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A B S T R A C T

               Great progress has been made in understanding how people make nancial decisions. However, there is littlefi

                research on how people make health and treatment choices. Our study aimed to examine how participants weigh
              bene ts (reduction in disease progression) and probability of risk (medications' side e ects) when making hy-fi ff

            pothetical treatment decisions, and to identify the neural networks implicated in this process.
            Fourteen healthy participants were recruited to perform a treatment decision probability discounting task

              using MRI. Behavioral responses and skin conductance responses (SCRs) were measured. A whole brain analysis
             were performed to compare activity changes between "mild" and "severe" medications' side e ects conditions.ff

              Then, orbitofrontal cortex (OFC), ventral striatum (VS), amygdala and insula were chosen for e ective con-ff

 nectivity analysis.
                Behavioral data showed that participants are more likely to refuse medication when side e ects are high andff

               e cacy is low. SCRs values were signi cantly higher when people made medication decisions in the severeffi fi

                compared to mild condition. Functionally, OFC and VS were activated in the mild condition and were associated
               with increased likehood of choosing to take medication (higher area under the curve "AUC" side e ects/e cacy).ff ffi

            These regions also demonstrated an increased e ective connectivity when participants valued treatment bene-ff

                 fits. By contrast, the OFC, insula and amygdala were activated in the severe condition and were associated with
            and increased likelihood to refuse treatment. These regions showed enhanced e ective connectivity whenff

                participants were confronted with increased side e ects severity. This is the rst study to examine the behavioralff fi

      and neural bases of medical decision making.

 1. Introduction

         Important decisions are often made that rely on probabilistic com-
          parisons of uncertain costs and bene ts. Great progress has been madefi

         in understanding how people make nancial decisions [ ]. Yet, therefi 1 4–

          is relatively little research on how people make health and treatment
        choices [ , ]. Behavioral economics o ers a methodology and per-5 6 ff

       spective for quantitatively studying and understanding health decisions
        [ ] using economic principles such us probability discounting . For7 “ ”

         example, in recent studies, patients with multiple sclerosis (MS) in-
         dicated their likelihood of taking medications that had speci ed e -fi ffi

           cacies (i.e., bene ts) and risks of side e ects (i.e., risks) [ , ]. Patientsfi ff 8 9
        indicated systematically lower likelihoods of taking medications as the

          e cacy declined and the risks of side e ects increased. These treatmentffi ff

      decision patterns were well-described by probability discounting
          models that are often used to describe choices regarding money [ , ]10 11

        and other commodities [ ]. Moreover, these choice patterns were10 13–

      signi cant predictors of patients adherence status [ ].fi ’ 8
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       Understanding how patients make treatment decisions has sub-
          stantial public health implications. As many as 50% of patients with

       chronic disease decline or prematurely discontinue prescribed treat-
         ment regimens even with highly e cacious medications. As a result,ffi

       the World Health Organization concluded that improving treatment
        adherence would improve worldwide health more than most pharma-

       cologic advances [ ]. Health researchers frequently use bio-psycho-14
        social theoretical models to better understand human behavior. Despite

         this, most adherence and treatment decision models rely exclusively on
          psychological or social constructs and very little is known about the

         neural mechanisms of treatment choice and adherence. Using a Treat-
         ment Decision Making fMRI Paradigm and existing literature that uses

          fMRI to examine brain mechanisms of risk and reward, the current
          study tested a neural model of hypothetical treatment choice in healthy

        adult participants. Gaining this initial understanding of the neural
          mechanisms of treatment choice may provide insights that can be ap-

       plied to improve treatment adherence in chronic disease.
         Decision neuroscience can be used to help understand how di erentff

         brain regions work together to evaluate and act upon environmental
        stimuli. Many studies implicate reward representation [ , ] and risk15 16

         processing [ , ] brain networks, and have investigated the role of1 2
       emotion [ ] when people make monetary decisions. Moreover,17 19–

       discounting studies have implicated consistent neural circuitry for
       monetary and non-monetary rewards [ , ]. While several di erent20 21 ff

             brain regions have been shown to be involved in risk and reward, to the
            best of our knowledge no study has examined the roles of risk, reward

        and emotions in medical treatment decisions. In particular, functional
        connectivity between these brain regions has not been examined.

