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Summary
Purpose. — This fMRI study investigated phonological and lexicosemantic processing in dyslexic
and in chronological age- and reading level-matched children in a pseudoword reading task.
Effective
connectivity;
Developmental
dyslexia;

Materials and methods. — The effective connectivity network was compared between the three
groups using a structural model including the supramarginal cortex (BA 40; BA: Brodmann area),
fusiform cortex (BA 37) and inferior frontal cortex (BA 44/45) areas of the left hemisphere.
Results. — The results revealed differences in connectivity patterns. In dyslexic patients, in
contrast with chronological age- and reading level-matched groups, no causal relationship was
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fMRI;
Phonological
processing

demonstrated between BA 40 and BA 44/45. However, a significant causal relationship was 
demonstrated between BA 37 and BA 44/45 both in dyslexic children and in the reading level-
matched group.
Conclusions. — These findings were interpreted as evidence for a phonological deficit in devel-
opmental dyslexia.

MOTS CLÉS
Modélisation par
équations
structurelles ;
Connectivité
effective ;
Dyslexie
développementale ;
IRMf ;
Processus
phonologiques

Résumé
But. — Explorer par imagerie fonctionnelle d’activation cérébrale chez l’enfant les aires corti-
cales et les circuits cérébraux impliqués dans le traitement phonologique et lexico sémantique 
d’une tâche de lecture.
Matériel et methods. — Un réseau d’aires cérébrales interconnectées est examiné sur la base 
d’un modèle structural incluant les cortex supramarginal (aire 40 de Brodmann), fusiforme 
(aire 37de Brodmann) et frontal inférieur (aires 44/45 de Brodmann) de l’hémisphère gauche. 
La méthode de modélisation proposée permet d’évaluer une différence de connectivité effec-
tive des circuits engagés au cours d’une tâche de lecture de pseudomots entre des enfants 
dyslexiques et des enfants normaux lecteurs appariés en âge chronologique et lexical. 
Résultats. — Chez les patients dyslexiques, contrairement aux groupes témoins appariés par 
l’âge ou le niveau de lecture, aucune interaction causale n’a été démontrée entre les aires 40 
et 44/45 de Brodmann qui constituent les nœuds du circuit d’assemblage phonologique. En 
revanche, une interaction significative a été retrouvée au niveau du circuit d’adressage lexico 
sémantique, entre les aires 37 et 44/45 de Brodmann, chez les enfants dyslexiques et les 
enfants appariés par le niveau de lecture.
Conclusions. — Ces résultats confirment l’existence d’un déficit des processus phonologiques 
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dans la dyslexie développe

ntroduction

number of functional neuroimaging studies have recently
ried to identify the brain areas involved in reading [1].
espite considerable variability between the various stud-

es in terms of functional imaging techniques, methods
subjects or tasks required), or interpretation of data, spe-
ific brain areas specialized for the reading process have
een identified [2,3]. A framework based on dual route
odels for reading, derived from neuropsychological obser-

ations and experimental psychology, has often been used to
nterpret clinical and anatomical evidence and functional
euroimaging results [4]. In these models, various specific
ognitive processes were identified, such as a rule system for
honological or sublexical relations (grapheme—phoneme
onversion), a visual word form area for semantic or lexi-
al access and a phonological output lexicon. Regardless of
he adopted theoretical models, these identified cognitive
rocesses are unanimously recognized as being involved in
eading [5].

Activation results from the hemodynamic response of
egional cerebral blood flow have confirmed multicom-
onent aspects of processing involved in reading in a
arge left frontoparietotemporal network. The left infe-
ior prefrontal areas (BA 44/45; BA: Brodmann area)
re involved in phonological sublexical processes and in
exical semantic processes [6,7]. Moreover, two path-
ays have been distinguished: a dorsal pathway including
emporoparietal areas and a ventral pathway including
ccipitotemporobasal areas [8]. The dorsal temporopari-
tal pathway, composed of the posterior part of the left
uperior temporal gyrus and the inferior parietal gyrus
supramarginal gyri, BA 40) seems to be involved in receptive
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anguage processes, assembled phonology operations and
raphophonemical rebuilding [9,10]. This pathway may sup-
ort a grapheme—phoneme conversion system. The ventral
nferior occipitotemporobasal pathway includes a junction
f anterior lingual and fusiform gyri (BA 37) and is involved in
dentification of objects although there is a certain amount
f controversy concerning the existence of the specific word
orm area [11,12]. More generally, this pathway appears to
e involved in lexicosemantic access [13—15]. Recent papers
emonstrate that the fusiform gyrus (BA 37) of the left
emisphere appears to be devoted to binding visual and
erbal representations [16,17]. While there is an obvious
onnection between both pathways and between the ven-
ral pathway and the left inferior prefrontal cortex, the
elationships remain unclear in normal readers.

