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Abstract

The abstract is published online only. If you did not include a short abstract for the online véienoyow submitted the manuscript, the first paragraph
or the first 10 lines of the chapter will be displayed here. If possible, please providé as wformative abstract.

Functional imaging enables to detect and to localize braasms apecifically involved in networks subserving a given mentaligctThe two main
techniques used in routine consist in functional magnetic resonaagsn@(fMRI) and positron emission tomography (PET). We wilufon fMRI.
fMRI is based on the local and transient increase of blood oxygaratthe cortical and deep nuclear microvasculature, causedupgnal activation
This hemodynamic phenomenon called blood-oxygenation level-dependent (BOpbDhgesonly indirectly reflects the amount of neuronal activity

(Raichle ME, Proc Natl Acad Sci USA 93:765-772, 1998). This local blogmeroxygenation produces microscopic magnetic field alterations
measurable by appropriate T2*-weighted MRI sequence. A complex iaraystatistical post-processing is then applied to rawtdaganerate fina
“brain activation maps.” These functional maps can be acquiredgdadtive stimulation protocols, or “at rest” (resting-statecfional connectivity.
rsfMRI). fMRI and rsfMRI resort to different algorithmicguessing: linear model-related algorithms and nonlinear, modelefa¢@-driven algorithms
respectively. This functional connectivity can be complementedfegtiee connectivity which seeks causality relationships betwamin areas
participating to a same circuit. Finally, advanced algoritlears also explore the topology of the neural networks and provide newchead graph-
theoretic related information, and machine learning will improve normal and aberuatirsl and functional brain pattern recognition and classification.
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Physiological and Physical Bases of BOLD Response

signal roots in local and transient hyperoxygenation exceeding neuronal metabolic demandtedl asiv@ns and is due to vasodilation partly and fee
forwardly controlled by vasoactive molecules in relation to (inter-)neuronal gcivit to energetic metabolism [1] and modulated by more distant ne
influences.

g

Neurovascular Coupling with Glutamatergic Neurons. At rest, the main neuronal consumption of energy produceimbic glycolysis
(tricarboxylic acid cycle) is linked to the maintenance of gradients of ionic condemtadund the plasmic membrane and intracellular biosynthesis.
During synaptic activation, neuronal metabolism and, consequently, neuronal consumption/producBayyaire increased mainly in relation with the
recruitment of Na+/K+ ATPase pumps involved in gradient ion restoration. A tight neuabwagcular coupling allows to provide sufficient amount of
oxygen and glucose to neurons (and astrocytes) during sustained activity and during restoratioenef ¢fedic reserves and to get rid of metabolic
potentially noxious by-products [2]. This coupling induces (1) a strong and nonlinear augmenieg¢icebadl blood flow (CBF) and (2) a moderate

L]

response is based on a vasodilation of arterioles and capillaries causing incBfasedl Gn downstream veins, an increased speed of blood flow [2].
vascular processes would rely orfta -dependent release of vasodilators by neuronadaron®rand by the associated astrocytes whose metabot
receptors are activated by the glutamate released in the synaptic cleft andnahiese surround the microvasculature. These molecules can act on
pericytes and smooth muscle cells. Several factors can contribute to the locdatiaaddi: astrocytic extrusion of potassium, prostaglandins, and
epoxyeicosatrienoic acids; neuronal liberation of vasoactive mediators suchcasxiliei (NO), prostaglandins, vasoactive intestinal peptide (VIP),
adenosine, or adenine; and variation of blood pCO2 and pH and lactate/pyruvate ratio. It is notkatdtits/asodilation can be potentially
counterbalanced by vasoconstrictors such as norepinephrine. Two other mechanisms cditiglategarthis functional hyperemia. First, some vasoa

[tegmental area, and noradrenergic locus coeruleus [2, 4]. Second, (retro-)propagation atieascali occur in relation to endothelial direct action on

http://eproofing.springer.com/books_v2/printpagetioken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.
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augmentation c€erebral blood volume (CBV), while a weakrebral metabolic rate of oxygen utilization (CMRO2) is observed [3]. This hemodynamic

These
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tive

substances may be released from distant subcortical afferents such as frioatitleegec substantia innominata, serotoninergic raphe, dopaminergic ventral

smooth muscle cells via hyperpolarization-dependent [5] or calcium wave-dependentivasactors [6]. This mechanism would explain why vasodilation

can also spread to the arterioles toward the cortical s f#jce
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and hippocampus so that GABAergic interneurons may contribute to positive BOLD responssvigilek] several experiments have demonstrated th
inhibitory GABAergic synapse could also induce arteriolar vasoconstriction and subsequeaseléh CBV and blood oxygenation, likely through

neuropeptide corelease [4]. This hemodynamic response would partly explain negative Biri3eeHowever, interneurons, such as cerebellar bas
and stellate cells, can also secrete molecules such as NO producing vasodilaeoBARA has no vasoactive effects in the cerebellum [8]. Finally, I
neurovascular response represents summed and complex effects of both excitatory aory isyriaips

Neuronal Metabolism of Glutamatergic Neurons§ Moreover, part of the glutamate delivered in the synaptic cleft is captured by cont
astrocytes and transformed into glutamine before being released back to presynaptic hetganwill be recycled [9, 10]. The glial sodium-glutamate
cotransport stimulates anaerobic glycolysis which produces ATP necessary to eodiiudeterough a sodium-potassium ATPase and lactate delivere

phosphorylation, according to the lactate shuttle hypothesis. This mechanism would explainrtfaiobsieat only a small fraction of blood oxygen is
extracted, while a substantial uptake of glucose o_:curs

Local Magnetic Fiel@ Owing to functional hyperemia, the surplus of diamagnetic oxyhemoglobin (mainly due to the th@B&§dlows in the
local capillaries and venous system which become more diamagnetic [11]. Letld that, at rest, the difference of magnetic susceptibility between t
paramagnetic deoxyhemoglobin-rich vascular compartment and the more diamagnetic surrmsoginggates a microscopic field gradient around ve
causing variation of the precessional frequency with space and time. Moreover, randamsiygigpins (hydrogen atoms of water molecules) due to
{thermal energy experience different amplitudes of the local magnetic field and syb&equent accrual phase. However, this effect dominates main
around the small vessels (capillaries and venules) as the diameter of the gpiordgphere on the order of i and the spatial spread of the gradient
approximatively of the same range. In larger vessels (arterioles and large vespissgan be regarded as static in the perivascular space. It is notev
that dephasing also takes place in the intravascular compartment where diffusinmdpng® direct magnetic influence of deoxyhemoglobin because
their spatial closeness. Conversely, after neuronal activation, the increasestiaiimn of oxyhemoglobin in vessels leads to decreased local field
distortions and consequently lesser phase dispersion of water molecules. In summamytatiognof CBF due to neuron-glial-vascular coupling is
accompanied by a net increased oxygenation of the microvasculature, while CBV and oxygen consuneiggcoduterbalancing but weaker
augmentation of deoxyhemoglobin, so thatltieal magnetic field is significantly diminished. This change of local tissue oxygefratated magnetism
recorded by fMRI as BOLD response

inhomogeneities, including the deoxyhemoglobin-related field gradient, and on spin motion [11, 12]. Tdredtecnmhomogeneities contribute to fastet
loss of spin-phase coherence, and this effect is reflected in the T2* relaxatiovhiicheappears in the equation describing the MRI signal evolution ir
function of time S(t) with a baseline signal eéml%:

{the neuron using monocarboxylate transporters. Lactate is then transformed into pyruvate bylaetatendehydrogenase before undergoing oxidativie

BOLD Signal and ﬁWRIE After radio-frequency pulse, fMRI detects transversal magnetization whosedbgmends upon static and fluctuating fie

http://eproofing.springer.com/books_v2/printpagetoken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.