        Adapting a behavioral economic model from our previous research
          [ , , ], the present study aimed to identify how people weigh the8 9 22

          probability of bene ts (i.e., e cacy) and risks (i.e., side e ects) whenfi ffi ff

         deciding whether to take an hypothetical medication, and to examine
         the neural and a ective mechanisms implicated in such treatment de-ff

cisions.
          We hypothesized that: participants would be more likely to dis-1)

          count treatment bene ts when confronted with an increased risk of sidefi

          e ects. Because emotions play a crucial role in decision makingff 2)

       [ ], we predicted increased skin conductance responses (SCRs)17 19–

       when participants were confronted with decisions involving severe
         medication side e ects compared to mild medication side e ects.ff ff 3)

           Because the OFC and the VS are implicated in the representation of
    reward anticipation and processing [ ,15 16    ], we anticipated increased

activity        in these areas among participants who di erentially valueff

        treatment bene ts. Moreover, because animal and human studies pro-fi

       vide evidence that adaptive decision-making and related psychological
       processes (e.g., reward valuation, anticipation, and motivation) are

          mediated through direct interactions between two key nodes of a pos-
         ited reward circuit , VS and OFC [ , ], we hypothesized increased“ ” 23 24

        connectivity between OFC-VS when people were making decisions in-
        volving mild medication side e ects compared to severe medicationff

         side e ects. Finally, OFC, insula and amygdala have reciprocalff 4)

        anatomical connections, and are implicated in risk based decision-
        making. Consequently, we predicted increased activity in these regions

         when participants were confronted with more severe side e ect pro lesff fi

        and an increased e ective connectivity between OFC-insula and OFC-ff

         amygdala in the severe medication side e ects condition when com-ff

      pared to mild medication side e ect condition.ff

   2. Materials and methods

 2.1. Participants

          Fourteen healthy volunteers, (7 males and 7 females), from 18 to
           29 years (average age = 23.50; standard deviation = 3.75), with mas-

        ter s degrees, right-handed, free of neurological disorders, not taking’

           medications known to alter brain activity, and with no history of drug

          or alcohol abuse, participated in the study. Participants gave their in-
        formed, written consent and performed a hypothetical treatment deci-

    sion making task during fMRI.

  2.2. fMRI paradigm

         The fMRI paradigm was adapted from a probability discounting task
           we have used in our previous research on patient treatment choice and

       adherence [ , , ]. We employed an event-related decision making8 9 22
         paradigm to evaluate treatment decision making in healthy adult par-

        ticipants. The instructions were clearly explained before starting the
          MRI paradigm and participants were asked to they had multipleimagine

           sclerosis (MS). We chose MS because it is a relatively common, chronic
        disease a ecting adults that requires participants to take medicationsff

           that have varying risk and reward pro les. We described the disease tofi

            the participants, how it progresses, as well as the impact of the disease
           on health and overall quality of life. We also explained that treatments

          reduce the disease activity, but may also have unwanted side e ects.ff

         Side e ect severities were then described to participants using de ni-ff fi

        tions derived from adverse event reporting guidelines. Medication ef-
          ficacies were described as the typical percent reduction in disease ac-

         tivity. Our reliance on a hypothetical choice paradigm rests upon
         previous work showing that hypothetical choices can provide a pre-

        liminary understanding of the neural underpinnings of how people
        weigh risks and bene ts when making real-world treatment decisions.fi

           Prior studies provide evidence for the validity and the e cacy of si-ffi

   milar hypothetical procedures [25 –28].
         The functional MRI paradigm presented a series of scenarios asking

          participants if they would take medications with a given probability of
           side e ects (1%, 5%, 16%, 38%, 64%, 84%, 95%, 99.9%) and reportedff

          medication e cacies (1%, 5%, 16%, 38%, 64%, 84%, 95%, 99.9%). Inffi

           total, participants were presented with 64 (8 × 8) choice scenarios for
             each of possible mild, moderate and severe side e ects (3 × 64 = 192ff

         total choices). The scenarios were randomly intermixed over the task.
            We chose this broad range of values to be consistent with the real-world

         risk/bene t ratios of treatment and to ensure that participants wouldfi

        demonstrate su cient variability in their responses for the proposedffi

 MRI analyses.
         Two sessions of 96 choices were presented. Each session lasted

