (Nordin and Banzhaf 1997; Banzhaf et al. 1998) chooses a new
subset for each generation and for each individual, respectively, where all data cases having
the same probability of being selected. As a result, different individuals will probably be
evaluated on different data samples, which cast some doubts on the fairness of the selection
step in the evolutionary algorithm (Section 3.2).

More efficient criteria can be used to guide the selection of the new subset based
on fitness-case topology or the performance of the current GP population. Fitness-case
topology-based sampling (Lasarczyk et al. 2004) relies on creating a dynamic weight for
each couple of fitness case that is updated by the evolutionary system according to the num-
ber of GP solutions able to solve both of the fitness cases of each couple. The learning subset
is constructed by a random selection from the set of couples with small weights. Dynamic
subset selection (Gathercole and Ross 1994, 1997; Gathercole 1998) makes use of the diffi-
culty of each training case, that is, how often it is misclassified, and its age, that is, how many
generations since it was last selected. This has worked well on some large classification
problems, using less computer resources to produce better results than standard GP.

However, the resampling procedure during the course of a training run increases the
complexity of the GP system and requires the entire data set to be stored in the main mem-
ory. With GP systems, using the full learning data might be impossible when the input
sample does not fit within the main memory and could cause serious problems in the real-
ization of predictors. In this case, data reduction through the partitioning of the data set into
smaller subsets seems to be a good approach (Abdelmalek et al. 2009).

In this article, we suggest to construct subset data with a fixed size from the full database
using data division schemes and to apply dynamic training-subset selection methods to
select subsets already built up for learning process. With dynamic subset selection meth-
ods, a new subset is picked in each g generations (g is the number of generations to change

1 A fitness case is an input/output pair, which measures how well an evolved individual predicts the output(s) from the
input(s).
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sample). These methods can be used to prevent a biasing influence of subset selection in
evolution. These methods differ from the existing approaches as they don’t extract a fixed
number of fitness cases from the training set but select a subset from a set of subsamples
data already built up using the data division scheme, which avoids increasing the complex-
ity of the GP engine. In this article, we proposed four dynamic training-subset selection
methods: RSS, SSS, adaptive-sequential subset selection (ASSS) method, and adaptive-
random subset selection (ARSS) method. The RSS and SSS allow the GP to learn on all
training samples sequentially (SSS or randomly RSS). However, with these methods, there
is no certainty that GP will focus on the samples that are difficult to learn. Then, the
ASSS and the ARSS, which are variants of ASS, are introduced to focus the GP’s atten-
tion onto the difficult samples, that is, having the greatest MSE and then to improve the
learning algorithm. An adaptive weight is associated to each subset (adaptive subset weight
(ASW)) and updated each generation according to the average fitness of all the cases in the
corresponding sample.

3. RESEARCH DESIGN AND METHODOLOGY

To achieve the research goals presented earlier, we followed three steps. The initial
stage is devoted to the data preparation, to the implementation of GP2 and to the subset
selection procedures. The second step is devoted to the learning process using static and
dynamic subset selection methods. The last step is dedicated to results comparison and the
selection of the best forecasting models. The following research steps are summarized in
the following scheme.

3.1. Data Preparation

The data used to perform our empirical analysis are daily prices of European S&P500
index calls options, from the Chicago Board of Options Exchange (CBOE), for the sample
period running from January 2, 2003 to August 29, 2003. The database includes the time of
the quote, the expiration date, the exercise price, and the option price. Similar information
for the underlying S&P 500 index is also available on a daily basis. The daily bid and ask
quotes for the call options are obtained from the CBOE. Following a standard practice, we
use the average of an option’s bid and ask price as a stand-in for the market value of the
option. Strike price intervals are 5 points and 25 for far months. The expiration months are
three near-term months followed by three additional months from the March quarterly cycle
(March, June, September, and December). The risk-free interest rate is approximated by
using 3-month U.S. Treasury bill rates.

Two preparation procedures have been applied to the data before use, preprocessing,
and division. The data preprocessing serves the purpose of “smoothing” the raw data and
removing what is not essential before the machine learning algorithm is applied. It is widely
accepted that preprocessing is usually beneficial and has positive effects on the learning
process (Chen et al. 2007).

2 GP system is built around the evolving object library, which is an ANSI-CCC evolutionary computation framework
(EO library).
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FIGURE 1. Data division schemes.