Developmental dyslexia is a specific and persistent dis-
rder of reading acquisition, which is observed in the
bsence of any direct cause, observed in the absence of
ensory deficit, low intelligence, backwardness, psychiatric
r neurological disorders, or socioeducational deficiency
DSM-IV-R) [18]. In children, a two-year delay in reading
s commonly taken to distinguish dyslexic readers, with
pecific reading disorders evidenced in slowed, less accu-
ate reading and aprosody. The core problem in dyslexia
s the phonological deficit in processing, identifying and
anipulating the sound structure of words [19]. There is

vidence to suggest a neurobiological basis for develop-
ental dyslexia, but the causes remain unknown [20,21].

unctional neuroimaging studies in dyslexia have shown a

imited commitment of the temporoparietal junction and
osterior part of the left superior and middle temporal gyri
n the left hemisphere. Anomalies of activation of the poste-
ior temporoparietal areas in the left hemisphere seem to be
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associated with phonological disorders in dyslexic children
[22,23].

However, interpretations of inefficiency of reading
processes related to specific cortical areas are often con-
tentious despite adapted methods and tests in dyslexia
[23—25]. Evidence of developmental dyslexia is task-
specific, functional rather than structural and concerning
cortical circuitry. In 1998 [26], Horwitz et al. developed a
new method to examine functional connectivity of the left
supramarginal/angular gyrus between occipital and tempo-
ral lobe regions during single-word reading tasks by using
covariance analyses. They highlighted a functional discon-
nection of the supramarginal/angular gyrus in men suffering
from developmental dyslexia [27,28]. Since this work, sev-
eral studies based on methods of effective connectivity
have demonstrated that the nature of the behavioural task
dynamically shifts the locus of convergence to the network
component specialized for that task [27]. To our knowledge,
few studies have investigated the phonological capacities of
dyslexic children. The present study was designed to exam-
ine effective connectivity within a temporoparietofrontal
network comparing dyslexic children and normal readers
(matched for chronological age and reading level). For this
purpose, we used single-word and pseudoword reading tasks
to elucidate more clearly phonological decoding processes.
We assume that dyslexic children present a modification
of effective connectivity involving the areas responsible
for phonological processing and related to the major areas
involved in reading [29].

Materials and methods

Participants

Eighteen French-speaking children participated in this
experiment: six dyslexic children (three girls and three boys;
mean age: 10.9 years; range: 10.1—11.4), six chronologi-
cal age-matched (CA) normally developing children, (three
girls and three boys; mean age: 11.1 years, range: 9.7—12.7)
and six reading level-matched (RL) normally developing chil-
dren, (four girls and two boys; mean age: 8.5 years; range:
7.8—9.7), assessed by the Alouette reading test [30]. The
mean reading level was 7.2 years in the dyslexic group and
8.0 years and 11.9 years in the control groups (RL and CA,
respectively).

Participants were included in the study after a clini-
cal interview and medical questionnaire and psychological
testing. All participants were right-handed, had normal non-
verbal intelligence (evaluated by the PM47 of Raven, 1947)
[31], were not claustrophobic and did not present any visual,
attentional, psychiatric or neurological disorders requiring
drug treatment, or a metal prosthesis. In addition to assess-
ment of their reading level, a linguistic assessment was
conducted to probe for phonological and/or spelling diffi-
culties. These reading and dictation tasks showed that all
dyslexic subjects in our study presented phonological dis-

orders, with major difficulties when reading and spelling
irregular words. These assessments, although relevant for
evaluation of the subject’s deficits, did not allow subtyp-
ing of the dyslexic children of our study. However, these
assessments indicate that the dyslexic children constitute a
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omogenous group of children suffering from phonological
yslexia.

Informed consent was obtained from participants and
heir parents after explanation of the aims and procedure
f the study. The protocol was approved by the Teaching
ospital Ethics Committee.

aterial and tasks

articipants were asked to perform a task including three
onditions during the fMRI investigations: picture-naming,
ingle-word and pseudoword reading. For the picture-
aming condition, 260 drawings of common objects were
elected from Snodgrass and Vanderwart’s set of pic-
ures [32]. For the single-word reading condition, 320
requent, concrete and regular words (three to seven let-
ers long) were taken from the French Novlex database
33] and 320 pronounceable pseudowords (three to seven
etters long) complying with French phonology rules were
eveloped.