         about 15 min. We divided the paradigm into two counterbalanced
            sessions in order to reduce any e ects of fatigue on brain activation. Weff

           also included this break because we hope to further this research in
        clinical populations who may have di culty engaging in experimentsffi

          for sustained periods of time. There were no response time constraints.
          We chose not to include response constraints so that participants could

        fully analyze each risk/bene t scenario before making a treatmentfi

        decision. When participants responded (made a choice), they proceeded
           directly to the next scenario. There was no jitter introduced in the

       experimental design. However, a su cient degree of variabilityffi

         within subject was recorded (Mean = 5.60, Range = 4.18 7.98;–

      Mean SD = 3.15, Range = 2.0 3.8).–

         Participants were asked to respond as rationally as possible (without
          any time constraint) to the following question: would you take this“

        medication? . Participants were presented with a binary choice (yes/”

         no) indicating whether they would take medication with each risk/
          bene t ratio by using a 2 button response pad ( ).fi Fig. 1

    2.3. Behavioral responses and analysis

       Each participant s behavioral responses were aggregated for ana-’

           lysis in two ways: 1) Choices at all eight medication e cacies wereffi

           collapsed at each side e ect probability to examine e ects of side e ectff ff ff

         probability (x-axis) on choices to take medications (i.e., number of
         “ ”yes responses / the eight medication e cacies; y-axis), and 2)ffi

           Choices at each of the eight side e ect probabilities were collapsed atff

         each e cacy to examine e ects of mediation e cacy (x-axis) onffi ff ffi



           choices to take medications (i.e., number of yes responses / the eight“ ”

   side e ect probabilities; y-axis).ff

        Once aggregated, area under the curve (AUC) was calculated
           showing the main e ects of side e ect probability and e cacy at eachff ff ffi

           of our three side e ect severities. Area under the curve is frequentlyff

          used [ , ] to quantify discounting data because it provide a straight29 30
          forward measure of discounting that is not linked to any theoretical

        framework [ ]. Moreover, AUC provides a single number representing31
        the entire discounting pattern, allowing analysis of relations between

         these patterns of behavioral economic decision making and neural ac-
          tivation. The obtained AUC values represent a proportion on a range

           between 0.0 and 1.0 where larger AUC values are indicative of slower
           or no discounting and lower AUC values mean greater levels of dis-

counting.
         Area under the curve was calculated using the trapezoid method

   [ ] using the formula:31
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 where x2          is the larger x-axis value for each trapezoid, and x 1  is the
       smaller x-axis value for each trapezoid and y1  and y 2    are the y values

          that correspond to those x coordinates. When calculating AUCs for side
          e ects (at each side e ect severity), the side e ect probabilities wereff ff ff

            used for the x axis (with the percent yes corresponding to that prob-
         ability being the corresponding y value), whereas probability of e cacyffi

             was used as the x axis for AUCs describing e cacy (at each side e ectffi ff

          severity). Because the AUC values are calculated on a within subject
            basis, and are normally distributed, 2 (e cacy vs. side e ect) x 3 sideffi ff

         e ect severity), a repeated measures ANOVA was used to determineff

          main e ects of side e ect severity and side e ect vs. e cacy.ff ff ff ffi

    2.4. Skin conductance responses measurements

       Skin conductance responses (SCRs) were recorded continuously and
          simultaneously during the MRI task. SCRs were sampled at 200 Hz

         using the Biopac (Goleta, CA) MP150/ GSR100C system, with Ag AgCl–

          electrode positioned on the distal ( rst) phalanges of the index andfi

         middle nger of the non-dominant hand and contact was facilitatedfi

  with electrodermal GEL101.
        The SCRs data were analyzed using AcqKnowledge 4.1.0 software

          for the MP150 system (Biopac system, Inc., Goletta, CA, USA). Data
        analysis procedures were conducted as described in the AcqKnowledge

        software manual. Anticipatory SCRs were measured, and the time
            window assessing the anticipatory SCRs was set to 5 s before a decision

            to allow SCRs to return to baseline, in accordance with Bechara et al.
         [ ] and Katrin et al.[ ]. Responses were measured in microSiemens32 33

       [ S] and threshold was set to 0.1μ μS [ 34].