The original training set contains 42,504 daily observations of call option prices and
their determinants. To reduce the likelihood of errors, data screening procedures are used
(Harvey and Whaley 1991, 1992). Then, four exclusion filters are applied to construct the
final sample. First, call options with time to maturity less than 10 days are excluded from
the sample. This can be explained by the fact that implied volatilities of short-term options
are very sensitive to small errors in the call price and may convey liquidity-related biases.
Second, call options with low quotes are eliminated to mitigate the impact of price discrete-
ness on option valuation. Third, deep-ITM and deep-OTM option prices are also excluded
because of the lack of trading volume. Finally, option prices not satisfying the arbitrage
restriction (Merton 1973), C � S � Ke�r£, are not included. The final sample contains
6670 daily option quotes, with ATM, ITM, and OTM options, respectively, taking up 37%,
34%, and 29% of the total sample.

For the data subsampling procedure, two schemes were used. For the first division
scheme, the full sample is sorted by TS and for the second division scheme, by MTM. For
TS, data are divided chronologically into successive samples (S1;S2 : : : S10), each contain-
ing 667 daily observations. These samples will be used simultaneously for training and test
steps. For MTM, data are divided into nine classes with respect to moneyness and time
to maturity.3 Each class Ci is divided into a training set CL

i and a test set CT
i , which pro-

duce, respectively, nine training and nine test MTM subclasses. Figure 1 illustrates the two
division schemes.

3.2. The Design of Genetic Programming

There are several GP techniques that might be used to deal with financial forecasting.
People are familiar with regression analysis. One problem with regression analysis is that
the results of the analysis depend very much on the skills and inventiveness of the exper-
imenter. Furthermore, in many application areas, there is a considerable tradition of using
only linear or quadratic models even when the data might be better fitted by a more complex
model. Symbolic regression attempts to go beyond this. It consists in finding a function that
fits some target values without making any assumptions about the structure of that function.
Symbolic regression was one of the earliest applications of GP (Koza 1992) and has con-
tinued to be widely studied (Keijzer 2004; Gustafson et al. 2005; Cai et al. 2006; Lew et al.
2006). The steps necessary to implement the GP’s symbolic regression are summarized in
Algorithm 1.

3 According to moneyness criterion: A call option is said OTM if S=K < 0:98; ATM if S=K 2 Œ0:98; 1:03Œ; and
ITM if S=K � 1:03. According to time to maturity criterion: A call option is short term if £ < 60 days; medium term if
£ 2 Œ60; 180� days; and long term if £ > 180 days.
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TABLE 1. Terminal Set and Function Set.

Expression Definition

Terminal
C/K Call price/strike price

set
S/K Index price/strike price
£ Time to maturity

C Addition
� Subtraction
� Multiplication
% Protected division: x%y D 1 if y D 0I x%y D x%y otherwise

Function
cos Cosinus function

set
Sin Sinus function
ln Protected natural log: ln.x/ D ln.jxj/

Exp Exponential function: exp.x/ D ex

Sqrt Protected square root:
p
x D

p
jxj

Ncdf Normal cumulative distribution function ˆ

Terminal and function sets
The standard GP tree is a simple structure made by terminal (or leaf) nodes and non-

terminal (or function) nodes with branches. Terminal and function sets, which are described
in Table 1, define the ingredients that GP can use to create function models and to construct
potential solutions.

The terminal set includes input variables, mainly, the call option price divided by strike
price C

K
, the index price divided by strike price S

K
, and time to maturity £. The predictive

target output is the implied volatility ¢BS
t computed using the BS formula. The function

set includes basic mathematical operators and BS components. The mathematical operators
we use are the basic arithmetic operators together with the cosine functions and the sine
functions. The BS components involve the log function (ln), the exponential function (exp),
the square root function

�p �
, and the normal cumulative distribution function .ˆ/, which

may be useful for implied volatility models.
Initialization
General programming starts by randomly creating an initial population of trees, which

are generated by randomly picking nodes from a given terminal set and function set
(Table 1). The initialization scheme used in this article is the ramped half-and-half method
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TABLE 2. Summary of GP Parameters.

Population size: 100
Offspring size: 200
Generations’ number for static method: 400
Generations’ number for dynamic method: 1000
Generations’ number to change sample 20-100
Maximum depth of new individuals: 6
Maximum depth of the tree: 17
Tournament size: 4
Crossover probability: 60%
Mutation probability: 40%
Branch mutation: 20%
Point mutation: 10%
Expansion mutation: 10%

(Koza 1992), which is a combination of the full and grow initialization methods. This
method involves generating an equal number of trees using a maximum initial depth
that ranges from 2 to 6, as specified in Table 2. For each level of depth, half of the
initial trees are generated via the full method, and the other half is generated via the
grow method.