Neurovascular Coupling with GABAergic Interneuronsg Stimulation of GABA-A receptors produces arteriolar dilation in the neocoftex
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S (t) = So.exp [-t/T27]

1S5

After neuronal activation, T2* increases to TB&cause of the decrease of intravascular and perivascular paramagnetiortistbttie main field exerte
by deoxyhemoglobin transiently replaced by oxyhemoglobin. Therefore, the measured fMRI signalsippeges It can be easily calculated that the
percentage of change of the signal between the rest baseline and the activatelishatepmesents the BOLD signal, is approximatively proportional to
[1/T2* — 1/T2*] TE, where TE refers to echo time of the MRI sequence. Several biophysical moddie&akeveloped to express the relaxatior‘étime
T2* in terms of local field and vascular parameters. For instance, it has been shoi, thaj:

1/T2* ~ k. ([dHb].B,)’V

—

where k designates a constant, [dHb] the concentration of deoxyhemoglobin which determinésadeufsardifference of magnetic susceptibility, B the

main magnetic field strength, V the blood volume fraction,fardL.5. More complex and accurate models integrate the dependency of [dHb] on CBF, CBV,
and the rate of oxygen extraction. For instance, one possible model for the BOLD reéspaasebe approached by the following nonlinear (in CBF)
equation [14]:

AS (t) = A. (1 — 1/n—-av). (1 — CBF (t) /CBFpsaeline )

where the complex factor A is mainly proportiénal[de] (and consequently to hematocrit) and O2 extraction during the baseline state, ractitraf
changes in CBF, ang, refers to the venous volume changes. It is important to emphasize that the BOLD sigolalpixel is strongly influenced by
baseline values of CBF and CBYV, for instance. Therefore, BOLD signal does not only depend on aetivatiah but also on regional-specific
microvascular anatomy and physiological changes related to age, medication, or concothitéogypa

As mentioned above, negative BOLD response can also be observed. Kim and Ogawa [15] sdeevarnakepossible explanations of stimulus-induced
negative BOLD signals: decreased CBF due to neuronal inhibition, or regional flowagatipand increased O2 consumption without augmented CBF.
Furthermore, they reported Shih et al.’s study [16] showing subcortical negative BOLD ee@poats) mediated by focal release of vasoconstrictors
decreasing CBV despite nociceptive-induced neuronal activation. Therefore, negdibesig®al must be carefully interpreted and must not be regarded
as exclusive signature of neuronal inhibition.

Specific sequences of M@re applied to encode this hemodynamic response within the T2*-weighted image such aghdvggadient echo (GE) and
echo-planar imaging (EPI) with usual spatial and temporal resolutions 234 mm and 2-4 Byebs®OLD signal detected by EG sequence
predominantly derives from venous system. Two reasons may explain this fact. Firsanupstygillaries contain more oxyhemoglobin than veins. Segond,
in small vessels, erratic moving spins sample all local perivascular mafigleisc which results in narrowing the phase distribution and consequently|in
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reduced BOLD signal [12]. However, this effect can be utilized digjiig echo (SE) imaging since the refocusing 180° RF pulse eliminates only dephasing
effects of static magnetic inhomogeneities, but not the phase accumulation of diffussig& sequence is therefore sensitive to smaller vessels than GE
ones.

Phenomenologically, BOLD response, i.e., the percentage of change in MRI signal caused byief w@imudation, is characterized by a brief and
inconstant initial “dip” followed by the rise of the signal to a peak (4—6 s) due to blood oxygenatiasenanel followed by slower fall (around 15 s) and
finally by a shallow post-stimulus undershoot of variable duration before reaching thad&sigi 2.1). The vascular mechanisms producing the dip and
the undershoot remain still a matter of debate. It is noteworthy that BOLD res{2h<25 s) lasts longer than neuronal electrical events (several
milliseconds) and can exhibit interindividual and interregional variability concersinignié-course. The task-related BOLD increase is usually <5%.
Finally, BOLD response can be regarded as a linear function of the underlying neuronal resfa@tsgproximation and is correlated with local potential
fields which reflect afferent synaptic inputs and postsynaptic dendritic proceaiiegthan spiking [16], although discrepant results found correlation with
spiking [11].

Fig. 2.1

Curve representing schematically tfii@e-varying BOLD response caused by a brief stiraudpplied at time t = 0. The dashed line corredpda th
baseline level of BOLD signal

v
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In conclusion, positive BOLD signal mainly reflects intra- and extravascular mafekt alterations due to focal hyperemia-related, capillaro-venous
hyperoxygenation induced by tight neurovascular coupling during neuronal activation. Conversely, negdiiv@dgd@lLcan be caused by neuronal
inhibition. However, regional and stimulus-dependent variations can occur such as inhibitagunate-related positive BOLD signal in the cerebellar
cortex or striatal negative BOLD signal despite neuronal acti\éation

CBF-Based Functional Imaging Besides BOLD fM@l arterial spin labeling (ASL) can also be used for obtaining functional images [17],
the brain resting state [18]. This MRI sequence usually allows generation of perfusigittedeimages and quantification of absolute perfusion. Put in
nutshell, radio-frequency pulses and gradients applied to the neck invert spin magnetizatiooggrhgthms in arterial blood. In other words, water in
blood is used as endogenous tracer. After a short delay (<5 s) necessary for the labdledesfmnshe studied tissue upstream, two-dimensional EPI
images of the brain are acquired. Then, subtraction between paired images with and piitHabebng (control image) enables to suppress static tiss
signal and consequently to retain perfusion-related signal. In clinical and reseairesrqgeudo-continuous AiSi:. preferentially utilized. Therefore, A
can detect slow task-related changes of local brain perfusion only due to arterialaiflarycdilation or contraction. This ASL-based and CBV-related
functional mapping improves spatial resolution for localizing accurately activiagas, @specially in regions with high susceptibility, and it excludes
complex dependency of the signal to other parameters, such as CBV and CMRO2 modulating trstgBaIL[DO]. Moreover, the ability to measure

http://eproofing.springer.com/books_v2/printpagetioken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.

Bven in
a
the

e
5L

23/05/2018 a 14:1



e.Proofing | Springer

7 sur 38

both ASIj. and BOLD signals can be recorded during a unique dual-echo EPI sequence. The BOLD signal cactdxbfexin the control (task-related ¢
rest) imag%

Brief Survey of Basic fMRI Design and Processing

inside the MRI machine. Task-related activation must be extracted from thensdahbblism-related activation pattern of the rest of the brain. Two me
experimental designs can be applieldck design andevent-related design. In block design, the functional run encompasses a regular alternation of
off/controlled” blocks. Within each on-block, subjects are requested to carry out thexggmmental activity continuously, while, within each off-block
[they remain at rest. Block repetition will sample weak BOLD responses thuasimgyeignal-to-noise ratio, and subtraction of off-blocks from on-blog
will only retain task-specific activated areas. Alternativelyevent-related design, discrete stimuli are presented repeatedly but briefandochly, and
[they are interspaced by off epochs of variable duration. Therefore, event-related desiggpsone to record transient brain activity than block desigr
more sensitive to sustained brain activity but with a risk of habituation or task amgitipa

Raw functional images must then undergo a complex preprocessing before computing edKagtigation maps.” A preliminary analysis is indeed

related BOLD signal, less than 5% of the total BOLD signal, but also BOLD variagmsgd by simultaneous but task-unrelated mental activity.

The main steps gireprocessing of single-subject data include (1) distortion correction, (2) motiortiooree slice realignment, (3) slice-timing
correction (correction of interslice delays of acquisition), (4) spatial narati@n (realignment of individual anatomical data into a common framewor

(removal of low-frequency noise such as the scanner drift).

Afterward, statistical modeling and inferences will determine whtel’s signalare significantly and specifically correlated with the experimental de
The most popular method utilized to achieve this goal is the general linear Gadék.(GLM will relate a dependent variable (voxel's BOLD signal tir

functional AS@. For example, the predicted BOLD time-course can be modeled by a boxcar, representiagoatof on-off epochs, convolved with a
hemodynamic response function. Observed Wadiae, thus, represented as a linear combination of regressors: the predicted neyjronse r@lesign
matrix) X weighted by unknown paramet@rguantifying effect sizes, and Gfaussian noié;éunexplained variancé€)with a null mean and a variancé
as expressed in the following matrix equation:

Y =[].X+¢

The aim of the study is to identify brain areas specifically recruited by an expeairnasht (movement, perception, cognition) performed by the subject

required since, for instance, raw data are noisy due to several scanner artéacisptien, breathing, and heartbeat and encode not only a weak task-

series from observed data) to one or more independent explanatory variables (voxelsdoB£idD signal time-course or perfusion time-course using

http://eproofing.springer.com/books_v2/printpagetioken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.

perfusion permits to evaluate not only interregional signal correlation but also locabbati@riations of signal amplitude [19, 20]. It is noteworthy that
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Thef values can be estimated by minimizing the sum of squared residuals, i.e., differemees loéiserved and predicted values so that the model b
[the data and, after some mathematical manipulations, can be written as:

8 = (XtX)7'xtY
whereX' denotes the transposition matrix and provided)ﬂlnat is invertible necessitating that X has a full column rank.

