M. E. Raichle, Behind the scenes of functional brain imaging: a historical and physiological perspective, Proc Natl Acad Sci, pp.765-772, 1998.

E. Hillman, Coupling mechanism and significance of the BOLD signal: a status report, Annu Rev Neurosci, vol.37, pp.161-181, 2014.

R. B. Buxton, The physics of functional magnetic resonance imaging (fMRI), Rep Prog Phys, vol.76, issue.9, p.96601, 2013.

C. T. Drake and C. Iadecola, The role of neuronal signaling in controlling cerebral blood flow, Brain Lang, vol.102, pp.141-152, 2007.

Y. N. Tallini, J. F. Brekke, B. Shui, R. Doran, S. Hwang et al., Propagated endothelial Ca waves and arteriolar dilation in vivo, Circ Res, vol.101, pp.1300-1309, 2007.

S. P. Marelli, Mechanisms of endothelial P2Y -and P2Y -mediated vasodilation involve differential [Ca ]i responses, Am J Physiol Heart Circ Physiol, vol.28, pp.1759-1766, 2001.

A. Fergus and K. S. Lee, GABAergic regulation of cerebral microvascular tone in the rat, J Cereb Blood Flow Metab, vol.17, pp.992-1003, 1997.

J. Li and C. Iadecola, Nitric oxide and adenosine mediate vasodilatation during functional activation in cerebellar cortex, Neuropharmacology, vol.33, pp.1453-1461, 1994.

P. J. Magistretti and L. Pellerin, Cellular bases of brain metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes, Cereb Cortex, vol.6, pp.50-61, 1996.

P. J. Magistretti and L. Pellerin, Cellular bases of brain metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes, Philos Trans R Soc Lond Ser B Biol Sci, vol.354, pp.1155-1163, 1999.

S. Ogawa, R. S. Menon, D. W. Tank, S. G. Kim, H. Merkle et al., Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model, Biophys J, vol.64, issue.3, pp.803-812, 1993.

R. B. Buxton, V. E. Griffeth, A. B. Simon, and F. Moradi, Variability of the coupling of the blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity, vol.8, p.139, 2014.

T. L. Davis, K. K. Kwong, R. M. Weiskoff, and B. R. Rosen, Calibrated functional MRI: mapping the dynamics of oxidative metabolism, Proc Natl Acad Sci U S A, vol.95, issue.4, pp.3036-3044, 1998.

N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, Neurophysiological investigation of the basis of the fMRI signal, Nature, vol.412, pp.150-157, 2001.

J. Wang, G. K. Aguirre, D. Y. Kimberg, A. C. Roc, L. Li et al., Arterial spin labeling perfusion fMRI with very low task frequency, Magn Reson Med, vol.49, issue.5, pp.796-802, 2003.

J. J. Chen, J. K. Wang, and D. , Characterizing resting-state brain function using arterial spin labeling, Brain Connect, vol.5, issue.9, pp.527-542, 2015.

R. B. Buxton, Beyond BOLD correlations: a more quantitative approach for investigating brain networks, J Cereb Blood Flow Metab, vol.36, issue.3, pp.461-462, 2016.

W. Dai, G. Scheidegger, R. Alsop, and D. C. , Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI, J Cereb Blood Flow Metab, vol.36, issue.3, pp.463-473, 2016.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn Reson Med, vol.34, issue.4, pp.537-541, 1995.

D. A. Gusnard and M. Raichle, Rearching for a baseline: functional imaging and the resting human brain, Nat Rev Neurosci, vol.2, pp.685-694, 2011.

E. M. Raichle, The restless brain: how intrinsic activity organizes brain function, Philos Trans B, vol.370, pp.1-11, 2015.

M. D. Fox and M. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nat Rev Neurosci, vol.8, pp.700-711, 2007.

D. Mantini, M. G. Perrucci, D. Gratta, C. Romani, G. L. Corbetta et al., Electrophysiological signatures of resting state networks in the human brain, Proc Natl Acad Sci U S A, vol.104, pp.13170-13175, 2007.

M. J. Brookes, M. Woolrich, H. Luckhoo, D. Price, J. R. Hale et al., Investigating the electrophysiological basis of resting state networks using magnetoencephalography, Proc Natl Acad Sci U S A, vol.108, issue.40, pp.16783-16788, 2011.

A. Shmuel and D. A. Leopold, Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest, Hum Brain Mapp, vol.29, issue.7, pp.751-761, 2008.

. Da and A. Maier, Ongoing physiological processes in the cerebral cortex, NeuroImage, vol.62, pp.2190-2200, 2012.

G. Greco and M. Corbetta, The dynamical balance of the brain at rest, Neuroscientist, vol.17, pp.107-123, 2011.

D. S. Margulies, J. Böttger, X. Long, Y. Lv, C. Kelly et al., Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity, MAGMA, vol.23, pp.289-307, 2010.

C. F. Beckmann, Modelling with independent components, NeuroImage, vol.62, pp.891-901, 2012.

V. D. Calhoun, J. Liu, and T. Adali, A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic and ERP data, NeuroImage, vol.45, pp.163-172, 2009.

Q. Zou, C. Zhu, Y. Yang, X. Zuo, X. Long et al., An improved approach to detection of amplitudes of lowfrequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF, J Neurosci Methods, vol.172, issue.1, pp.137-141, 2008.

Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, Regional homogeneity approach to fMRI data analysis, NeuroImage, vol.22, issue.1, pp.394-400, 2003.

R. E. Kelly, G. S. Alexopoulos, Z. Wang, F. M. Gunning, C. F. Murphy et al., Visual inspection of independent components: defining a procedure for artifact removal from fMRI data, J Neurosci Methods, vol.189, pp.233-245, 2010.