Fitness function
The evolutionary process is driven by a fitness function that evaluates the performance

of each individual (tree) in the population. The fitness criterion used for the selection of the
best individuals is the MSE between the target output volatility

�
¢BS

t

�
and the generated GP

volatility .O¢t /, computed as follows:

MSE D
1

N

NX
tD1

�
¢BS

t � O¢t
�2

(3)

where, N is the number of fitness cases in the learning sample. At the end of evolution,
each individual is evaluated according to the MSE computed with Equation (3) using a test
sample that must be different from the learning sample.

Selection
Based on fitness measure, GP probabilistically selects the fitter individuals from the

population to act as the parents of the next generation. Selection determines which indi-
viduals of the population will have all or some of their genetic material passed to the next
generation. In general, parents displaying a higher level of performance are more likely to
be selected with the hope that they can produce better offspring with larger chance. The
most commonly used method for selecting individuals in GP is tournament selection. In
tournament selection, a number of individuals, called the tournament size, are selected ran-
domly from the population and they compete with each other. The best is to be selected. As
specified in Table 2, the tournament size used for experiments is equal to 4.

Genetic operators
Crossover and mutation are the two basic operators that are applied to the selected indi-

viduals in order to generate new individuals for the next generation. They are needed to
explore the search space.
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Crossover operator.
The most commonly used form of crossover is sub-tree crossover. Given two parents, sub-
tree crossover randomly selects a crossover point (a node) in each parent tree. Then, it
creates the offspring by replacing the sub-tree rooted at the crossover point in a copy of the
first parent with a copy of the sub-tree rooted at the crossover point in the second parent.
All non-terminal nodes (except the root node) have the same probability to be selected. The
generated offspring should not surpass the fixed size. As indicated in Table 2, the crossover
operator is used to generate about 60% of the individuals in the population.

The maximum tree size (measured by depth) allowed after the crossover is 17. This
is a popular number used to limit the size of the tree (Koza 1992). It is large enough to
accommodate complicated formulas and works in practice.

Mutation operator.
The basic role of the mutation operator in the evolutionary process is to ensure diversity in
the population. It affects small random changes in a tree by randomly altering nodes or sub-
trees to create a new offspring and continue the search process. Many mutation operators
are used in GP. The most commonly used form of mutation in GP is sub-tree (or branch)
mutation. It replaces a randomly selected sub-tree with another randomly created sub-tree
(Koza 1992). Another common form of mutation is point mutation (or node replacement),
which randomly changes a node in the individual and replaces it with another node with the
same arity (McKay et al. 1995). Expansion mutation randomly selects a terminal node in the
tree and then replaces it with a new randomly generated sub-tree. As indicated in Table 2,
Branch mutation is applied with a rate of 20%; point and expansion mutations are applied
with a rate of 10%, respectively.

The parameter choices for crossover and mutation are clearly critical in ensuring a
successful GP application. They impact on population diversity and the ability of GP to
escape from local optima (Yin et al. 2007).

Replacement
Once the new population has been created, the current population (parents) is replaced

by the new one (offspring). We use a comma replacement method to replace parents for
the next generation (Schwefel 1995). This method selects the best offspring to replace the
parents. If � is the population size and � is the number of new individuals (which can be
larger than � ), the population is constructed using the best � out of the � new individuals.

Termination criterion
The termination criterion we use is the maximum number of generations to be run.

We take 400 and 1,000 for static and dynamic training-subset selection, respectively. In
the dynamic training-subset selection approach, the maximum number of generations is
increased to allow GP to train on the maximum of samples simultaneously. Typically, the
single best-so-far individual is then obtained and designed as the result of the run.

Parameters of the GP design used in this work are summarized in Table 2. The optimal
set of genetic parameters is determined based on a series of trial and error experiments.

4. DESCRIPTION OF DYNAMIC TRAINING-SUBSET SELECTION METHODS

To implement the dynamic training-subset selection methods, two supporting decision-
designs are necessary to be fixed. First, the frequency of the replacement of the current
training subset; such a frequency is designed by a fixed iteration number (g) added as a
parameter to the GP system. The value of this parameter must be chosen such as the GP
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system has enough time to adapt the genetic material in the population to make it able to
solve the current subset. However, g does not have a very high value in order to keep the
population diversity necessary for the next learning step.