The children were asked to either read the words and
seudowords silently or to name the pictures silently as
uickly as possible. They had to press a response button
ith their right index finger as soon as they had read or
amed the item in order to display the following stimulus.
he stimuli were presented to the participant via a mirror
ystem. The stimuli were presented in the centre of the
creen and remained visible for a time equal to or greater
han the participant’s reading time. If the participant had
ot pressed on the response button after 4 s, the following
timulus was automatically displayed. The participants were
nformed that their reading and naming times were system-
tically recorded. They performed a practice block in order
o understand the procedure before the experimental task.
fter the fMRI investigations, children were asked to read
nd name a list of stimuli used during the scanning to assure
hat they have correctly performed the experimental fMRI
asks.

canning procedure

hildren were scanned through four alternating blocks of
ords, pseudowords and picture conditions over a total of 12
eriods. Each experimental period lasted 40 s, resulting in a
otal experimental duration of 8 min. The order of conditions
as counterbalanced to prevent a possible order effect. The
hildren were randomly assigned to one of the six possible
rders.

ath model construction

nly pseudoword and word conditions were used for the
est of the study, as our exploratory analysis showed that
hese two conditions revealed a network of diverse activ-
ties involved in phonological processing (see appendix,

ables 5 and 6). The path model used in this study is
ased on a neural network restricted to three topologi-
ally distinct brain regions (Fig. 1): supramarginal cortex
BA 40), fusiform cortex (BA 37) and inferior frontal cortex
BA 44/45).



Figure 1 Sagittal projection map showing 54 regions of inter-
est and path diagram of pseudoword reading. Each region of
interest is colour-coded according to its group: chronological
(red), lexical (blue) and dyslexic (green). Times-series of acti-
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ated voxels were extracted from these three topologically
istinct brain regions: BA 37, BA 40 and BA 44/45.

These cortical regions were selected because they have
nown reciprocal connections and their involvement in dif-
erent aspects of reading processing is well documented in
ecent published functional imaging studies [8,34,35].

tructural equation modeling (SEM)

e used SEM to construct a pathway model that could
ccount for fMRI data in all regions of interest (ROIs)
or the pseudoword condition (Fig. 1). Adjusted signals in
he three regions of the left hemisphere extracted from
he data set were entered as variables. The structural
odel was assessed by minimizing the difference between

bserved and predicted covariances of the fMRI data accord-
ng to the maximum-likelihood algorithm. In this analysis,
he variables are considered in terms of the covariance
tructure. Analyses were performed using AMOS software
version 5.0.1, Copyright 1994—2003 SmallWaters Corp.)
36,37].

Typically, in SEM, comparison between groups consists
f a comparison of models. Stacked matrices, in which the
lements are composed of variances and covariances, are
onsidered for each group (see Appendix, Table 7). In this
pproach, constraints, usually equality constraints are intro-
uced on the estimations of the parameters. For example,
he estimate of the values of a path coefficient can be
onstrained to be equal in the various groups. The group
omparison therefore amounts to a comparison between a
onstrained (fixed parameters) and a non-constrained (free

arameters) model. In a non-constrained model, there is
ne value for each path coefficient and each group. In the
onstrained model used for group comparison, there is only
ne value for each parameter common to all groups. The
odel-comparison process is as follows. First, the algo-
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ithm estimates the specific parameter values for each
roup. The fit of the non-constrained model is exam-
ned to ensure that the hypothesized causality network
an account for the data. The parameters in the con-
trained model are forced to equality for each two groups.
f the groups differ in terms of path connectivity, then
he non-constrained model is assumed to provide a bet-
er fit than the constrained model. In other words, if the
t of the constrained model (using common values for
he parameters) is not significantly different from the fit
f the unconstrained model (using specific/different val-
es for the parameters in each group), this test allows
s to conclude that the differences between groups must
e taken into consideration to model the covariance
atrix.
Since the constrained model is nested in the non-

onstrained model, the �2 of the difference between the �2

f the two models can be used to test the significance of the
ifference. If this test is statistically significant, then we can
onclude that there is a difference between the parameters
i.e. the causal pathways) between the two groups. In order
o account for the overall difference found, if any, each
air of parameters can be compared (pair-wise compari-
on). The test used, which follows a Z distribution, is based
n the differences between the parameter values divided
y the standard error of measurement of these differences
36].