   2.5. fMRI data acquisition

           All MRI sessions were performed in the clinical MR imaging unit of
       René-Dubos Hospital center, Pontoise, France. Neuroimaging data were

        acquired with 1.5-Tesla, whole-body MRI system equipped with Signa
        head volume coil (MR450 magnet, General Electric Medical System,

       Milwaukee, WI). Functional images with BOLD contrast enhancement
        were acquired for each participant. Single-shot EPIs were acquired

          using a typical T2*-weighted gradient-echo sequence. Total of 2 × 310
           EPI volumes (TR/TE = 3000/44 ms; ip angle = 90 degrees; ma-fl

        trix = 64*64; FOV = 240 × 240 mm 2      ) were obtained for both experi-
            mental runs performed at the beginning and at the end of the session,

         using forty four, 3.75-mm thick axial slices; isotropic voxel vo-
   lume = 52.73 mm 3       . For structural images, conventional 3D imaging

           used an FSPGR BRAVO sequence (matrix: 256 × 256; ip angle: 12°;fl

       TR/TE: 8.6/3.3 ms; FOV: 240 × 240 mm 2       ; 168 slices, 1 mm thick). We

     Fig. 1. Treatment decision making fMRI

      paradigm. A series of scenarios were pre-
     sented asking about a participant s likelihood’

      of taking medications when the probability of
     side e ects and reported medication e caciesff ffi

     varied. Participants where then presented with
     a binary choice (yes/no) indicating whether

      they would take medication with each risk/
        bene t ratio by using a 2 button response pad.fi



         used a coronal-plane, perpendicular to the dominant eld gradient, andfi

            a small voxel size to reduce the intra-voxel dephasing artifact due to the
       susceptibility-induced magnetic eld in homogeneities, present in thefi

      vicinity of amygdala and orbitofrontal area [ ].32

     2.6. Image preprocessing and SPM analyses

        Image processing and data analysis were performed using Statistical
    Parametric Mapping SPM12 ( ). Forhttp://www. l.ion.ucl.ac.uk/spm/fi

          each participant, and for T1 equilibrium, the rst four volume scansfi

          were discarded. All EPI volumes were corrected to adjust for within-
          volume time di erences and then realigned with the last volume toff

        correct for head movements. Functional scans were then spatially
         normalized against the standard, stereotactic space of the MNI. Spatial

          smoothing was performed with an 8 mm full width half maximum
        Gaussian kernel. Hemodynamic responses were modeled as a canonical

     HRF convolved with a synthetic HRF.
          A whole brain analysis was performed using a general linear model

                          Fig. 2. The mean percent of yes responses at each side e ect probability (left gures) and the percent yes responses at each percent e cacy (right gures) for“ ” ff fi “ ” ffi fi

                    questions involving mild (top graphs), moderate (middle graphs) and severe (bottom graphs) side e ects. Error bars show the between subject SEM.ff



        (GLM) approach [ ]. For each participant, the motion parameters35
           were included in the GLM as regressors and brain activation was ex-

         amined for the contrast mild compared to severe and vice-versa.“ ”

          Regressors of interest were created by convolving a delta function re-
          presenting the onset time of each scenario within each condition (mild

            and severe) with a canonical HRF. Onset time was de ned as the trialfi

    onset for the stimulus presentation.
        A single-subject, xed-e ect model was created for each individualfi ff

       participant, in order to perform the condition-based random-e ectsff

           analysis. Results were declared signi cant at the peak level ( < 0.05fi p

      corrected for multiple comparisons, family-wise error (FWE)).
      Both brain activation changes and psychophysiological interaction

       (PPI) analysis were performed within the same dataset.

      2.7. Percent signal change and correlational analysis

          Percent signal change was measured on the mild and severe con-
          ditions for each subject and each region using the MarsBar toolbox

         (release 0.44). Extraction of the weighted mean signal was performed
         separately for each area. Correlational analysis of the percentage of

            BOLD signal change with AUC for each level of side e ect severity (mildff

          and severe) was performed for each participant within the VS, insula,
        amygdala and OFC as ascertained by the second-level random-e ectff

       analysis. Results were corrected for multiple comparisons using
 Bonferroni adjustment.