Second, the procedure of replacement and selection of the new training sample is deter-
mined. To design the subset replacement protocol, two approaches are available. In the first
approach, all subsamples are treated equally. Subsamples are then selected with a uniform
probability (RSS) or in a regular way by taking the samples in turn (SSS). In the second
approach, subset selection is performed proportionally to a predefined ratio of ASS method.
It involves an ASW updated at each g generations, according to the fitness of the best current
model computed according to all observations in each subset. The lower the sample perfor-
mance is, the higher the selection pressure is. Samples having a great weight are selected
more frequently in the learning process. The goal of this approach is to focus on the samples
having the fitness cases the most difficult to learn. The GP is then guided to adapt its mod-
els to the more difficult samples. Only the individuals with the desirable characteristics that
are well adapted to the environmental change will survive. Thereby, the problem of over-
fitting that can be encountered with the static subset selection can be prevented. We have
two variants of ASS: ASSS and ARSS methods, differing on the initialization procedure of
the sample weights. The operating principle of the dynamic selection is as follows.

Let S be the set of training samples Si.iD1:::k/, where k is the total number of samples.
A selection probability P (Si/ is assigned to each sample Si, which is changed in each g
generation (g is the number of generations to change sample) according to the dynamic
training-subset selection method used. Once a new training sample is selected, the best indi-
viduals are used as population for the next training samples. This procedure is repeated until
the maximum number of generations is reached. This permits GP to adapt its generating
process to changing data in response to feedback from the fitness function.

To decide the training-subset to select with the ASS method, an ASW is computed for each
subset according to the MSE values obtained along the last g generations. The ASW and
the four proposed methods, RSS, SSS, ASSS, and ARSSS, are described in the following.

4.1. Adaptive Subset Weight

For ASS method, the selection probability depends on the subset weights computed
proportionally to the sample’s average fitness. After g generations, the weight of the learning
sample Si is updated as follows:

W.Si/ D

gP
tD1

MP
jD1

f.Xj/

M�g
(4)

where M is the population size, g is the number of generations to change sample, and f .Xj /
is the MSE of the individual Xj, where Xj 2 Pt .Pt is the current population).

If several individuals in the population have difficulty to solve some fitness cases in a
sample Si, then this sample will have a high subset weight and a great probability to be
selected for the next learning step.

The update of the subset weights does not increase the complexity of the GP program
and does not need additional computational cost as some dynamic subset selection methods
yet proposed in the literature (Gathercole and Ross 1997; Lasarczyk et al. 2004). Indeed,
the individuals’ fitness (used in Equation (4)) is computed by the GP system and the subsets
selection probabilities are computed only by each g generation.
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4.2. Random Training-Subset Selection Method:

This method randomly selects the training samples with replacement. All the samples
from S have the same probability to be selected: P (Si/ D 1=k; 1 � i � k. Figure 2 illustrates
an example of the best fitness (MSE) curve along evolution using the RSS method. As
selection of training samples is random, the performance of the current population changes
with the training sample used for evolving the genetic program.

4.3. Sequential Training-Subset Selection Method

This method selects all the training samples in turn. All the learning subsets are used
during the evolution in an iterative way. If, at generation g�1, the current training sample is
Si; then at generation g: P (Sj/ D 1, with j D iC1 if i< k or jD 1 if iD k. Figure 3 illustrates
an example of the best fitness (MSE) curve along evolution using the SSS method. It shows
that all the learning subsets are used during the evolution in an iterative way.

4.4. Adaptive Training-Subset Selection Method

Instead of selecting a training-subset data in a random or sequential way, one can
use an adaptive approach to dynamically select “difficult” training-subset data having high
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FIGURE 2. Example of fitness curve of the best individuals generated by GP using RSS method for
TS samples.
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FIGURE 3. Example of fitness curve of the best individuals generated by GP using SSS method for
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FIGURE 4. Example of curve fitness of the best individuals generated by ASSS method for TS samples.

fitness errors (MSE). This approach is inspired by the dynamic subset selection method of
Gathercole and Ross (1994), which is based on the idea of dynamically selecting instances,
not training samples, which are difficult and/or have not been selected for several genera-
tions. ASS simplifies this method by selecting training samples, not instances, containing
unsolved fitness cases.

Selection is made according to the ASW. After g generations, training samples are re-
ordered, so that the most difficult training samples, those having higher ASW, will be moved
to the beginning of the ordered training list, and the easiest training samples, those having
smaller ASW, will be moved to the end of the ordered training list.

1 Adaptive-sequential training-subset selection method

The initial weights are initialized with a constant and the selection of samples is done in an
iterative way:W.Si / D C; 1 � I � k. Then, for the k first generations, selection of training
samples is made in the order using the SSS method (Section 4.1). Later, from the generation
kC1, samples are selected for the next step according to the adaptive approach based on the
reordering procedure (Equation (4)).

Figure 4 illustrates an example of the best fitness (MSE) curve along evolution using
the ASSS method.