In order to assess the goodness of fit of the model to the
ata, we used a set of indicators. Each indicator provides dif-
erent aspects of goodness of fit. This type of approach using
everal indicators has been largely validated by simulation
tudies [38]. We used the test based on the minimization
unction �2 or test of exact fit. The root mean square error
f approximation (RMSEA) or test of close fit is particularly
mportant because it is relatively independent of the sam-
le size and the number of parameters used in the model
39]. We also used the standardised root mean square resid-
al (SRMR) and the goodness of fit index (GFI), [40] that
ives an estimation of the part of variance explained by the
odel. In addition, we used the Tucker and Lewis index, (TLI

n [41]) that provides an estimation of the improvement of
he data fit provided by the model tested with regard to the
ndependence model.

MRI data acquisition

euroimaging data were acquired with a 1.5 Tesla whole-
ody-MRI system equipped with a head volume coil (Signa;
eneral Electric Medical System, Milwaukee, WI). For
ach participant, a series of echoplanar functional images
EPI) was collected to provide functional images sensi-
ive to Blood Oxygen Level Dependent (BOLD) contrast.
ingle-shot EPI acquisitions were performed using a typi-
al T2*-weighted gradient-echo sequence. A total of 3600
mages were then obtained for each experimental run, using
1 3.75-mm thick axial slices. One hundred and fifty EPI

olumes with no gap were acquired (TR/TE = 3400/45 ms,
ip angle = 90◦, matrix = 642, FOV = 2402 mm2, isotropic voxel
olume = 52.7 mm3) for each functional imaging session. The
aradigm acquisition time was 8 min 30 s. At the end of
ach functional run, a series of T1-weighted 3D anatom-



Table 1 Mean response times (in milliseconds) as a func-
tion of task and groups.

Naming Words Pseudowords

CA 1461.8 1003.5 1319.8
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ical images was collected to provide detailed anatomic
information. Conventional 3D-imaging consisted of SPGR
sequence, matrix = 2562, flip angle: 35◦, TR/TE = 22/8 ms,
FOV = 2402 mm2, 124 partitions — 1.5 mm thick.

Image data processing

Image preprocessing was performed using Statistical
Parametric Mapping software (Methodology group, Well-
come Department of Cognitive Neurology, London, UK:
http://www.fil.ion.ucl.ac.uk//spm). The SPM analysis
served as a data reduction step in order to identify
significant voxels based on the meaningful single pseu-
doword/word contrast according to the subtraction
method.

The first four and last two scans were discarded. For
each subject and each session, all EPI volumes were cor-
rected to adjust for within-volume time differences and
realigned to the last volume to correct for head move-
ments. The functional scans were then spatially normalized
into the standard stereotactic space of the Talairach atlas
[42]. Spatial smoothing with a 6 mm FWHM Gaussian kernel
was performed. The hemodynamic responses were mod-
elled as a box-car function convolved with a synthetic
hemodynamic response function. A single subject, fixed-
effects model analysis was performed for each individual
subject in order to prepare the extraction of the BOLD
time series. In each single subject analysis, a significance
level of p = 0.05 was applied to detect activated vox-
els for the meaningful single pseudoword/word contrast.
Local maxima were located within the predefined brain
regions and then assigned to a Brodmann area. Talairach
Daemon software and mni2tal tool (http://www.matthijs-
vink.com/tools.html) were used to automatically define
Talairach atlas labels and to convert coordinates from MNI
brain for equivalent Talairach coordinates using a non-
linear transformation respectively. We used the mni2tal
algorithm to ensure that the activated pixels actually corre-
sponded to the predefined brain regions (http://www.mrc-
cbu.cam.ac.uk/Imaging/Common/mnispace.shtml).

fMRI data extraction for SEM

BOLD time-series of activated pixels were extracted
from BA 40, BA 44/45 and BA 37 regions (with refer-
ence to the structural model) using the Marsbar toolbox
(http://marsbar.sourceforge.net/). The time-series extrac-
tion was performed separately in each area using a 6 mm
radius spherical ROI. We extracted the average signal of the
selected ROI using the SPM-scaling design and the mean-
value options.