Moreover,GLM; requires that the components of the ngisemain temporally uncorrelated and share the same variance, which is not alwagethe c

determine whether the observed data estimated by the spacdmeters and the matrix design may result from random fluctuations of brairy actofit
all other null controlled condition ¢4 hypothesis accepted) or ngt (H rejected: “treestgnificant task-related effect”). More formally, the testing reli
on contrasts defined as a weighted linear combinatiorg efalues representing effect of interest:

c=c'[g

where ¢ denotes the contributionfofo the BOLD signal at a particular TR and in a specific vaxegn take -1, 0, or 1 values, and then the HO and H
hypotheses can be expressed by:

HO: ¢c=0versusH1: ¢>0

If a t-test is applied, the statistics following the t-distribution with (number of romsmber of columns in X + 1) degrees of freedom is expressed by,

t=cTp/o [CT (XtX)_lc] v

Statistical inferences, therefore, require to define the contrast (perfceragainst rest or performance against another performance), the type of lev

inference (voxel versus cluster), and the statistical threshold (P-value utesbweanost often, corrected for multiple comparisons, e.g., P (T >1t) =0

Is an important problem. If the probability of false positives is fixed at 0.05 for eagietesixel, then the probability of false positives for all the N stu
voxels equals 0.05.N number which can be very high. Therefore, it is absolutely necessary tomagtpié comparison corrections. Several procedu

bst fits

es

p|

05

corrected, where T refers to the random variable following the t-distribution havingntieedegrees of freedom than the computed t). Multiple comparisons

died
es

can be used such &smily-wise rate correction (Gaussian random field), for false discovercaarection controlling the false positives only among th
significant voxels. The final results, the statistical parametric map, ualwed on thresholded activation map overlaid on T1 high-resolution anatorFicaI
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images, where the voxel statistical significance is repreé@ytecbolor gradient (Fig. 2.2).

Fig. 2.2

Statistical parametric map of a subject performaftgrnating phases of rest and activity (motor rakeimhagery task) during a functional MRI scaa)]| (
Axial slices showing bilateral (pre-)frontopariet@rtical activation (A1) and cerebellar activatiOh?). (b) The curves represent the detected tI

varying BOLD signal (red) and the full model fitrges data obtained by Glj.l\method (blue) (post-processing using analysis MR Softwareé
Library v5.0, Oxford, UK: https://fsl.fmrib.ox.adifsl/fsIwiki/FEAT)

http://eproofing.springer.com/books_v2/printpagetioken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.
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Further higher-level statistics usismgle-subject statistical magsin be performed to create a single-group activation maps and to test intersession or
intergroup differences in the brain activation pattern. Generally, as we wantdpatate information from the limited group of subjects to the whole
population, they belong to, random effect analyses are preferentially carried outhathiexed effect.

Resting-State Functional Connectivity

Deﬁnitionl There exist tight temporal correlations between spontaneous
Resting-state functional connectivity

BOLD signal fluctuations at low frequency [0.01-0.1 Hz] and at rest, between spatiadtg feuh functionally related brain areas [21, 22]. The spontaneous
brain activity at rest thus results from complex dynamical interactions betvedlesegregated but partially overlapping, large-scale neural networks
involved in motor, perceptual, and cognitive functions [23]. rsfMRI is devoted to identify thésg-state networks (RNs), reminiscent of task-related|
networks, and their interactions (correlation/decorrelation and anticorrelatiogs time. This internally driven brain activity is assumed to reflect,sat|lea
not only the concomitant free conscious experience referred as “mind wandering” but alanespasheural events constrained by experience-dependent
neuroplastic changes and network structural and/or functional topological architeetisrenéntion that Aﬁlbased rsfM%Ican also be used [18].

Neurophysiological Basisl The neurophysiological mechanisms underlying these interregional synchronizations are poostpathdad still a
matter of debate. First, interregional functional coherence only partiallytseffecanatomical wiring. This fact is illustrated by left and right BA 17 regions,
which belong to the same primary visual RN although they are not anatomically interconmettedtteedorsal attentional netwaork and the visual RNS

Second, there exist transient and complex correlations between BOLD fluctuatiofghandeta, gamma, delta, and theta EEG rhythms [25]. For instance,
the default mode network and tigrsal attentional netwark exhibit positive and negative correlations with beta andrsitiimas, respectively, whereas
the salience networks are active in the gamma range. MEG recordings have also higtdightsships between BOLD fluctuations and amplitude

envelope of band-limited rhythms [26]. Third, in monkey, spontaneous BOLD fluctuations wergectlystorrelated with neural spiking activity and

gamma-range band-limited power [27]. In human, correlations were also found between spo@hEbasd the slow cortical potentials. Fourth, several
other putative factors have been assumed to shape BOLD spontaneous fluctuations2dy8Jmetabolism (redox variation associated with energetic
metabolism), biophysics (up-down state transition of the membrane voltage, subthreshatoscmicrostates), biochemistry (quantal exocytosis),
network constrains (time delay, noisy transmission, nonlinear attractor dynanj)cgf2@omical connections (thalamus), or neuromodulation. Therefpre,
spontaneous BOLD fluctuations seem to be spatially and temporally multiscale edymoim the cell to the netwc%mrk

MRI Sequencel Inside the scan and during the whole experiment, subjects are requested to remaghestédsaclosed and to focus their attention dpon
nothing in particular. Then, the same EPI sequences than in classical fMRI are sppl@Easure the resting-state brain activity. For example, around 200
volumes covering the whole brain are acquired with a TR = 2 s. Utilization of acedlsegjuences, such as multiband (simultaneous acquisition of multiple
slices), can notably diminish acquisition time and TR value (<1 s) and/or to incretiskergpalution. It is noteworthy that the raw data will be preprocessed
as in GLM method
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Statistical AnalysisE The two main techniques for performing functional connectivity analysisegren-of-interest (ROI) correlations and
'independent component analysis (ICA) [30]. The first method focusing on a specific bramtased on calculating correlation (Pearson score) of th
BOLD signal between a predefined ROI and the rest of the brain. AlternativelysI&€Aultivariate, data-driven method allowing the identification of
multiple coexisting whole-brain networks and subnetworks by voxel-to-voxel analyses. To dcisigaal, ICé\soIves theolind source separation
problem, which requires distinction between a set of unknown sources underlying the observed dataurt(@a #sst these sources are statistically
independent, non-Gaussianly distributed, and linearly mixed. For functional imaging and morky,fespatal ICéseeks to separate all thiglden distinct
neural networkX and, in probabilistic ICA model, possible source of normal ripsmntributing altogether and simultaneously to the observable whg
brain BOL@ signalY [31]:

Y = M. X (+¢)

whereM denotes thenknown mixing matrix. Sometimes, the raw data have been beforehand prewhitened by principal componéniranedgs to
reduce the dimensionality of data spaces and to remove Gaussian no§sﬂagcbﬂmm, such as maximization of negentropy or maximum likelihood, fc
example, then aims to determine tmenixing matrix in order to recover the unknown sour¥esom Y. This algorithm computes a set of statistically
independent components using, for instance, maximization of non-Gaussianity (using higheatisties)sttach neural network and artifactual souxce
correspond to a specific Id:éomponent (spatial maps) and are associated with a specific BOLD time%c‘blumumber of components remains a free
parameter which can be fixed a priori (around 15-20) or estimated by the algorithm (around 30-GWgrttleelnumber (around 20), the more robust
reproducible results. Excessive number of components might split networks into su@systems

Group and intergroup analyses can also be conducted tg){BII;/SZ]. For instance, temporal concatenation supposes common spatial maps assdci
unique time-courses across subjects. The subject-specific maps and timezaoutben, be back-reconstructed on the basis of the group-level comp
Finally, several algorithms enable intersession or intergroup comparisons suchragmsaion and randomization. It is worth emphasizing that algor
results can vary in function of the population size and because of its probabilistic nature.