2 Adaptive-random training-subset selection method

The ARSS method uses the same procedure as the ASSS method, except that the initial
weights are generated randomly at the start of running rather than initialized with a constant:
For t D 0;W.Si/ D QPi; QPi 2 Œ0; 1�; 1 � i � k. Then, for the few first generations, samples
are selected using the RSS method (Section 4.2) after the selection of samples is made using
the adaptive approach based on the reordering procedure (Equation (4)). Figure 5 illustrates
an example of the best fitness (MSE) curve along evolution using ARSS method.

5. FINDINGS AND RESULTS ANALYSIS

5.1. Experiments

The experiments were performed in two major phases: static subset selection experi-
ments (phase 1) and dynamic subset selection experiments (phase 2).



COMPUTATIONAL INTELLIGENCE

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

3 1 7 3 4 6 1 3 7 1 1 4 2 3 2 2 9 2 5 2

B
es

t 
F

it
n

es
s

ARSS

Training sample number

FIGURE 5. Example of curve fitness of the best individuals generated by ARSS method for MTM classes.

Phase 1. First, the genetic program is trained separately on each of the first nine TS
subsamples .S1; : : : ; S9/ using 10 different seeds and is tested on the subset data from
the immediately following date .S2; : : : ;S10/. Second, using the same genetic parameters
and the random seeds applied on TS data, GP is trained separately on each of the first
nine MTM subclasses

�
CL
1; : : : ;C

L
9

�
and is tested on the second nine MTM subclasses�

CT
1; : : : ;C

T
9

�
. Actually, each subsample is independently evolvable by GP, and the best

individual generated from each subsample is selected.

Phase 2. First, the genetic program is trained on the first nine TS subsamples simultane-
ously .S1; : : : ; S9/ using 10 different seeds and it is tested only on the tenth subsample data
(S10). Second, GP is trained on the first nine MTM subclasses simultaneously

�
CL
1; : : : ;C

L
9

�
,

and it is tested on the second nine MTM subclasses regrouped in one test sample data�
CT
1 C CT

2 : : :C CT
9

�
. Third, GP is trained on both the nine TS subsamples and the nine

MTM subclasses simultaneously
�
S1; : : : ; S9ICL

1; : : : ;C
L
9

�
, and it is tested on one test

sample data composed of the TS and MTM test data
�
S10 C CT

1 C CT
2 : : :C CT

9

�
.

Table 3 summarizes the training and test data samples used for static and dynamic training-
subset selection methods, respectively.

For each case, the best individual (tree function) is selected according to the MSE’s
fitness measure. Selected models are then analyzed and compared with each other according
to different measures as described in the following.

5.2. GP Model Selection

Results analysis focuses on the comparison between GP solutions given by static and
dynamic training-subset selection methods in terms of their ability to forecast implied
volatility. GP models subject to the comparative study are selected as follows.

First, selection of the best generated GP volatility model, relative to each training set,
for TS, MTM, and both TS and MTM classifications, is made according to the training and
test MSE. For static training-subset selection method, nine generated GP volatility models
(M1S1 : : :M9S9/ are selected for TS samples and similarly, nine generated GP volatility
models (M1C1 : : :M9C9/ are selected for MTM classes.

Second, for dynamic training-subset selection methods (RSS, SSS, ASSS, and ARSS),
four generated GP volatility models are selected for TS classification (MSR, MSS, MSAS,
and MSAR). Similarly, four generated GP volatility models are selected for MTM classi-
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TABLE 3. Definition of Training and Test Data Samples for Static and Dynamic Training-Subset Selection
Methods.

Subset selection Learning data sample Test data sample

Static subset 1. Si 2 TS samples (S1; : : : ;S9/ The successive TS sample Sj; j D iC 1
Selection (1 subset for a run)

2. CL
i 2MTM training samples The corresponding MTM test sample CT

i�
CL

1 ; : : : ;C
L
9

�
(1 subset for a run)

Dynamic subset 1. TS samples S1; : : : ;S9 The last subset in TS samples set (S10/

selection (9 subsets for a run)

(RSS/SSS/ 2. MTM training samples The nine MTM test samples
ASSS/ARSS) CL

1; : : : ;C
L
9 (9 subsets for a run)

�
CT
1 C CT

2 : : :C CT
9

�
3. TS samplesCMTM samples The last TS sample with the nine MTM test�
S1; : : : ;S9;CL

1; : : : ;C
L
9

�
samples

(18 subsets for a run)
�
S10 C CT

1 C CT
2 : : :C CT

9

�

TABLE 4. Definition of GP Generated Models Given by Static and Dynamic Training-
Subset Selection Methods.