Individual time-series were therefore centred and
reduced across conditions concatenated into a scan * sub-
jects matrix (48*6). This normalization procedure is required

to allow comparison of BOLD signals across subjects and ses-
sions. Local maxima within predefined cortical functional
areas and time-series extracted for the SEM analysis were
identified for each subject and each ROI in the left hemi-
sphere.
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RA 1699.5 1388 1943.5
DYS 2031.7 1872.5 2230.5

esults

xperimental data

esponse times were submitted to analyses of variance
ANOVAs) with groups (dyslexic and controls) as experimen-
al factor. For all analyses, the conventional level of 0.05
or statistical significance was adopted. There was a signif-
cant difference in response times among the three groups
F(2,15) = 9.61; p = 0.002).

The dyslexics were slower (2044.89) than the con-
rol groups (CA = 1261.72; RA = 1677). Only the difference
etween dyslexics and reading control group (RA) was
ot significant. Response times were significantly faster in
he word-reading task (1421.33) followed by the pictures-
aming task (1731) and finally the pseudoword reading task
1831.28), F(2,30) = 14.74, p < 0.0001. Planned comparisons
howed that only the difference between pictures and pseu-
owords was not significant. This factor did not interact
ignificantly with the groups factor, F(4,30) = 1.49, ns. The
able 1 shows the mean response times as a function of task
nd groups.

MRI data

he results of univariate comparisons (two-sample t-test) of
he brain regions activated in the chronological and dyslexic
roups and in reading level-matched and dyslexic groups are
hown in Table 5 and B, respectively in the appendix, for the
ain regions of interest.
Path diagrams are presented separately in Fig. 2 for

he dyslexic/CA normal readers groups (A) and dyslexic/RL
roups (B). In each diagram, one correlation and two
ne-way paths (recursive model, i.e. all arrows are uni-
irectional without feedback loops) are represented by
double arrow and single arrows, respectively. The two

onnections chosen for SEM analysis were unidirectional
o ensure mathematically robust estimates of connection
trengths. A correlational non-causal relationship was also
ntroduced into the pathway model based on the hypothesis
f a relationship between the two regions, although a pre-
ise hypothesis cannot be proposed concerning the causality
etween the supramarginal (BA 40) and the fusiform cortex
BA 37).

We first tested the fit between the predicted model and
he empirical data for each group using an iterative maxi-

um likelihood algorithm. Only path values obtained from

he non-constrained model are shown in Fig. 2. Residual
ariances were estimated for each group separately and are
resented in Table 2.

http://www.fil.ion.ucl.ac.uk//spm
http://www.matthijs-vink.com/tools.html
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml
http://marsbar.sourceforge.net/


Table 2 Residual variances calculated in the inferior frontal cortex (BA 44/45) in dyslexic, chronological age-matched and
reading level-matched groups.

Residual variances

Dyslexic group Ch

BA 44/45 0.92 0.7

Path analysis comparison between dyslexic and
chronological age-matched (CA) children

The predicted structural network for the non-constrained
model fits the experimental data

[
�2

(2) = 0.13, p = 0.938
]
.

The values for other indices of fit, RMSEA = 0.000 and
GFI = 1.000, SRMR = 0.0012, TLI = 1.000 are higher than the
cut-off value usually recommended in the literature, in
particular the combinatory rules recommended by [38] to
indicate that the model adequately fits the data. In the
dyslexic group (Fig. 2), the path coefficient indicates a

Figure 2 Path diagrams from the causal analysis using struc-
tural equation modeling involving left hemisphere. Inferior
frontal cortex (BA 44/45), supramarginal cortex (BA 40) and
fusiform cortex (BA 37) are shown. The values of the path coeffi-
cients in chronological and dyslexic (in parentheses) groups are
indicated.
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Table 3 Estimates of regression weights for the dyslexic and chr

Dyslexic group

Path coefficients CR

BA 37 → BA 44/45 0.237 4.030
BA 40 → BA 44/45 0.101 1.722

Nonstandardized path coefficients and critical ratio (CR) for regress
weights are *p < 0.05, **p < 0.01, ***p < 0.001. Inferior frontal cortex (B
37).
ronological age group Reading level group

8 0.80

‘middle’’ size effect, according to Cohen’s conventions on
ffect sizes [43], from BA 37 to BA 44/45. The non-reciprocal
onnection between BA 40 and BA 44/45 indicates a ‘‘weak’’
onnection that was not statistically significant for the usual
imit of ˛ = 0.05. In the CA group (Fig. 2), a weak unidirec-
ional connection from BA 37 to BA 44/45 was observed. On
he other hand, our results show a ‘‘strong’’ positive influ-
nce from BA 40 to BA 44/45. As the non-constrained model
an be assumed to be correct, the dyslexic and chronological
roups can be compared by model comparison. The differ-
nce between �2 of the non-constrained and constrained
odels

[
�2diff(2) = 11.415, p < 0.003

]
indicates a global

tatistically significant difference between the two models
nd therefore between the dyslexic and CA groups. Critical
atios for the relevant pairs of path coefficient differences
re indicated in Table 3.