   2.8. Psychophysiological interaction analysis

       During a PPI analysis possible interactions between regression
            slopes of di erent brain areas can be signi cantly tested as a measure offf fi

  e ective connectivity [ ].ff 36
             The OFC served as the seed or hub region for all PPI analyses. This

        region was chosen because it has reciprocal anatomical connections
            with the VS, amygdala [ ] and insula [ ] and is implicated in reward16 37

       anticipation as well as in risk processing [ , , ].15 16 38
         Anatomical masks of the right OFC, bilateral insula, the right

          amygdala and the right VS were created using the Automated anato-
          mical labeling (aal) atlas in the SPM Wake Forest University (WFU)

    PickAtlas toolbox ( PickAtlas, ver-http://fmri.wfubmc.edu/software/
           sion 2.5). The OFC mask included the superior, middle and medial parts

            of OFC, and the VS mask included the caudate and the putamen as
         de ned in the aal atlas in the WFU PickAtlas toolbox.fi

        Extracted haemodynamic time series from seed regions were de-
       convolved and the resulting neuronal time series (physiological

          variable) were combined with the cue onset times for each stimulus
          presented under the mild side e ect and severe side e ect stimulusff ff

       condition (psychological variables) to derive the interaction term
          (source signal * experimental context). To test for di erences in re-ff

         gression slopes between the two experimental conditions, a GLM was
        generated with this interaction term as the explanatory variable

    (SPM12 Manuel, chapter36, ). Thehttp://www. l.ion.ucl.ac.uk/spm/fi

         resulting individual t-contrast images were entered into a random ef-
           fects group analysis and tested for statistical signi cance at p < 0.05fi

(FWE-corrected).

 3. Results

  3.1. Behavioral data

           Fig. 2 shows the proportion of yes responses at each side e ect“ ” ff

          probability (left column) and at each level of e cacy (right column)ffi

           when the side e ects were mild (top row) moderate (middle row) andff

           severe (bottom row). As can be seen, the proportion of yes responses“ ”

          decreased as a function of both increasing side e ect probability andff

        decreasing e cacy. Moreover, the overall percent of yes responsesffi

         decreased as side e ects became more severe. When summarized asff

         AUC ( ), these side e ect severity-based decrements in willingnessFig. 3 ff

           to take medications did not di er by side e ect vs. e cacy AUCs.ff ff ffi

         A repeated measured ANOVA showed a signi cant main e ect offi ff

             side e ect severity (< 0.0001), but not side e ect vs e cacy ( = .73)ff ff ffi p

     nor an interaction ( = .91).p

  3.2. SCRs results

        SCRs values were signi cantly higher when people made medica-fi

          tion decisions in the severe side e ects condition compared with mildff

     side e ects condition ( < 0.01).ff p

     Signi cant negative correlations between anticipatory SCRsfi

            (Mean = 1.42, SD = 0.62) and AUC side e ects (Mean = 0.64;ff

             SD = 0.16; r = 0.84 at < 0.05) and between anticipatory SCRs− p

               /AUC e cacy (Mean = 0.62; SD = 0.16; r = 0.69 at < 0.05) wereffi − p

       recorded in the severe condition. Surprisingly, signi cant negativefi

          correlations between anticipatory SCRs (Mean = 0.49; SD = 0.26) and
     AUCs side e ects (r =ff −    0.69 at <p    0.05), and between anticipatory

             SCRs/AUCs e cacy (r = 0.67 at < 0.05) were also observed in theffi − p

 mild condition.

  3.3. Brain activation

        When compared to the severe side e ects condition, participantsff

          making decisions in the mild side e ects condition had increased acti-ff

            vation within the OFC (BA11) and the VS at < 0.05 (FWE-corrected)p

          ( , ). When compared to the mild side e ect condition,Table1 Fig. 4 ff

        participants making decisions in the severe condition had increased

             Fig. 3. Mean area under the curve (AUC) of side e ects and e cacy probabilityff ffi

        at each side e ects severities (mild, moderate and severe).ff

 Table 1

            Results of main activated regions for the contrasts mild > severe and se-“ ” “

  vere > mild .”