Finally, other methods can be applied in the “resting” brain such as:

— Detection of (fractional) “amplitude of low-frequency (0.01-0.1 Hz) fluctuations (AQLEﬁlculating the intra-voxel power spectrum of the BOLD
signal [33]

— “Regional homogeneity” (ReHo) approémteasuring synchronization between time-course of BOLD signal of neighboring voxels usimmdiad’&
coefficient of concordance [34]

However, the resulting functional maps reflect local processing and not largéuscaienal circuit%

http://eproofing.springer.com/books_v2/printpagetioken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.
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Resting-State Network Identiﬁcation! The main step after having obtained the}lé‘ﬂnponents relies on the selection of components
representing the true neural networks. Some criterion can be usefully applied and aluteimstit@nly components whose frequency is comprised betiveen
0.01 and 0.1 Hz or, at least, whose more than 50% of the spectrum remains within this intend,retagted. Second, noisy components must be well-

identified (structured noise, head and ocular motion, breathing, cardiac beating, scanmc.yliahd removed. Several typical aspects of noise must be
kept in mind:structural noise like ring pattern of pixel around the encephalon due to head motion, diffuse spotty pattern over tredeaintighter
bilateral frontal and orbitofrontal clusters with “spike” or “sawtooth” motif & in the corresponding time-course, respectively, clusters located in the
ventricles, andmproper anatomical regions like white matter, cisterns (especially around the brainstem), superior longitsidung or eyes [35]. This can
be achieved by (operator-dependent) visual inspection or by automated classificatitmnadggdiris possible to take advantage of the extraction of noisy
components in single-subject components, to denoise the raw data, what will improve fottherglysis. Third, most of the RNs have been listed and
can be easily recognized according to anatomical localization of the networ§<[86d@§] (Fig. 2.3):

Fig. 2.3

Axial slices of the brain showing fMRI resting-sgtatetworks computed by independent component asal@$ Motor network. ) Salience network

(c) Default mode network.d) Auditory network. €) Language networkf) Dorsal attentional networkg) Medial (G1), caudal (G2), and lateral (G3)
visual networks.l) Right (H1) and left (H2) executive networks.ight
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1. Thedefault mode network (DMN) (bilateral medial prefrontal, posterior cingulatesggenial, precuneal, lateral inferior parietal, and
parahippocampal cortices, cerebellar amygdalae, and cerebellar lobule VII) thwobansciousness, unconstrained cognition (“mind wanderin
episodic memory, emotional processing, and self-projection in future or past

),

O

2. Theleft executive control network (LECF) (left dorsolateral prefrontal and sugeaietal cortices, contralateral cerebellar lobules HVI and HV]I)
involved in syntactic cognition and language

3. Theright executive control network (RECN) (right dorsolateral prefrontal and superietgb@ortices, contralateral cerebellar lobules HVI and
HVII) involved in holistic and visuospatial cognition

4. Thedorsal attentional networks (DAN) (bilateral intraparietal sulcus, prefrgmiecentral cortices) for top-down focus of attention and goal-
directed cognition

5. Thesalience network (SN) (prefrontal operculum, anterior insula, dorsal anteriorat@gupothalamus, and cerebellar lobules HVI and HVII)
involved in interoception, emotion, and attentional reallocation based on stimuli salience

6. Thesensorimotor network (bilateral S1-M1, supplementary motor area, cerebadaoriobe and lobule VIIiI)

7. Themedial primary visual cortex

8. Thepolar visual cortex

9. The lateral (extrastriate) visual cortex

10. Theauditory network (superior temporal, insular, and postcentral cortices)

11. Thelinguistic network (superior and medial temporal, inferior frontal, and angularesjrtic

12. The striatum

13. The cerebellum

Sl\é, LECN, RECN, and DAN are grouped imaneric external attention system (GEAS) in opposition to the i[DMNIicated in self-referential thinking.
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relevant salient external stimuli. Moreover, a seed-based analysis haserimd@ ventral right-lateralized attention system encompassing the vent
frontal cortex and the temporoparietal junction [39]. It turns out that the switching m&oha&auld rely on antagonistic connectivity between the right
insula and the dorsal posterior cingulate part of the é)MNest, only part of these networks such as DMN aréchBEN:urrently active. Finally,
hierarchical clustering using, for instance, partial correlation matrix couldlmatetto distinguish and rank RN and their subnetvé.orks

children, asleep or anesthetized subjects, and animals (monkeys, rats, and mice)tidnalfanonectivity is age-dependent and context-dependent a$

changes mainly concern intra- and inter-network reorganization of connectivity. In teticg (M 1)-cerebellar, thalamocortical, interhemispherical
coherences have been observed [40]. Moreover, a proto-DMN interconnecting medial prefcbptataneal cortices has also been identified after

{to be discernible by age 1. A bit later, DMN, SN, and executive control networks can be uislwalage 2 but will undergo further gradual maturation
processes including increasing within-network coherence, eliminating some distesdnnection, and developing long-range connectivity. Motor and
perceptual RNs are mature earlier than higher cognitive circuits. In older peopgiesiiws the same global connectivity than in young adults but with
weaker connectivity between prefrontal and ventral precuneal cortices and strorgjationrin the dorsal precuneal circuit [41]. Second, functional

often, subsequent anticorrelation with networks subserving overt sensorimotor, atteotiooghitive activity like stimulus-conscious perception: the

competition or cooperation between RN and strengthening interconnections may refsentracaffolding” connectivity (attention to the task) and

set of apparent stationary RN during the experiment. However, more refined post-pgoussg a sliding time window has demonstrated time-varyin
interactions of RN subnetworks and between RNs [43]. Moreover, a component related to dsoavgineyht sleep has been characterized including

connectivity and, consequently, personal cognitive pé‘ofile

|Clinical Application[ Functional connectivity enables not only to explore normal brain functioning but also brain functipaiairients in
neurology (stroke, multiple sclerosis, pain, migraine, amnesia, spinocerebellay Beakinson’s disease, epilepsy, altered consciousness like vegetat
state and coma), neuropsychology (sleep, aging), pharmacology (treatment evaluation, drug alusphthaimology (glaucoma, visual deprivation),

weaker the anticorrelati%pmhe poorer the performance likely due to interference between mind wandering andcataskatétntion. However, some nodes
of the DMN, such as the right posterior cingulate cortex, can collaborate with ECN durmagymrecollection and improve rapidity of the task. Therefare,

neuroplastic changes caused by practice (off-line consolidation, memory trace, andgeroability), respectively [42]. Third, classical studies provite a

http://eproofing.springer.com/books_v2/printpagetoken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.