The results of the pairwise comparisons between the
roup paths, for the non-constrained model reveal signifi-
ant differences in the strength (p < 0.001) of the connection
etween BA 40 and BA 44/45 and in the relationship between
A 40 and BA 37. The connection between BA 37 and BA
4/45 tends to be higher in the dyslexic group than in the
A group.

ath analysis comparison between dyslexic and
eading level-matched (RL) children

he pattern of the results for RL children is shown in Fig. 2B.
he goodness of fit for the non-constrained model is in
greement with a good convergence between the predicted
odel and the empirical data

[
�2

(2) = 0.131, p = 0.936
]

nd was confirmed by the other indices: RMSEA = 0.000,
FI = 1.000, SRMR = 0.0012, TLI = 1.000. Comparison of the
yslexic and RL groups revealed a significant difference]

�2diff(3) = 11.173, p < 0.011 . In the RL group (Fig. 2),
he connection strength between BA 40 and BA 44/45
ndicates a ‘‘strong’’ positive influence of BA 40 on
A 44/45. A ‘‘middle’’ size effect was observed from
A 37 to BA 44/45. Critical ratios for the relevant

onological age-matched groups.

Chronological age group

p Path coefficients CR p

*** 0.135 2.211 *

0.08 0.388 6.345 ***

ion weights are presented. Level of significance for regression
A 44/45), supramarginal cortex (BA 40) and fusiform cortex (BA



Table 4 Estimates of regression weights for the dyslexic and reading level-matched groups.

Dyslexic group Reading level group

Path coefficients CR p Path coefficients CR p

BA 37 → BA 44/45 0.237 4.030 *** 0.233 4.330 ***

BA 40 → BA 44/45 0.101 1.722 0.08 0.352 6.537 ***
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Nonstandardized path coefficients and critical ratio (CR) for re
weights are *p < 0.05, **p < 0.01, ***p < 0.001. Inferior frontal corte
37).

pairs of path coefficient differences are indicated in
Table 4.

The results of the pairwise comparisons between the
group paths reveal a significant difference in strength
(p < 0.01) for the connection between BA 40 and BA44/45
and a nonsignificant difference of strength between BA 40
and BA 37. The connection between BA 37 and BA 44/45
tends to be equal in the two groups.

Discussion

Experimental data

Dyslexic children presented the same pattern of response
times as normal readers: they took less time to read words
than to identify pseudowords or images. In contrast, they
were slower than chronological age-matched normal read-
ers, regardless of the stimulus. Dyslexic children processed
fewer items than normal readers. This result is coherent
with the experimental data previously collected by several
researchers. However, the number of items processed do
not seem to be sufficient to account for differences in cere-
bral activation. The group of reading level-matched children
processed almost as many words as older children, but dif-
ferences were nevertheless observed in cerebral activation
between these two groups. Conversely, similarities were
observed in terms of activation between aged-matched nor-
mal readers and dyslexics children, despite the observed
differences between these two groups in terms of num-
ber of items processed. Cerebral activation differences
observed between groups therefore cannot be explained
by differences of processing time according to the type
of stimulus. Furthermore, time of each item (4 s) was
chosen to be sufficiently long to allow dyslexic children
process a maximum of items. Response times appear to
be a more relevant cognitive variable than the number of
items processed, as they indicate that the child performed
the reading. Because, firstly the means of response times
recorded for any children are lower than the 4 s limit time
and secondly the time results of dyslexics are not differ-
ent than these of aged-matched normal readers. We can
suppose that the experimental fMRI task was correctly per-

formed such as observed in cognitive investigations. This
methodological choice seems to be correctly adapted to
the objectives of this study and to our specific popula-
tion and allowed us to interpret activation as differences
of connectivity pattern and not as differences of dyslexic’s
performances.
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t
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n
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ion weights are presented. Level of significance for regression
A 44/45), supramarginal cortex (BA 40) and fusiform cortex (BA

ifferences in functional connectivity

he results of the present study suggest differences in
onnectivity commitment and strength within a tem-
oroparietofrontal cortical network studied in groups of
yslexic children and normal readers on pseudoword reading
ests. The two dorsal and ventral reading pathways, medi-
ted by temporoparietal (BA 40) and occipitotemporobasal
BA 37) pathways, respectively, presented different rela-
ions between the groups of children.