      Regions Side BA MNI Coordinates t P(FWE)

x y z

   Mild Severe contrast>
       VS Right * 21 14 5 3.57 0.024−

       OFC Right 11 24 44 11 3.25 0.040−
   Severe Mild contrast>

       Insula Right 13 42 34 19 4.25 0.006−
      Left 13 45 8 5 3.17 0.042− −

       Amygdala Right * 27 4 11 3.23 0.038− −
       Thalamus Right * 12 10 4 3.42 0.027−

       OFC Right 47 21 26 2 3.13 0.044−



         activation in the OFC (BA47), amygdala, insula and thalamus at
       p < 0.05 (FWE-corrected) ( , ).Table 1 Fig. 4

           3.4. Correlational results of BOLD signal change with AUC side e ects /ff
e cacyffi

           Fig. 5 shows the relation between AUCs (y-axis; based on side e ectff

        probability (open circles) and e cacy (closed circles) and percentffi

           signal change (x-axis) in OFC (top row), VS (second row), insula (third
          row) and Amygdala (bottom row) when side e ects were mild (leftff

     column) versus severe (right column) (Pearson ’s r ; Table2).
       Signi cant positive correlations between AUCs and percent signalfi

           change in the OFC and VS were observed, particularly when the side
         e ects were mild. These correlations became less pronounced in theff

        severe side e ect condition. By contrast correlations between percentff

          signal change in insula and amygdala and AUCs were generally nega-
          tive, and became more pronounced in the severe side e ect conditionff

 ( ).Fig. 5

  3.5. PPI results

         During processing of the mild side e ect condition, PPI resultsff

         showed increased e ective connectivity between the OFC and VS asff

            compared to the severe side e ect condition. The peak voxel of the VSff

               was found at x = 14, y = 23, z = 2, < 0.05 (FWE-corrected).− p

             These voxels were tested and found to be more active during the mild vs
   severe condition ( ).Fig. 6

       However, PPI analysis showed increased e ective connectivity be-ff

           tween the OFC and amygdala and between the OFC and insula when
           subjects engaged in the severe side e ect condition. The peak voxel offf

                 the amygdala was found at x = 21, y = 2, z = 15, < 0.05 (FWE-− − p

              corrected) ( ). The peak voxel of the insula was found at x = 44,Fig. 6
            y = −2, z = 8, < 0.05 (FWE-corrected). These voxels were found top

            be more active during PPI analyses of the severe versus mild side e ectff

  condition ( ).Fig. 6

 4. Discussion

           The aim of this study was to examine the neural underpinnings of
         how healthy adults weigh risks (side e ects) and bene ts (eff fi ffi cacy)

when   making treatment choices.
            Our results con rm a role of OFC and VS in health decision making.fi

         Functionally, VS has repeatedly been implicated in processing and en-
           coding the value of a chosen action [ , , ]. Studies have shown that15 39 40

        striatal neurons have reward-speci c activity and also process temporalfi

        and probabilistic information regarding the occurrence of reward sig-
          nals. In contrast, recent studies have implicated VS in coding prediction

         error rather than re ecting the subjective values of competing choicesfl

         [ ]. For instance, reward prediction error signaling is frequently wit-41
          nessed in VS during human fMRI studies of learning and decision-

                            Fig. 4. T1-weighted MR images shows activations in the OFC and the VS in the "mild vs severe" contrast, and activation in the OFC, amygdala, insula and thalamus in
                     the "severe vs mild" contrast at < 0.05 (FWE-corrected). The coordinates of the maximum activated voxels are listed in .p Table 1



            making, and has been found to act as a teaching signal that updates
       expected reward values, therefore driving behavior and decision

          making [ ]. OFC is also known to integrate information from di erent42 ff

         sensory modalities [ ] and estimate the reward value of ongoing39
         events [ , ]. While, the subjective value of reward and prediction16 43

          error are often highly correlated, both regions (OFC and VS) are
         thought to be implicated in coding prediction error [ ]. However,44

          studies have highlited the dissociated role of both region, with OFC
         involved in the valuation and processing of reward outcomes [ , ],45 46

         whereas, the VS is involved in anticipation and reward-related predi-
          tion error [ , , ]. In line with these ndings, many studies high-41 46 47 fi

           light the fact that the reward network functions as an interplay between
         reward anticipation processing in VS and reward outcome processing in