Subset selection Learning data GP volatility models

Static Subset TS samples (S1; : : : ;S9/ M1S1 : : :M9S9(TS models)
Selection MTM classes

�
CL
1; : : : ;C

L
9

�
M1C1 : : :M9C9 (MTM models)

Dynamic Subset RSS SSS ASSS ARSS
Selection TS series (S1; : : : ;S9/ MSR MSS MSAS MSAR

MTM classes
�
CL
1; : : : ;C

L
9

�
MCR MCS MCAS MCAR

TS series CMTM classes MGR MGS MGAS MGAR�
S1; : : : ;S9;CL

1; : : : ;C
L
9

�

fication (MCR, MCS, MCAS, and MCAR) and four generated GP volatility models are
selected for global classification using both TS and MTM classes (MGR, MGS, MGAS, and
MGAR). Table 4 summarizes the 30 volatility models selected for the comparative study.

5.3. Results Analysis

To assess the accuracy of the training-subset selection methods applied as well as the
generated GP volatility models selected, two measures are used. First, the MSE total is com-
puted using the same formula as the basic MSE (Equation 3) but according to the enlarged
data sample. The best model is the model that provides the smallest forecasting error. MSE
total aims to measure the generalization ability of the GP generated models. Second, the
number of NFO for a given data sample is used to describe how well a model fits the sample
observations; otherwise, it measures the model’s ability to solve all fitness cases in the cor-
responding subset. An observation is supposed to be well fitted if the corresponding error
(The absolute difference between target and forecasted output volatility) is less than 0.1
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(value determined according to the experimental results). NFO aims to compare the final
solutions in terms of adaptation level to all input fitness cases.

Figure 6 describes the performance of the best generated GP volatility models, using
static and dynamic training-subset selection methods, according to the MSE total for all
data samples.

Figure 6 (a) presents the MSE total relative to the 18 generated GP volatility models,
using static training-subset selection method, selected for TS samples and for MTM classes.
Some extreme MSE values for MTM data are not shown in this figure. As shown, the perfor-
mance of the static models is not uniform. Total errors are higher for the MTM classes than
for the TS samples. Indeed, the MSE exceed 1 with some fitness cases of MTM classes, and
it doesn’t reach 0.006 for all TS sample cases. Thus, it seems that TS models are more gen-
eral than MTM models. The difference in accuracy between GP applied on TS samples and
GP applied on MTM classes is very striking. With MTM classes, GP was unable to find sat-
isfactory models with high forecasting ability, which might be caused by insufficient search
intensity. Furthermore, Figure 6 (a) shows that the generated GP models M4S4 and M4C4
have the smallest MSE in enlarged sample, for the TS and for the MTM classes, respectively.
They seem to be more accurate in forecasting implied volatility than the other models.

Figure 6(b) illustrates the MSE relative to the 12 generated GP volatility models, using
dynamic training-subset selection methods (RSS, SSS, ASSS, and ARSS), selected for TS
samples, for MTM classes and for global classification using both TS and MTM classes.
It appears throughout Figure 6(b) that the generated GP volatility models, relative to each
dynamic subset selection method, are performing on the enlarged sample and present fore-
casting errors, which are small and much close. The MSE relative to these models don’t
reach 0.003 for all sampling scheme data, except the MCS model generated using the SSS
method for MTM classes. Figure 6(b) shows that, for the TS samples, the MSS model
generated using the SSS method has the smallest MSE on the enlarged sample. For the
MTM classes, the MCAR model generated using ARSS method outperforms the other
models generated using the other methods. For both TS and MTM data, the MGAR model
generated using ARSS method presents the highest accuracy in enlarged sample. Overall,
the best forecasting’s performance is achieved by the ARSS method. This can be explained
by the fact that this method permits to generate more general models adaptive to all
sample data.
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Comparison between static (Figure 6(a)) and dynamic training-subset selection methods
(Figure 6(b)) in terms of MSE reveals that the quality of the generated GP models has
been improved with the dynamic training, particularly for MTM classes. The amplitude of
forecasting errors relative to MTM classes is lower for the models generated using dynamic
training-subset selection methods than for the models generated using static training-subset
selection method.

In order to demonstrate more explicitly the improvements accomplished by the dynamic
subset selection, the percentage of NFO in the whole learning sample is computed for
the best generated GP models using static and dynamic training-subset selection methods.
Results are illustrated in Figure 7 for TS samples, MTM classes, and both TS and MTM
samples.

Figure 7(a) describes the performance of the 18 generated GP volatility models relative
to TS samples and MTM classes, using static training-subset selection method, according to
the percentage of NFO.