orsal temporoparietal pathway

n the two groups of normal-reader children (RL and CA),
athway coefficients presented a significant strength for
heir effective connectivity from BA 40 to BA 44/45 with

strong positive influence, in contrast to the group of
yslexic children. Results in reading level-matched group
RL), beginner in reading learning, as well as in chrono-
ogical age-matched group (CA), confirmed normal reader
hildren, showed significant effective connectivity of this
athway, implicating the dorsal supramarginal cortex (BA
0) in phonological processes. In dyslexic children, the dor-
al temporoparietal pathway does not appear to participate
n the reading capacities of pseudowords. As this pathway
s known to be involved in phonological reading processes,
he results can be interpreted to be a consequence of the
honological deficits of the developmental dyslexic children
articipating in this study.

entrobasal pathway

ifferent results were obtained for the ventral basal
usiform cortex (BA 37) pathway involved in lexicosemantic
rocessing, as dyslexic children, as well as RL young chil-
ren showed a middle size effect in connectivity from BA 37
o BA 44/45, higher than in CA children. This reading path-
ay appears to be more extensively used in dyslexic children
nd the path coefficient appears to decrease with increasing
eading level and experience.

eading development and dyslexia
he results for correlations between the supramarginal cor-
ex (BA 40) and the fusiform cortex (BA 37) for dyslexic
hildren were significantly different from those for CA
ormal reader children, but not for RL children. This differ-
nce can be explained by developmental strengthening of
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samples. We prefered to favour the homogeneity and repre-
he readers’ decoding capacities: morphological (lexicose-
antic processing) and phonological (graphophonological

onversion) processes appear to function together on pseu-
oword reading tasks, by the use of reciprocal comparisons
f processing and their outputs. The weaker relationship
etween BA 40 and BA 37 in RL and dyslexic children com-
ared to CA children suggests that this reciprocal processing
etween the two reading pathways is immature or dysfunc-
ional [27]. This hypothesis is consistent with the findings
eported by Vigneau et al. [17] that morphological process-
ng can also be involved in processing prelexical units in
seudoword reading in adult normal readers. These results
lso agree with the hypothesis of a third reading pathway
sing analog processing between lexicosemantic and phono-
ogic processing [44].

The observation of partially enhanced connectivity
trength is in line with previous reports on functional discon-
ection of temporoparietal areas in developmental dyslexia
28,45,46]. Phonological decoding problems are the most
biquitous signs of developmental dyslexia [22]. Thus, in
yslexic children, activation of the inferior frontal cortex
BA 44/45), which is thought to represent ongoing artic-
lation processes in reading, would be essentially due to
exicosemantic processing via functional connectivity with
he basal fusiform cortex (BA 37). Neuroanatomical struc-
ural differences have been identified between control and
yslexic subjects and the present study clearly demonstrates
hat these differences are related to behavioral functional
eficits, more specifically those observed in phonological
oding.

Reading is a complex task involving multiple cognitive
rocesses related to different cerebral areas and, to our
nowledge, no fMRI study of effective connectivity in read-
ng tasks has been previously conducted to demonstrate a
elationship between functional reading cognitive processes
nd a neurovascular network [27]. The present findings pro-
ide evidence for the existence of a phonological deficit in
evelopmental dyslexia. Despite the fact that these results
ere obtained in a small number of children, this study

hows that dyslexic children fail to use a brain path normally
pecialized in phonological processing, but rather use a brain
ath involved in lexicosemantic processing. It would also be
nteresting to analyze effective connectivity within a net-

ork including a larger number of brain regions, as the three

egions tested in our model do not appear to be the only
nes involved in word or pseudoword reading tasks. Con-
equently, it would be interesting to include other regions

s
s

a

Table 5 Results show that the activations in the brain regions w
construction are statistically different between the two groups.

Regions BA

Temporal cortex 37
Inferior parietal cortex 40
Inferior/pars opercularis frontal cortex 44
Inferior/pars triangularis frontal cortex 45

BA: Brodmann areas; x, y, z: Talairach and Tournoux coordinates, t
p = 0.05, degree of freedom = 10. A two-sample t-test comparison betw
n the network, particularly regions in the right hemisphere
29,47].