          OFC [ , ]. Our ndings are consistent with this understanding of VS47 48 fi

        and OFC playing a primary role in reward salience.
        Together, OFC and VS are involved in reward anticipation/proces-

          sing and form a domain general valuation network [ , ]. Both are15 16
          considered central nodes in this reward network because they are the

       primary projection areas of the meso-limbic and meso-cortical

  dopaminergic pathways [ , ].23 49
         Recent fMRI studies demonstrate that OFC and VS exhibit strong

        functional connectivity [ , ], and clinical research shows an in-49 50
        creased e ective connectivity between OFC and VS (NAcc) amongff

        obese women when presenting food images associated with reward
       processing. This connectivity is strengthened by increased dopamine

            function within VS which acts to gate reward inputs from the OFC to
           VS. The high level of activity within OFC become more e ective inff

          further increasing VS activity [ ]. Our PPI results con rm that this51 fi

          network also plays a role in medical decision making when people
        weigh potential side e ects and medication e cacies. Speci cally, OFCff ffi fi

         and VS demonstrated a strong e ective connectivity in relative rewardff

          (mild side e ects) compared to relative risk (severe side e ects) con-ff ff

         ditions, and were associated with increased likelihood of choosing to
       take medication (higher AUC side e ects and e cacy).ff ffi

      By contrast, in the severe side eff     ect condition, our results showed
       signi cant activation within the fronto-limbic system including OFC,fi

          amygdala, insula and the thalamus. The activation of this circuit was
        associated with decreased likelihood of choosing to take medication

         (lower AUC), and might re ect the emotional anticipation of su eringfl ff

          worse quality of life caused by adverse medication side e ects. Previousff

          studies are in accordance with our ndings, for instance showing OFCfi

         activation in response to both potentially rewarding and aversive sti-
          muli [ ]. Some OFC neurons respond more strongly to rewards and52

        others to punishment, re ecting a convergence of appetitive andfl

          aversive information in the brain [ ]. Similarly, the thalamus is highly52
           implicated in the processing of aversive emotion such as regret [ ] and53

        was associated with risk processing and risk representation [ ].1
          The insula and the amygdala have repeatedly been implicated in the

        anticipation of punishment [ ], the anticipation of negative outcomes54
         [ ], and aversive events [ ]. More importantly, recent studies have55 56

           con rmed the crucial role of the insula and amygdala in guiding ap-fi

  propriate choices [ ].57
         Preclinical and clinical evidence shows that the amygdala is in-

        volved in risk-based decision-making [ , ] and patients with amyg-38 58
         dala damage make more risky choices than controls in laboratory

  gambling tasks [ , ].3 32
        Similarly, several studies have supported the involvement of bi-

           lateral insula in decision making [ ], risk and risk prediction error [ ],2 59
            and it has been shown that posterior insula is a critical component of

         the decision-making neural network and is involved in delay dis-
        counting tasks [ ]. Moreover, activation within the posterior insula60

        was increased while presenting negative images and was correlated
     with greater negative a ect ratings [ ].ff 61 

         Anatomically, insula and amygdala are well positioned to play an
         integrative role in linking a ective value with adaptive behavior, be-ff

       cause they possesses bidirectional connections with numerous struc-
         tures implicated in reward and decision making, including OFC [ ].62

          The insula forms an integrated representation of bodily states [ ] and63
        changes of insular activity could modulate decision-making [ ]. Fur-19

         ther, neural networks including the insular cortex might involve mod-
          ulation of exploration in decision-making on the basis of coding and

         evaluation of uncertainty [ ]. Consistent with these ndings, the an-64 fi

         ticipation of negative bodily states triggers interoceptive signals in the
 insula [65          , ] and these signals are transmitted to OFC where in-66

         formation is maintained on-line to inform decisions and guide actions
       [ ]. Similarly, sharing strong reciprocal connections with OFC67

        [ , ], the amygdala and OFC probably provide complimentary in-51 68
           formation on the reward value of stimuli and events [ ]. The amyg-69

           dala is thought to detect and recognize the valence of a ective stimuliff

           and then feed forward this information to OFC. Our PPI ndings suggestfi

         that similar processes occur when people weigh the risks associated
       with medical treatments. The positive connectivity between OFC-insula

       and OFC-amygdala demonstrates that both regions exhibit co-activation
           during the severe side e ect condition when compared to the mild sideff

        e ect condition, and these neural interactions were stronger amongff

           Fig. 5. Correlational analysis between the AUC values for side e ects (openff

           circles, dashed lines) and e cacy (closed circles, solid line) with percent offfi

             BOLD signal change, with AUCs for the mild side e ects being in the leftff

            column, and severe side e ects being in the right column and percent signalff

               change in the OFC in the top row, VS the second row, insula third row, and
    amygdala being the bottom row.