It appears throughout Figure 7(a) that the TS models are best-fit patterns compared with
MTM models. In fact, the percentages of NFO given by TS models are markedly lower than
those achieved by MTM models for the enlarged sample. The NFO percentages given by
TS models do not exceed 12%, but they reach 62% with MTM models. Indeed, training is
more homogeneous with TS samples than with MTM classes. This leads us to affirm that
the static subset selection depends on the sampling scheme. Otherwise, it’s important to note
that each model (from TS models or MTM models) fits well to the data on which is trained.
Actually, the generated GP volatility models M4S4 and M4C4 present the lower percentages
of NFO for TS and MTM samples, respectively.

Results show that the gap between the models’ performances is more remarkable for
MTM classes. This can be explained by the fact that the majority of models fit well their
training classes but not other out-of samples. GP is most generally not efficient when the
training data pattern is different from the one relative to out-of-sample data (Chen et al.
2007).

Figure 7(b) describes the performance of the 12 generated GP volatility models relative
to TS samples, MTM classes, and both TS and MTM classes, using dynamic training-subset
selection methods, according to the percentage of NFO in the enlarged sample. This per-
centage varies from 0.63% (MGS) to 4.27% (MGR) for global data training and from 1%
(MSAS) to 6.52% (MSR) for TS training. Corresponding solutions could be considered as

(a) (b)

FIGURE 7. Performance of the generated GP volatility models, using static and dynamic training- subset
selection methods, according to the percentage of non-fitted observations (NFO) for TS samples (S1 : : :S9),
MTM classes

�
CL
1
: : :CL

9

�
and both TS and MTM data

�
S1 : : :S9;CL

1
: : :CL

9

�
.



COMPUTATIONAL INTELLIGENCE

robust models with high forecasting accuracy. For MTM training, the NFO percentage is
relatively high and varies from 3.36% (MCR) to 10.25% (MCS).

It could be observed that the dynamic methods (SSS, ASSS, and ARSS) have the highest
performance with global classification data (both TS and MTM) than with TS samples or
MTM classes. In fact, the GP volatility models generated using these methods have NFO
percentages lower for global classification (MGS, MGAS, and MGAR) than for TS samples
(MSS, MSAS, and MSAR) and MTM classes (MCS, MCAS, and MCAR), respectively. The
RSS method gives high training quality for the MTM classes. This can be attributed to the
randomness of the learning sample order, which allows a better adaptation of the population
to the environmental changes. Although the SSS method provides the best accuracy with
global classification (NFOD 0.63%) and less to TS samples (NFOD 1.2%), it was unable
to provide high performance for MTM classes (NFOD 10.25%). This can be explained by
the fact that the sample selection scheme with the SSS method is steady and unchanged
along evolution.

Comparison between static (Figure 7(a)) and dynamic training-subset selection methods
(Figure 7(b)) reveals that the percentages of NFO are in most cases lower for the models gen-
erated using dynamic training-subset selection methods than for the models generated using
static training-subset selection method. The NFO percentage is reduced for most samples,
in particular, the MTM classes when using dynamic training-subset selection methods.

Overall, according to the MSE total and the NFO percentage, the generated GP mod-
els using dynamic training-subset selection methods exhibit a very high accuracy relative
to that using static training-subset selection method. This observation is confirmed by the
measures in Table 5, which illustrates the average of MSE total and NFO percentage for all
the models obtained with static and dynamic subset selection for each set of learning data
samples (TS series, MTM classes, and both TS series and MTM classes). The dynamic sub-
set selection was able to achieve the desired goal and improve the GP research process in
order to fit better the whole learning data. It presents the smallest averages of MSE total
and NFO percentage. Otherwise, we can note that the diversity of the input samples in the
case of dynamic selection applied on both TS and MTM samples makes GP more robust in
supervised learning and so as the generated forecasting models outperform all other models.

The last step of the present work is the selection of the most accurate models from the
30 GP generated models as listed in Table 4.

Based on the MSE total and the percentage of NFO as performance criteria, the
generated GP volatility models M4S4 and M4C4 are selected for static training-subset selec-
tion method. Similarly, the generated GP volatility models MSS, MCAR, and MGAR are

TABLE 5. Average of MSE Total and NFO Percentage for Static and Dynamic Subset Selection Applied to
the Different Learning Data Sets. The numbers in parentheses are the standard deviation corresponding to MSE
values of all observations in each sample set.

Methods

Static subset selection Dynamic subset selection

TS MTM TS MTM TS seriesCMTM
Measures series classes series classes classes

Average of MSE total 0.002599 0.416320 0.002372 0.003600 0.002033
(0.064383) (56.067) (0.003894) (0.126530) (0.003506)

Average of NFO percentage 4.27% 20.29% 3.41% 5.67% 1.77%
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TABLE 6. Selection of the Best Generated GP Volatility
Models, Using Static and Dynamic Training-Subset Selection
Methods, in Terms of MSE Total and Percentage of NFO. Bold
rows denote the selected models.