Another important aspect of this study concerns the
linical implications of effective connectivity. Firstly, this
ethod could be used to show different reading strate-

ies used by dyslexic children, as the various forms of
yslexia identified by certain authors in the literature can
e assumed to be associated with different strengths and
reas of connectivity [48]. For example, dyslexic children
ho show a defect of visual word form processing (surface
yslexia) should present a ‘‘stronger’’ connection between
A 40 and BA 44/45 compared to phonological dyslexic chil-
ren. Secondly, our method is useful to test the effects of
emediation. We can suppose that differences observed in
ffective connectivity in dyslexic children should tend to
isappear after training sessions, as several studies have
hown that activation was increased in specific parts of the
rain involved in phonological or morphological processing
24,49,50].

Finally, it could be argued that our SEM analysis is lim-
ted to a restricted network and that a different (presumably
ore extensive) network should have been investigated,

iven that many brain regions were actually activated in
he reading tasks as indicated by univariate analysis (data
ot shown). A very large number of possible interconnec-
ions could obviously be investigated. However, plausible
ombinations are generally explored within the so-called
‘automated search’’ procedure in SEM approach [51].
nother interesting use of SEM would have been to generate
lternative models in order to identify the most plausi-
le models. This latter approach is generally referred to
s ‘‘specification search’’ [52,53]. These two uses of SEM
re distinct from the confirmatory approach that was cho-
en here. Both automated and specification search programs
ere far beyond the scope of the present study.

imitations

he rigorous selection of subjects results in a small sam-
les of subjects. However, the significance of our statistical
esults on these small samples allows us to expect, due to
he low level of variance, more powerful effects on larger
entativeness of our group to the detriment of the sample
ize.

In this study, imaging and analytical comparisons of the
ctivations of BA 37, BA 40 and BA 44/45 were both very

hich were a priori included in our structural equation model

Stereotaxic coordinates t

x y z

−47 −49 3 2.31
−52 −44 36 3.46
−45 10 24 4.80
−42 35 4 5.85

values, (unilateral comparison lexical group > dyslexic group),
een regions activated in lexical and dyslexic groups is presented.



Table 6 Results show that the activations in the brain regions which were a priori included in our structural equation model
construction are statistically different between the two groups.

Regions BA Stereotaxic coordinates t

x y z

Temporal cortex 37 −47 −52 3 2.31
Inferior parietal cortex 40 −42 −39 35 3.30
Inferior/pars opercularis frontal cortex 44 −47 19 34 2.90
Inferior/pars triangularis frontal cortex 45 −53 24 24 3.43

BA: Brodmann areas; x, y, z: Talairach and Tournoux coordinates, t values, (unilateral comparison chronological group > dyslexic group),
p = 0.05, degree of freedom = 10. A two-sample t-test comparison between regions activated in lexical and dyslexic groups is presented.

Table 7 This table represents the matrix of variances and covariances of each group calculated in the three distinct brain
regions: BA 40, BA 37 and BA 44/45.

Groups BA 40 BA 37

Chr 0.499 —
BA 37Lex 0.138 —

Dys 0.221 —
Chr 0.449 0.327

BA 44/45Lex 0.378 0.278
Dys 0.152 0.255

A

T
G
n

A

T

R

Chr: chronological; Lex: lexical; Dys: dyslexic groups.

challenging issues for a number of reasons. First, the tem-
poral cortex and inferior frontal cortex have been described
as a region that is highly susceptible to EPI artefact. Second,
it is not always easy to exactly define the same areas in each
subject because of:

• anatomical differences between individuals;
• differences in brain maturation (plasticity) in the frontal

areas in children;
• vascular differences (geometry and large vessels) to which

contrast BOLD is sensitive, preventing precise localization
of the functional areas.

In addition, it can be argued that our SEM analysis
is limited to a restricted network and that a different
(presumably more extensive) network should have been
investigated, given that many brain regions were actually
activated in the reading tasks as indicated by univariate
analysis (data not shown). A very large number of possible
interconnections could obviously be investigated. However,
plausible combinations are generally explored within the
so-called ‘‘automated search’’ procedure in SEM approach
[51]. Another interesting use of SEM would have been

to generate alternative models in order to identify the
most plausible models. This latter approach is generally
referred to as ‘‘specification search’’ [52,53]. These two
uses of SEM are distinct from the confirmatory approach
that was chosen here. Both automated and specification
search programs were far beyond the scope of the present
study.
cknowledgements
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