 Table 2

         Correlation coe cients (pearson s r) between BOLD signal change and AUCffi ’

          side e ects / AUC e cacy. Statistical signi cance at < 0.01.ff ffi fi p

 Mild Severe

     Side E ects E cacy Side E ects E cacyff ffi ff ffi

    OFC 0.954 0.908 0.739 0.665
    VS 0.916 0.891 0.746 0.669

    Insula 0.730 0.670 0.899 0.901− − − −
    Amygdala 708 0.663 0.866 0.087− − − −



           people who quickly decided to not take medicines as side e ect prob-ff

 abilities increased.
         Our behavioral results are consistent with our previous work using

       probability discounting to model treatment decisions among patients
          with MS [ , , ], and demonstrate that participants are more likely to8 9 22

           refuse medication when side e ects are high and e cacy is low. Ourff ffi

         results con rm the idea that participants discount the subjective valuefi

           of reward as the likelihood of its receipt decreases [ ]. More im-70
       portantly, individual di erences in discounting rates were signi cantlyff fi

         correlated with connectivity in the postulated risk and reward neural
networks.

         The a ective results support the behavioral and fMRI data, andff

       show that participants generate increased anticipatory SCRs before
          making riskier decisions (in our case; when medication side e ects wereff

          severe). Our results are in accordance with previous studies which have
         shown that healthy subjects tend to generate heightened SCRs before

           they choose from risky decks [ ], and are in line with Damasio's18
         theory that emphasizes the importance of emotions in guiding decision-

 making processes.
          This study represents a rst step in understanding the neural un-fi

         derpinnings of how people weigh risks and bene ts when makingfi

          medical decisions. As such, there are several limitations and areas for
       future research. First, despite reaching statistical signi cance withfi

         correction for family wise error, future studies should include larger,
        more diverse samples to con rm these preliminary ndings. Second,fi fi

          the current investigation was a pilot study that asked healthy adult
        participants to make hypothetical treatment decisions. Several lines of

      research indicate that hypothetical/imagined scenarios activate the
         same brain networks as more consequential scenarios that have real

        world implications [ ]. Consistent with this research, despite using25 28–

         a hypothetical scenario, our results activated brain networks known to
       be associated with consumer and risk-based decision-making [ ].1 4–

         While this study uncovered brain networks associated with how people
          weigh treatment risks and bene ts, replication in a clinical sample isfi

         recommended. We suspect that applying this paradigm to patients may
         elicit even stronger ndings. For instance, patients with prior treatmentfi

         experience may react more strongly to treatment choices that include
         the possibility of severe side e ects, possibly showing increased con-ff

    nectivity between OFC and insula/amygdala.

 5. Conclusion

         Our results demonstrate the role of orbitofrontal cortex and ventral
        striatum when adult participants ascribe increased value to treatment,

         and implicate OFC, amygdala and insula in treatment-related risk an-
ticipation.

          This study represents a rst step in understanding the neural un-fi

         derpinnings of how patients weigh risks and bene ts when makingfi

     treatment decisions. Future studies should confi     rm these results with a
larger         sample of patients with chronic disease. Ultimately, an improved

        understanding of the neural bases for treatment decision-making may
         lead to clinical advances that improve adherence among patients with

 chronic disease.
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                    Fig. 6. Results of the psycho-physiological interaction (PPI) analysis between OFC-VS in mild vs severe condition and between OFC-amygdala, OFC-insula in“ ”

                         "severe vs mild" condition T1-weighted MR images shows activation within the VS, the amygdala and the insula at p < 0.05 (FWE-corrected). Slopes found. (A) (B)

                       between the OFC-VS in "mild vs severe" condition, and between the OFC-amygdala and the OFC- insula in "severe vs mild" condition are signi cantly di erentfi ff

   (p < 0.05) (FWE-corrected).
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