GEAS and DMN appear to work most often in counter-phase. More precisely, DMN is rataieat to the DAN but can be flexibly correlated, for example,
during goal-directed mental simulation or anticorrelated to ECN. The dorsolatfrahpal region of the ECN can inhibit the medial prefrontal part of the
DMN [38]. It is suggested that the SN may exert a role in switching between theseermallptand externally oriented systems in response to behaviorally

Time-Dependent Properties[ of Resting-State Networks These networks evolve across time. Although RNs are robustly detected in fetus,

it

varies in function of several factors such as open versus closed eyes, mood, drowsindssmtemttaand previous cognitive effort. First, age-dependent

35 weeké In children, bilateral sensorimotor, auditory, primary visual anterior prefrontal, edidlnand lateral parieto-cerebellar networks are the first RN

connectivity is not only influenced by specific mental states, as mentioned above, but alsatidxy giratotor, perceptual, and cognitive tasks. In particular,
more or less transient synchronization may occur between performance-relateddmaiand ECN. DMN exhibits task-induced deactivation and, more

breakdown of DMN connectivity, reduced thalamocortical coherence, and increased salbommtiectivity. In summary, the whole set of RNs is common
{to all subjects; their complex pattern of interactions shaped by experience-depersdieitypiaay reflect individual idiosyncratic functional and structural

ve
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and psychiatry (attention-deficit/hyperactivity disorder, obsessive and compulsiwdediS@urette syndrome, post-traumatic stress disorder, depress
neglect, autism, schizophrenia, bipolar trouble, mild cognitive impairment, dementigdl] as potentially after neurostimulation (TMS, TDS) [44, 45].
can also be used for presurgical planning and postsurgical follow-up helping to localizelyserssorimotor or language) functional areas. This met
offers important clinical possibilities. It can be applied to sedated, unconscious, or uateeatient, especially patients unable to perform task-bas
fMRI. It permits to screen a wide range of functional networks either in an explorabdley(mCA%) or in focal seed-based mode and to determine quali

diagnosis and prognosis and anatomo-clinical correlétions

Effective Connectivity

Effective connectivity can be defir‘ée&t!; the influence that one neural system exerts over another, either at a synatignapék efficacy) or a cortical
level [46]. Thishypothesis-driven approach emphasizes that determining effective connectivitgseqcitusal model of the interactions between the
elements of the neural system of interest. Causal relationships are notliffamehe data but are assumed a priofiMRI and rsfMR| identify statistica
covariation across functionally related neural nodes, they do not provide any information abbaadsakinfluence between these nodes: “does activ
node A directly cause or modulate activation of node B? or, alternatively, “does a third nguehidsize independent nodes A and B?". Effective
connectivity tries to address these important points.

First, tractographymay delineate which nodes are anatomically interconnected — however within theflispisgial resolution and fiber
internodal causality based upon fMRI data have been developed such as dynamic causal iD@Mngt(uctural equation modelinGEM), time series
analyses, and brain perturbation (with transcranial magnetic stimulation, forcesfa7].

DCM roots in the hypothesis that brain can be regarded as a deterministic nonlinear dynamitrapstorming inputs into outputs and taking into

account modulations [48]; DCM models the effects of experimental, external, and magdinlaies on network dynamics. Briefly, the first step of this
method consists in building a biologically plausible neuronal model of interacting brain redgiected &y fMR}l Each of these neural regions is

by a nonlinear differential equatioh= dz/dt = [A +)_ B'.ui +y DJ.z]-] z + C.u which depends on the current state z, the intrinsic internodal coupling
matrix), the transient changes in intrinsic coupling due to jth internal input (B matexgjrect action of external inputs u upon the region (C matrix),
{the D matrix (nonlinear state equation) which encodes how the n regions gate connectionsstertheHowever, only the hemodynamic response
underlied by the neuronal activity is measured using fMRI. Therefore, this neuronal modeermastplemented by a hemodynamic model biophysicz
plausible in terms of vasodilatory signal which induces increased blood flow. This nedodisl changes in blood volume and deoxyhemoglobin (dHb
from which the BOLD signal can be predicted. The aim oiDﬁ‘fM Is to estimate neural (A, B, C, D) and hemodynamic parameters (flow, volume,

such that the modeled and measured BOLD signals are maximally similar. Aftetineaparameters of the neuronal model can be estimated using B
framework. The oversimplification of the anatomical/connectivity architectiutiee neuronal networks constitutes one of the main limitations of this
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method.

is a multivariate methé)vi/hich assigns specific strength (@th coefficient) to anatomical connections linking functionally related brain areas. U
DCM, SEM assumes instantaneous (non-dynamic) interactions and the inputs stoobastknawn. So, SEM models can be considered to be “static
[they model instantaneous interactions between regions and ignore the influence of praemos starrent responses. Path coefficients are computed
minimizing the covariance matrix of the modeled (theoretical) network and the cmeaneatrix of the observed data (BOLD response) — the amount

depends on the anatomical accuracy of the model and on the linear assumption of the change ifigatiscaedl estimates of path coefficients limite
{the hemodynamic level.

Coherence analyéistudieéthe correlation in the frequency domain, using Easirier transform, between BOLD responses of interconnected brain a
This spectral method can also determine the causal directionality by calcliatsigri of the slope of the phase spectrum (for low frequencies), and
inter-areal time lag by the absolute value of the slope. Alternati@enger causality method uses a linear autoregressive prediction claimingtéat c
state of activation of region A, at t, is predicted by a linear combination of its prevates sieasured at (t-nTR). It further hypothesizes that if activat
region A causes activation of region B, then adding the autoregressive model of A to auivesgreds| of B will improve the predictability of B
activation in comparison to the autoregressive model of B alone. Then, the differen@nbateerved data and the predictive model, estimated by th
variance, can be used as a measure of adequacy of the model and, up to some algebraicticamsfbmber-areal causation.

Coherence analysiand Granger causaliit;uffer from several common and specific weaknesses which prevent theiriotilingtVRI [49]. The main
problem relies on the difference between the duration of neuronal processing on the ordisecbnuk, the rate sampling of BOLD data on the order
seconds, and the total duration of BOLD response (20-30 s). Therefore, the DCM method se@sisaperapriate one to characterize causal
directionality between brain regions.

Finally, one last complementary method to test potential causal influence betwedanain areas consists in actively perturbing the functioning of a gi
brain area. Magnetic or electric transcranial stimuléﬁan be used to activate or inhibit a specific brain region and to study the influence of this
perturbation on the activation of interconnected areas

\Graph Theory

Graph theory

Graph theory

has already proven to be applicable to a considerable diversity of complex systems, inclukltg, @ systems, computer circuits, and gene-gene
interactomesComplex network theorys particularly appealing when applied to the study of clinical neuroscience, where mariyeagai emotional
disorders have been characterizediasonnectivity syndromes, as indicated by abnormal phenotypic profiles of anatomical andiendlinonnectivity
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between brain regions. For example, in schizophrenia, a profound disconnection between fromgi@nadi ¢ertices has been suggested to characterize the
brain; in contrast, people with autism may display a complex pattdrypefconnectivity within frontal cortices blaypoconnectivity between the fronta
cortex and the rest of the brain [49].

Graph theoretical analysis is potentially applicable to any scale, mbcdméﬁtglume of neuroscientific data (e.g., diffusion tensor imaging (DTI), diffusjon
spectrum imaging (DSI), EEG, MEG, cortical thickness, resting state, tas&e&MRI) providing new measures of human brain organization in vivo.|It is
conceptually easier to link the brain graphs derived from these different data typeas ethea than it would be if each imaging dataset were described in
fterms of some modality-specific measure of association between regions, eéagrdptc connection probabilities from DSI or correlations between
regional fMRI time series. Facilitation between-modularity translatioesflts can be important for methodological cross-validation and, more

fundamentally, for informing our understanding of how functional networks might interact wihits&rate of a relatively static structural network. For
example, fMRI and DTI brain graphs consistently demonstrate some common global topologetlgs allowing a high efficiency at different spatial and
{temporal scales with a very low wiring and energy cost [50].

We summarize below few of tliepological measures that have been most extensively investigated in the neuroimagtogglite date [50, 51]. Any
‘complex dynamical network will be mathematically described as graphs thaergme®t of n nodes or vertices associated with k connections or

edges/lines between them.

The “small-world” networég the first mathematical model originally described in social networks, combineshé of local clustering among nodes of
{the network and short paths that globally link all nodes of the networks. Small-world orgen{zziny short path lengths, few long path lengths) is
intermediate between the random networks (all nodes are related randomly witbrebaielity for short- and long-distance connections) and the regular
networks or lattices where all nodes are only related to their nearest neighborsliod path lengths, no long path length). Path length is the minimum
number of edges that must be traversed to go from one node to aRatigem and complex networksve short mean path lengths (high global efficiency
of parallel information transfer), whereas regular lattices have long mearepgthd. Efficiency is inversely related to path length but is numerically gasier
[to use to estimate topological distances between elements of disconnectedSgmalptveor|d andefficiency use two metrics: thelustering coefficient (C}
which is a measurement of the efficiency of local connectivity angattd ength (L)i which is a simplified measurement of the global efficiency of
information transfer on the network. These two metrics enable to define the smdllvoperties, in which the network exhibits a clustering coefficien
greater than the clustering coefficient of a random network and a path length about the thenpath length of a random network. The small-world sgalar
dependent on the calculation of a path length can be troublesome for networks that contain one sconoectid nodes. The path length of a
disconnected node is infinity; it cannot transfer information to any other node on the network. lnenamary formalism, thelobal efficiency is
introduced as an alternative metric of global integration that is inversely propottidhalcharacteristics path length of the network, thus allowing
computation of a finite value for graphs with disconnected nodes.