Models MSE total Percentage of NFO (%)

M4S4 0.001444 (0.002727) 0.67
M4C4 0.001710 (0.004624) 1.66
MSS 0.002076 (0.004044) 1.20
MCAR 0.001424 (0.003527) 3.40
MGAR 0.001599 (0.003590) 1.45

selected for dynamic training-subset selection method. Table 6 reports the performance of
these selected models.

Results show that according to MSE total and NFO percentage, the TS model M4S4
seems to be more performing than the MTM model M4C4 for static training-subset selection
method. It presents the lowest MSE and percentage of NFO.

According to MSE total, the MCAR and MGAR models generated using the ARSS
method seem to outperform the MSS model generated using the SSS method. Although the
latter has the lowest percentage of NFO, it seems to be less performing than the MCAR and
MGAR models. This can be explained by two points. First, the TS model MSS presents the
highest MSE relative to the other models. Second, the total of error values computed for the
non-fitted observations is higher for MSS than the other models even it presents the lowest
percentage of NFO.

Comparison between models reveals that the best models generated, respectively, by
static .M4S4/ and dynamic selection methods (MCAR and MGAR) present small and very
close total MSE values. Although the generated GP volatility models M4S4 and MCAR
have a total MSE smaller than the MGAR model, the latest seems to be more accurate in
forecasting implied volatility than the other models. This can be explained by the fact that,
on one hand, the difference between forecasting errors is small, and on the other hand, the
MGAR model is more general than MCAR and M4S4 models because it is adaptive to all TS
and MTM classes simultaneously. According to the percentage of NFO, the MGAR model
presents a percentage of NFO relatively higher than the M4S4 model, trained only on TS
data, and relatively smaller than the MCAR model, trained only on MTM classes.

The decoding of these models yields the following GP volatility forecasting formulas:
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6. CONCLUSION

This article presents a GP-based technique to generate implied volatility forecast-
ing models from S&P500 index options. We have demonstrated that the accuracy of the
generated models depends on the training sample, especially when learning with MTM
classes. To reduce the gap between in-sample fit and out-of-sample performance, we
introduced the dynamic training that aims to enlarge the training set to the whole input
data. Four techniques of dynamic subset selection are proposed: RSS, where samples are
selected in random way; SSS, where samples are selected in a regular way; and ASSS
and ARSS, which use a training instance weight to enhance learning on the “difficult”
fitness cases. These techniques are applied on the TS samples and on MTM classes and
compared with the static training-subset selection method using a single sample for the
learning process.

Experiments indicate that using the dynamic training with GP yields better results than
applying the static training, especially when learning on TS and MTM samples simulta-
neously. Otherwise, based on the MSE total and the percentage of NFO as performance
criteria, three generated GP volatility models are selected: M4S4 generated using the static
training-subset selection method, MCAR generated using the ARSS method applied on
MTM classes, and MGAR generated using the ARSS method applied on times series and
MTM classes regrouped. However, the MGAR seems to be more accurate in forecasting
implied volatility than MCAR and M4S4 models. This means that the MGAR model is more
general than MCAR and M4S4 models because it is adaptable to all TS and MTM classes
simultaneously.

Our results revealed some interesting issues for further investigation. First, the dynamic
training GP can be used to forecast implied volatility of other models than BS model,
notably stochastic volatility models and models with jump. Second, this work can be reex-
amined using data from individual stock options, American-style index options, options
on futures, currency, and commodity options. Third, the performance of the generated GP
volatility models can be measured in terms of trading and hedging. Finally, the GP approach
can be applied to extract risk-neutral densities, which provide valuable information about
market expectations. We believe that these extensions are of interest for application and will
be the object of our future works.
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APPENDIX: SYMBOLS AND ABBREVIATIONS

Genetic programming symbols Financial symbols

GP: genetic programming C: call option price
GA: genetic algorithms K: strike price
NFO: non-fitted observations S: the index price
MSE: mean squared error £: time to maturity

ITM: in-the-money
Dynamic subset selection symbols OTM: out-of-the-money

ATM: at-the-money
SSS: sequential subset selection method ST: short term
RSS: random subset selection method MT: medium term
ASS: adaptive subset selection method LT: long term
ASSS: adaptive-sequential subset selection method TS: times series
ARSS: adaptive-random subset selection method MTM: moneyness-time to maturity
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