K. Kalcher, W. Huf, R. N. Boubela, P. Filzmoser, L. Pezawas et al., Fully exploratory network independent component analysis of the 1000 functional connectomes database, Front Hum Neurosci, vol.6, pp.1-11, 2012.

C. Habas, N. Kamdar, D. Nguyen, K. Prater, C. F. Beckmann et al., Distinct cerebellar contribution to intrinsic connectivity networks, J Neurosci, vol.29, issue.26, pp.8586-8594, 2009.

A. C. Chen, D. J. Oathes, C. Chang, T. Bradley, Z. Zhou et al., Causal interactions between fronto-parietal central executive and default-mode networks in humans, Proc Natl Acad Sci U S A, vol.110, issue.49, pp.19944-19949, 2013.

M. F. Fox, M. Corbetta, A. Z. Snyder, J. Vincent, and M. Raichle, Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems, Proc Natl Acad Sci U S A, vol.103, pp.10046-10051, 2006.

G. Hoff, M. P. Van-de-heuvel, M. Benders, K. J. Kersbergen, and L. De-vries, On the development of functional brain connectivity in the young brain, Front Hum Neurosci, vol.7, p.650, 2013.

|. Proofing and . Springer,

D. Antonenko and A. Flöel, Healthy aging by staying selectivity connected: a mini-review, Gerontology, vol.60, pp.3-9, 2014.

C. Kelly and F. X. Castallanos, Strengthening connections: functional connectivity and brain plasticity, Neuropsychol Rev, vol.24, pp.63-76, 2014.

E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele et al., Tracking whole-brain connectivity dynamics in the resting state, Cereb Cortex, vol.24, issue.3, pp.663-676, 2014.

M. D. Fox and M. Greicius, Clinical applications of resting state functional connectivity, Front Syst Neurosci, vol.4, pp.1-13, 2010.

C. Rosazza and L. Minati, Resting-state brain networks: literature review and clinical applications, Neurol Sci, vol.32, pp.773-785, 2011.

K. J. Friston, Functional and effective connectivity: a review, Brain Connect, vol.1, issue.1, pp.13-36, 2011.

W. D. Penny, K. E. Stephan, A. Mechelli, and K. J. Friston, Modelling functional integration: a comparison of structural equation and dynamic causal models, NeuroImage, vol.23, issue.1, pp.264-274, 2004.

K. J. Friston, L. Harrison, and W. Penny, Dynamic causal modelling, NeuroImage, vol.19, issue.4, pp.1273-1302, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00388972

B. Ed and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat Rev Neurosci, vol.10, pp.186-198, 2009.

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses and interpretations, NeuroImage, vol.52, pp.1059-1069, 2010.

M. Guye, G. Bettus, F. Bartolomei, and P. J. Cozzone, Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks, MAGMA, vol.23, pp.409-421, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00617802

E. Redcay, J. M. Moran, P. L. Mavros, H. Tager-flusberg, J. Gabrieli et al., Intrinsic functional network organization in highfunctioning adolescents with autism spectrum disorder, Front Hum Neurosci, vol.7, issue.573, pp.1-11, 2013.

S. Wang and R. M. Summers, Machine learning and radiology, Med Image Anal, vol.16, issue.5, pp.933-951, 2012.

S. Vieira, W. Pinaya, and A. Mechelli, Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications, Neurosci Behavl Rev, vol.74, pp.58-75, 2017.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, pp.436-444, 2015.

M. N. Wernick, Y. Y. Yang, J. G. Braaankov, G. Yourganov, and S. C. Strother, Machine learning in medical imaging, IEEE Signal Process Mag, vol.27, issue.4, pp.25-38, 2010.

S. Lemm, B. Blankertz, T. Dickhaus, and K. Müller, Introduction to machine learning for brain imaging, NeuroImage, vol.56, pp.387-399, 2011.

D. D. Cox and R. L. Savoy, Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage, vol.19, issue.2, pp.261-270, 2003.

C. Davatzikos, K. Ruparel, Y. Fan, D. Shen, and M. Acharyya, Classifying spatial patterns of brain activity with machine learning methods: application to lie detection, NeuroImage, vol.28, issue.8, pp.663-668, 2005.

D. Shen, G. Wu, and H. Suk, Deep learning in medical images analysis, Annu Rev Biomed Eng, vol.19, pp.221-248, 2017.

T. Brosch and R. Tam, Alzheimer's Disease Neuroimaging Initiative (2013) Manifold learning of brain MRIs by deep learning, International conference on medical image computing and computer-assisted intervention, pp.633-640

H. Suk, S. Lee, and D. Shen, Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis, NeuroImage, vol.101, pp.569-582, 2014.

J. Kim, V. D. Calhoun, E. Shim, and J. Lee, Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia, NeuroImage, vol.124, pp.127-146, 2016.

S. M. Plis, D. R. Hjelm, R. Salakhutdinov, E. A. Allen, H. Bockholt et al., Deep learning for neuroimaging: a validation study, Front Neurosci, vol.8, p.229, 2014.

H. Suk, S. Lee, and D. Shen, Latent feature representation with stacked auto-encoder for AD/MCI diagnosis, Brain Struct Funct, vol.220, issue.2, pp.841-859, 2015.

M. J. Rosa and B. Seymour, Decoding the matrix: benefits and limitations of applying machine learning algorithms to pain neuroimaging, Pain, vol.155, pp.864-867, 2014.

F. Pereira, T. Mitchell, and M. Botvinick, Machine learning classifiers and fMRI: a tutorial overview, NeuroImage, vol.15, issue.1, pp.199-209, 2009.

M. W. Self, T. Van-kerkoerle, R. Goebel, and P. R. Roelfsema, Benchmarking laminar fMRI: neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex, pp.30517-30524, 2017.

|. Proofing and . Springer,