~—+

Many complex networks consist of a number of modules [50]. There are various algorithmsrtizdé ésemodularity of a networé; many of them based
on hierarchical clustering. Each module contains several densely interconnected nodieseared telatively few connections between nodes in different
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of intramodular to intermodular edges. The nodes in any module will be more densely connectedtiveedican to nodes in other modules. The
‘intramodular degree is a measure of the number of connections a node makes with other nodes in the same mquiuteci fidteon coefficient is a
measure of the ratio of intramodular connectivity to intermodular connectivity for eachHnoaléy, these and related metrics can be used to define nT

modules. A brain graph can be subdivided or partitioned into subsets or modules of nodes. In generas, thdéirahthe partition that maximizes the rdtio

http://eproofing.springer.com/books_v2/printpagetioken=K5VhxCwfmJWIHF7gMiBgXzIFCQ.

des as

“connector hubs” with high intermodular connectionspoVincial hubs” with high intramodular connections. Therefore, hubs can be described in terms of
{their roles in a community (modular) structure (cf. Fig. 2.4).
Fig. 2.4

e

Representation of network withodular organization. Provincial hubs are conneataihly to nodes in their own modules, whereas ector hubs a

connected to nodes in other modules

® Connector hub

@ Provincial hub

O Simple nodes

¥ Module
_ -+ Clustering
-~ Path
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Degree and degree distribution indicate the likely presence of network hubs or highly connected nodes. The simplest topolaagoat isethelegree of a
node which is defined as the number of edges emanating from that node. Degree sometitrokeyoadl centrality has been used to discriminate between
nodes in the system that are well connected, i.e., so-¢allez] and nodes that are less well connected or non-hubs. Due to their relatively increased

connectivity, high-degree nodes are likely to play an important role in the system’s dyridmipsobability distribution for nodal degree is tiegree
distribution of the network. Brain graphs generally have heterogeneous or broad-scale degree distrilraing,that the probability of a highly

connected hub is higher than in a comparable random network. Most studies have found that an exponecdity power law is the best form of degree
distributior%to fit to networks based on functional and structural MRI data.

Connectivity degree is one of the most basic and important measures of network analysis. Thekdejre@ode is defined as the number of connectigns
fto that node. Nodes with a high degree are interacting with many other nodes in the network. TH¢ ofegigraph is the average of the degree dflall

nodes in the graph G:

1
K:N%:Ki

The connection strength is a measure quantifying how closely network nodes are connected in terms of showingrshgat their time-course of
activation. The overall connection stren§ths calculated as:

Si == Z KI‘i’j

i£iG

Measures of functional segregation quantify the presence of functionally related, densely interconnected groups of brain regions skclosteis within
[the network. The local (nodal) clustering coeffici€nts defined as the number of existing connections among the node’s neighbors divided by all their

possible connections:

E;
K; (K; —1)/2

Ci =

whereE; is the number of existing connections among the node’s neighbors.

The clustering coefficient of a network is the average of the clustering cadffidiall nodes:
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1
czfﬁ%;@

in which C quantifies the extent of local connectivity of the network.

Measures of functional integration characterize the ability to rapidly combine specialized information fromhiiged brain regions and are commonly
based on the concept of a path, with shorter paths implying stronger potential for integratiorafhpath length; of a node is:

1
Li=—— ) Ly
N-1244

in which Li; is the smallest number of edges that must be traversed to make a connection betweandhoodg. The average inverse shortest path
length is a related measure known as global efficiency of a network.

In terms ofclinical application, Redcay et al. [52], to assess whole-brain network propertigslescents with autism, colleciesting-state functional
connectivity MRI (rs-fcMRI) data from neurotypical adolescents (NT) and adoieswithautism spectrum disorder (ASD). Task-independent studies of
{the resting brain provide a window with which to examine intrinsic functional network orianiZ&ecent findings suggest connectivity differences in
autism with evidence for both hypo- and hyperconnectivity for short- and long-distance connections\ggyaetigion age of the participants.

In this study, the authors used graph theory metriags-6cMRI data with 34 regions of interest (i.e., nodes) that encompass four different functionally
defined networkscingulo-opercular, cerebellar, frontoparietal, and DMN (default mode netwdtdse networks were selected because previous research
with these same networks has demonstrated a developmental pattern of progressisesmeriong-distance connectivity between nodes of the same
network and concurrent decreases in connectivity between anatomically proximal nodisabingisvorks. In addition, functions associated with these
networks have all been implicated in autism. Thus, examining these networks allowsofer rigrous test of the hypothesis of reduced long-distance and
increased local connectivity in autism, across multiple networks that support wamiﬂaidrﬁ%

1%

As mentioned above, graph theory methods can examitteghgical properties of each region within the context of all other regions of interest,
including measures of the integration (global efficiency, path length), segregatidreffimo@ncy, clustering coefficient), and centrality (or betweennes
centrality) of networks. These metrics provide a more robust test of the theory odremhg:€listance and increased local connectivity by testing
differences in measures of whole-brain network integration and segregation.

\" 2

In the Redcay’s work [52], data were analyzed using SPM8 (http://www.fil.ion.ucl.ac.ukepinCONN functional connectivity toolkéox
(https://www.nitrc.org/projects/conn). Thmweighted ROI-to-ROI correlation matrices were first thresholded at aalastof k = 0.15. Cost is a meaSLTe
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of the proportion of connections for each ROI in relation to all connections in the network. Whisregostted across participants, direct comparisons
across groups of network property differences can be made. Small-world propertiegaredoinsthe range of costs 0.05 < k < 0.34, where global

efficiency is greater than that of a lattice graph and local efficiency isegtban that of random graph. A cost threshold of 0.15 has been demonstra[ed to
g

provide a high degree of reliability when comparing session-specific estimateplotiyearetical measures across repeated runs or sessions (e.g.,
efficiency r = 0.95, local efficiency r = 0.9). The specific measures of interestthh@se of integration (global efficiency), segregation (local efficiency

centrality (betweenness centrality). Between-group t-tests were used taearapeorks measures between groups with a FDR correction of p < 0.05.

Global efficiency is calculated as the average of the inverse of the shortelsinggh between each ROI (or node) and all other ROIs. The shortest p

length is defined as the fewest number of connections (or correlations) between two hoslea.rnetwork with high global efficiency would be one in
which nodes are highly integrated, so the path between nodes is consistently short. This(midasmst kept constant) can be thought of as reflecting
global, long-distance connections within the braiocal efficiency is calculated as the average inverse of the shortest pathdetvgeen the neighbors a
any given node (or ROI). In other words, local efficiency measures the extent to which nquhes @fra cluster of locally, interconnected nodes.

Betweenness centrality (measure of centrality) measures the fractibsladrgest path lengths in a network that pass through a given node. Thus, if
is directly connected to many other nodes in the network, it will have a shorter overalhg#thaled function as a hub within and between networks.

Contrary to their hypotheses, Redcay et al. found no differences in measures é@g@lod:xail efficiency. Only betweenness centrality, which indicates the

degree to which a seed (or node) functions as a hub within and between networks, was sigdiffeaatit between groups, and it was greater for
participants with autism for the right lateral parietal (RLatP) seed ddkh only. UsingRLatP region as a seed region, authors demonstrate signific
functional connectivity in the ASD than NT group witkinterior medial prefrontal cortex (aMPFC) using a few cluster correction of p <NO[Qgroup
showed higher connectivity between the RLatP seed and cerebellar tonsils (a regamslyragsociated with the DMN). The author suggests that the
higher betweenness centrality in ASD may be due to greater long-distance connecdhumtyh®i DMN (right lateral parietal-anterior medial prefrontal
cortex). They conclude that greater connectivity within right parietal cortex couldtmtksa functional specialization of this region in ASD.

Machine Learning in Neuroimaging

Machine learningNIL)
Machine learning (ML)

algorithms developeth artificial intelligence and in statistics are increasingly applied to maaging data for automatic and adaptive detection,
classification, and prediction of complex, brain structural and functional patterns [53td@]aReurological and psychiatric standpoint, ML can be
potentially used for image processing (e.g., anatomical segmentation, image i@gjistesion detection, radiomics, diagnosis, and prognostics, while
methods would allow to decode/encode brain states, for instance, in the field of fundameosgierces.

As structural and functional brain images contain a huge number of data (voxels), often noisy altyl spagilated, robust multivariate methods
applicable to high dimensional data space are requested to uncover and to interpret combptixlatemt, highly informative, structure. Milgorithms
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single-subject level. Notwithstanding, ML necessitates large samplesnirigrdata, such as MRI scans, so as to decrease the risk of overfitting (ina
generalize from the data used for training to new data) [54].

“buried” within these same data and how to predict the characteristics of newataggample, ML can be utilized as a classifier segmenting and

in a (semi-)unsupervised manner.

Supervised M., such as a specific type of perceptron catlegport vector machine (SVM) amultilayered perceptron, infers from the training data
including both the input dataand the desired output datathe functiorf(x) =y, which enables to predict the features of new dat@) = y. When the
input data are continuous, this function is tantamount to a regression. Conuersepervised M?.strlves to determine the probability distribution of thg
inputsx, based only on the training dataset. One important example of unsupervised ML consists desgeégdrning algorithms [55], which construc
automatically hierarchical representations of the input intrinsic organizaton,simpler to more complex and abstract concepts, in contrast to super
ML which needs relevant feature extraction by an instructor. Unsupervised, data-drivesivtig has consequently the benefit of (partially) getting ri
any operator dependency.

containing a given number of artificial neurons. Artificial neurons are formal awontath transform the sum of their weighted inputs into an output
y:y = (3 w.x —0), wheref and® denote the activation function such as a logistic sigmoid function and an activation threshld)(oespectively (Fig.
2.5). Artificial neurons are grouped into “juxtaposed” layers: an input layer, one or several laiits, and an output layer. For instance, the output |2
could indicate the probability of an input to fall into a given class. In a feed-forvvaré, Abith neuron is connected to all neurons belonging to the ne
layer, so that activation propagates feed-forwardly from the input layer up to the outpaifterybaving undergone successive nonlinear transformatic
within the hidden layers (Fig. 2.6). The number of hidden layer determines the “depth” of the netveorks@, a lot of ANé\Iarchitectures exist in relati
{to the number of artificial neurons, their activation function, the network “depth,” and the toityeattern (feed-forward, recurrent, or full-connected
networks). Perceptro [re tralned by data inputs and the corresponding computed ou'gpui compared with the deswed outputlhe difference betwee

down to the input Iayer. Stochastlc gradlent descent algorithm is used as the procedarerohienization which determines how much to adjust
iteratively the weights in order to lower the error. A bit more formally, a lossifumeteasuring thm’ can be defined as:= ¥2) (0 - y)2. Then,
minimizing E requires to find the steepest (ideally, the global) minima of the tiegiwh E with respect to the weights min [ 0E/ow] and to iteratively
update these weights, using the gradient desegnt: 1) = w(t) —n.0E/dw, wheren designates the learning rate. The main risk is to fall into a local
minima. Stochastic gradient descent algorithms resort to a certain amount obrse injected in the descent gradient process in order to prevent ghi

potential risk.

ML Brief Overview Putin a nutshell, ML is trained with data so thataklgorithm progressively learns how to identify specific structured pattefns
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are, therefore, particularly well suited to fulfill this task and, contrary to uaieainvestigations, offer the additional possibility to draw inference at thie

Dility to

categorizing discrete data into groups and ascribing new data to their most likely beloaggng o ML algorithm can be trained in either a supervised or
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Fig. 2.5

Artificial neuron. The weighted sum of the n inpljtsZWij)q is transformed by the nonlinear activation fiimie into the jth neuron output:
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y = f(ZWij)q + b), which is sent to all next connected neufdote that b denotes a bias or an activatiorstiulel

X1

Xi <

f

Jth NEURON

Fig. 2.6

& ouputy

y = f (X wiixi+b)

Multilayer perceptron. It is a feed-forward arti€ neural networ§<composed of an input layer, several successiveéemidayers, and an output layer.
Each layer is composed of artificial neurons, tharons of the hidden layers being connected witthalneurons of the previous and of the next layer
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It is noteworthy that the first historical Rosenblatt’'s monolayered perceptroenrapted a linear classifier, whereas later multilayered perceptrons
functioned with nonlinearly separable data.

SVM can be regarded as a linear classifier partitioning a set of training exampe®( vector, into several classgsvell-delineated by a hyperplane [36,
57]. Examplex represent the most relevant features of the raw data retained by an instrutiicfas$ attribution. If we restrict our example to two
classey denoted by -1 and +1, the equation of the boundary between these two classes, equivalent to a line, iK)inew\Ey?r b = Q wherew is the
discriminant vector normal to that line, and the function of decision assigning thetdata corresponding clagss:y = sign (W x + b)e {-1; +1}.
[Moreover, defining optimally the functiog:= f(x) = w' X + b, which requires to minimize the classification error and the model complexity, sagpose
accurately adjust the parametemg, b). This optimization step relies on the maximum-margin approach. The boundary separatigchsdes is the line
bisecting the margin demarcated by the closest points belonging to the opposite cldsgssipairt vectors, characterized By f(x) = wix+Db= -1}
and{xs f(x) = wx+b= +1}(Fig. 2.7). Therefore, the optimizing proceémmly takes into account the support vectors and seeks maximization of the
geometric margin, which is equivalent to minimizlq‘\g”2 under the following constrairy:(wa + b)> 1. Finally, when data are not linearly separable,
some mathematical manipulations, known as Kezrfel trick,” enable to convert easily a nonlinear boundary into a hyperplane by transforminganignline

[the data space into a higher dimensional feature space, without explicitly catrtiatinonlinear mapping. In conclusi®V/M can be used for

classification of linearly and nonlinearly separable data. Since SVM computaliaseid on convex optimization, it is guaranteed to converge to global
minimum. Thus, SVM appears particularly robust against overtraining when few samipigis dfmensional data are process®dM: was successfully

ftested for disease identification and cerebral state classification [®&idikos et al. [59] demonstrated the ability of a nonlinear SVM to distinguish
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cerebral activation patterns in relation with lying and truth-telling.

|Fig. 2.7
lllustration of a support vector machir8\(M).. SVM determines the decision boundary, the linevBich allows to partition the data into two disti

classes, using the support vectors

Y.A

CLASS 2

SUPPORT VECTORS

Unsupervised M. can be performed by artificial neural networks (A%dlﬁmch astacked autoencoders (SAEpnvolutional neural networks (CNNJeep
belief networks (DBN)deep Boltzmann machine, mecurrent neural networks (RNN) [60]. As mentioned above, recent deep-learning algdittan
automatically from the raw data a set of internal and compositional represemntatincreasing abstraction. To achieve this goal, deep learning relies on
multilayered ANNs encompassing an input layer, several hidden layers undergoing unsupeinisgd arfully connected layer, and an output layer. The
hidden layers carry out nonlinear transformations of their inputs and automaticaltt esteaant features in the outputs of their immediately previous
layer. Upstream layers convey more and more complex and abstract charactétisecsmpirical dataset. Endly, a supervised learning using
backpropagating gradient is applied to the whole circuit to fine-tune the network pasaamekéo allow correct classification by comparing the compu|
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of the last hidden layer with the desired output within a loss layer used during the training phase

A trainable autoencodeéﬁ@__ corresponds to a three-layer, feed-forward neural network mapping, determigisticatichastically, an input to an output
with a minimal amount of distortion. In other words, its hidden layer learns how to encode assaupepresentation of the inputs transmitted by the
(visible) input layer, by minimizing the quadratic error, and this latent representaticode, allows the most reliable reconstruction of the inputs by the
decoder layer (Fig. 2.8). Broadly speaking, AE accomplish (unperfect) copying tasks. Impokamiyower dimension than the input (and output) layer
permits the hidden layer to discriminate the most salient characteristiesioput data. AE can, therefore, be used for feature detection and dimension
reduction, and sparse AE behave as classifiers. The computational ability of such Md.aisgmented by hierarchically stacking AE so that the output of
the previousAE; serves as input of the next AE. In case of such SAE, the training procedure is based on aygreatselansupervised pretraining

method that requires to train one layer at a time, the input of the next layer being the outpptedfithus one, using a backpropagating algorithm. A fipal
supervised learning step can be added for improvement of the whole circuit performance.

Fig. 2.8

Autoencoderéﬁ_lf___)_. A (shallow) AE is a three-layer feed-forward netiwencoding the input data in the hidden layetpofer dimension, and decoding
[the corresponding latent representation in thewdugyer
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iICNN constitutes one of the most influential ML devoted to 2-D and 3-D image recognition, and moadygéoégrid-like topological” data. It forms a
subclass of feed-forward multilayered neural network (perceptron). Its atahat@ecludes two types of hidden layers. First, convolution layers act as
simple feature detectors (first hidden layer) and more complex feature combisetiectors (higher layers) applied to the output of the previous layer|(Fig.
2.9). For instance, if the input is an image (voxels), three successive convolutional @yldrdetect, respectively: (1) simple oriented edges; (2) apparent
contours such as lines, curves, or corners; and (3) parts of object. Second, contrary to percmnnrmmcﬁCNN is not connected to all the neurons of the
previous layer. Each neuron of a convolutional layer analyzes a local spatial region ofginesinnat a neuron is linked to a local subset of neurons,

defining its receptor field. The neurons sensitive to the same feature shareg¢heesghtw and realize a spatial paving of the whole incoming data
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volume. They, thus, implement a feature-specific filtering (convolving) with a lel@rkarnel, sliding over the image data and generating feature-specific
activation maps after nonlinear processing by an activation function, such as renedihit. Secondgyooling layers periodically interspaced and

connected with convolution layers yield to subsampling, to “merge semantically seailares into one” [55] and to subsequent translational invariance.
This processing contributes to reduce significantly the computational cost and to avoalrokgrt¥Vith such architecture, CNN is a powerful tool for
object categorization in an image but needs a large sample of training data. In neuroinragotgeBal. [61] successfully segmented lesions of multiple
sclerosis using CNN. And other study pointed out the abili@MN to distinguish resting-state fMRI between normal, mild cognitive impairmenngstie

and Alzheimer disease patients [62], or normal and schizophrenia patients [63].

Fig. 2.9

Schematic representation of a convolutional nemetivork CNN) implementing a representation learning algoritt®NN is composed of the
concatenation of several feed-forwardly connectémtis. Each block comprises a convolution layer goaling layers, which perform feature
extraction and undersampling (for dimensional réidmcand more invariant representation), respebtiigach “deeper” block processes more and more
compressed, complex and abstract conjunction dtifes. The last block of the chain is representea liull-connected network and an output layer
carrying out data classification. Note that a neauio a convolution layer acts as a specific locaatlire detector within its receptive field.
Mathematically speaking, these neurons perform &rsonvolution and afterward a nonlinear procegssuch as linear rectifying, with respect to their
inputs. All the neurons sharing the same featunel the same weights) and whose receptive fieldgpgéther, cover the whole previous input layer
generate activation feature-specific maps. Theegfeach convolutional layer encompasses severairéemapsCNN are particularly well designed for
image analysis and object and pattern recognition
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Otherdeep-learning algorithms are based on variant architectures such as DBN, aistoebestnetwork composed of stacked restricted Boltzmann

speech, or writing). RBM is a two-layer network composed of a visible (input) layer and one laigielelinked by symmetric connectivities, but neuron
belonging to the same layer are not interconnected (Fig. 2.10). Thus, stochastic binary neuronddsrthayier elaborate a latent probabilistic

representation of the data, and, afterward, this later representation is fedrdgokiiva visible layer to construct a generative model of the B
behaves as a stochastic AE. The training algorithm aimed at reducing the diffeteremntibe probability distribution of the reconstructed a
data vectors, by iteratively adjusting the connection weights. Recently, Plis ef defédnstrated that (shallow) DBM and I@Qquivalently identified

resting-state intrinsic brain networks. Suk et al. [65] managed to discriminaiecetmrmal, mild cognitive impairment converter and nonconverter

recruitment and synchronization of neural networks across time.

Fig. 2.10

Restricted Boltzmann machin®RBM).. Shallow RBM is a two-layer neural network compmbsé stochastic neurons distributed in an inpuetagnd

hidden layer and linked by weighted symmetric caiogs. However, there are no intralayer connestibetween neurons. A latent representatic

|the data is computed in the hidden layer, whiclalfynis reconstructed, in a second time, in theuinlayer. RBM implements a probabilistic ene
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machines RBM);, using a contrastive divergence algorithm during the training, or such as RNN capable ofnyeeegeential (temporal) data (language,

S

the original

patients and Alzheimer patients, applying DBM processing to MRI, PET, and biochemacdt datild be also assumed that RNN could capture dynamical

gy-
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statistical model. Therefore, after the training phase, it appears necessaajutite the performance of the algorithm in terms of accuracy, sensitivity,
ability to properly generalize, reproducibility, robustness to noise, and adequate adjastnyper-parameters (i.e., parameters of the network tuned by the
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instructor), for instance, and, among different tested algorithms, to select ththailggenerating the most realistic output. Cross-validation procedures can
be exploited for performance estimation and algorithm selection [57].

ML in Neuroimaging In arecent review of application of ML to structural and functional neuroimaging (MRIERdi&a), Viera et al. [54] have
concluded that ML provides a promising method to precisely classify some neurologic and psyahudes, such as Alzheimer disease, attention-
deficit/hyperactivity disorders, schizophrenia, spinocerebellar ataxia, and témpitepsy, as well as pain [66], and to predict disease state and disease
evolution. They emphasized that deep learning seemed to exhibit better performance th&to®e&ér, further studies with larger cohorts are required,
especially for deep learning. Finally, different ML algorithms can be combined tasectigeir performance and can be applied to multimodal data (images,
biochemical data, clinical data, for instance). For fMRI and, especially, istMIRproves to be efficient to localize and to identify activated networks,|as
well as to differentiate resting-state networks and subtle nonlinear relapisi®tween specific brain areas. However, a clear methodology remains to be
established for secure and efficient application oﬁMIIMRI [67].

\Conclusion and Perspectives in Clinical Neuroimaging

In summary, clinical brain imaging benefits from advanced imaging and post-procesdiogsragveloped in fundamental neuroscience research. Voxel-
based morphometry and measurement of cortical thickness enable to identify and to folloticalpneuroplasticity and atrophy or disease progression,
while tractography deals with white matter and, especially, anatomical. tFA\dRI and rsfMRI detect functional impairments or reconfiguration in specific
ftask-recruited and canonical cerebral networks and can also track time-varyingsahdngetional brain connectivity using time-window analysis, sugh as
windowed Fourier or wavelet transforms. Multiband acquisition allows for actiegsagnal recording with echo time <1 s, improving time resolution jof
fMRI. Advanced mathematical post-processings complement these static or dtraamatomo-functional data by objectivizing and quantifying disease-
related modulatory, causal, and topological alterations. Machine learning and gspemiatentation learning algorithms used in deep learning, applicable
{to structural MRI, fMRI, and rsfMRI, will also allow automatic and accuratetifieation of subtle normal or impaired cerebral patterns.

Moreover, utilization of ultrahigh field (>7 T) would not only increase significantly ap@solution gm) for morphological images but also would
discriminate activation of cortical columns. This high-resolution fMRI would alsmipé&y differentiate feed-forward thalamic activation of layer IV of

{the mesoscopic level, to computation of the functional unit of the neocortex and to the top-down andatthrences upon this intracolumnar
information processing.
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