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Summary

Monte-Carlo methods are well suited to characterize events of which associated
probabilities are not too low with respect to the simulation budget. For very seldom
observed events, these approaches do not lead to accurate results. Indeed, the num-
ber of samples are often insufficient to estimate such low probabilities (at least 10n+2

samples are needed to estimate a probability of 10−n with 10% relative deviation of
the Monte-Carlo estimator). Even within the framework of reduced order methods,
such as a reduced basis approach, it seems difficult to accurately predict low prob-
ability events. In this paper we propose to combine a cross-entropy method with a
reduced basis algorithm to compute rare events (failure) probabilities.
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1 INTRODUCTION

Many applications in structural analysis require taking into account stochastic properties of material, geometry or loads. Given a
probabilistic description of the stochastic properties of the structure (i.e. a random vectorΘ associated with a probability density
function f ), reliability analysis aims at computing the probability of failure of structures with respect to a prescribed limit state
function G. The failure is defined as an event F = {G(Θ) ≤ 0} and the failure probability Pf is defined by Pf = Prob({G(Θ) ≤
0}) = ∫G(�)≤0 f (�)d�. The computation of this failure probability by a standard Monte-Carlo algorithm is too computationally
expensive in practice (10n+2 finite element computations are need to estimate a probability of failure Pf = 10−n). In order to
reduce the number of simulations runs different alternatives have been proposed.
A first approach is the First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM)1,2 which

consists in building a simple analytical approximation of the limit-state function around the so-called design point followed by
a direct estimation of the failure probability3,4,5,6,7,8. A second approach consists in building a surface response as a surrogate
model of the limit state function (Quadratic response surfaces, polynomial chaos expansions, kriging surrogates, ...)9,10,11,12,13.
The Monte-Carlo algorithm can then be applied on this surrogate model. A third approach consists in building a reduced order
model (ROM) of the full order finite element model (FOM)14,15,16,17,18,19, and using the Monte-Carlo method along with the
reduced order model. This approach has been applied successfully in20,21 to compute the failure probability of structures in the
case where Pf is greater than 10−4, however in the case of rare events estimation the number of Monte-Carlo simulations needed
to estimate accurately Pf increases (108 simulations to estimate a failure probability of Pf = 10−6) and the computational
cost becomes too important even in the context of the use of reduced order models. In order to reduce the number of samples
different techniques have been developed22, in particular the objective of the importance sampling (IS) method is to reduce
the variance of the Monte-Carlo estimator. The main idea is to generate the samples Θ1, ..., ΘN with an auxiliary probability
density function ℎ that is able to generate more samples such that G(Θ) ≤ 0 than the probability density function (PDF) f and
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then to introduce a weight in the probability estimate to take into account the change in the PDF generating samples. The cross
entropy (CE) optimization method23 provides an efficient way to approximate this auxiliary probability density function. In24

the authors propose to combine a CE method with a surrogate model of the limit state function and to use an exact computation
of the limit state function only when the sample is near the failure limit. In25 the authors develop a CE method with an adaptive
surrogate model based on a Kriging interpolation method for estimating the probability of rare events. In26 the authors propose
to use an a priori fixed hierarchy of surrogate models to accelerate the estimation of the auxiliary probability density function ℎ
by the CE algorithm, then compute the IS probability estimate with the FOM.
In this work we develop an adaptive strategy, based on the computation of an error estimator of the limit state function, to

simultaneously build the reduced basis and the auxiliary probability density function ℎ. The reduced basis vectors are chosen
in order to control the quality of the estimation of the limit state function G and the auxiliary PDF is built by minimizing the
cross-entropy with respect to an ideal zero-variance distribution. An importance sampling Monte-Carlo simulation is then run
with the surrogate model defined by the reduced basis and the auxiliary PDF. The control of the quality of the reduced basis
is ensured by the computation of a lower bound and an upper bound of the failure probability. Compared to24,26, this paper
introduces, during the CE optimization, an adaptive construction of the surrogate model based on an error estimator. Compared
to25 it introduces surrogates models based on a reduced basis approximation which allows building bounds of the limit state
function as well as of the computed Monte-Carlo failure probability.
The paper is organized as follows: Section 2 describes the problem to be solved. In Section 3 the cross-entropy optimization

applied to importance sampling is presented. In Section 4, the reduced basis formulation used to solve the problem is presented
as well as the technique used to compute bounds on quantities of interest. The reduced basis algorithm for rare events simulations
is detailed in Section 5. Finally, Section 6 presents an application to multilayered structures in 2D plane elasticity.

2 PROBLEM FORMULATION

2.1 Linear elastic model
Let us consider a 2D elastic structure defined in a domainΩ bounded by Γ. The external actions on the structure are represented
by a surface force density T defined over a subset ΓN of the boundary such that T ∈

[

L2(ΓN )
]2 and a body force density b

defined inΩ such that b ∈
[

L2(Ω)
]2. We assume that a prescribed displacement u = ud such that ud ∈

[

H1∕2(ΓD)
]2 is imposed

on ΓD = Γ − ΓN . The material is assumed to be linear elastic, being C the Hooke tensor. We consider that the problem is
dependent of a vector � = (�1, ..., �p) ∈  ⊂ ℝp of uncertain independent parameters. These parameters are characterized in a
probabilistic manner by means of a joint probability density function f (�) =

∏p
i=1 fi(�i), where fi is the probability function

of �i. The problem can be formulated as:

1. For any � ∈ , find a displacement field u ∈  and a stress field � defined in Ω which verify:

• the kinematic constraints:
u(x,�) = ud(x) on ΓD (1)

• the equilibrium equations:

div�(x,�) + b(x,�) = 0 in Ω and �(x,�)n = T(x,�) on ΓN (2)

• the constitutive equation:
�(x,�) = C(x,�)"(u(x,�)) in Ω (3)

n denotes the outer normal toΩ. is the space in which the displacement field is being sought, 0 the space of the fields
in  which are zero on ΓD, and "(u) denotes the linearized deformation associated with the displacement: ["(u)]ij =
1∕2 (ui,j + uj,i).

2. Compute a quantity of interest:
S(�) = Q(u(x,�)) (4)

where Q is a linear output of u
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Remark: For the sake of simplicity assume that ud is a deterministic value (i.e. ud(x,�) = ud(x)). For an interested reader, the
development of a reduced basis algorithm where ud is also described by a stochastic approach can be found in27.

The weak form formulation of the problem (Equations 1-3) is: find u ∈  such that

a(u(�),u∗;�) = l(u∗;�) ∀u∗ ∈  0 (5)
where

a(u(�),u∗;�) = ∫
Ω

C(x,�)"(u(x,�)) ∶ "(u∗(x)) dΩ and l(u∗;�) = ∫
Ω

b(x,�).u∗(x) dΩ + ∫
ΓN

T(x,�).u∗(x) dΓ

To compute the solution u(�) of Equation (5), a finite element approximation uℎ of u is introduced such that uℎ ∈ ℎ ⊂  .
Let ℎ be a partition of Ω into elements Ek (k ∈ {1, ..., NFE}). This partition formed by the union of all elements, is assumed
to coincide exactly with the domain Ω and any two elements are either disjoint or share a common edge. We assume that ud can
be represented by a displacement field in ℎ. The discretized problem is: Find a displacement field uℎ(�) ∈ ℎ and a stress
field �ℎ(�) defined in Ω which verify:

• the kinematic constraints:
uℎ(x,�) = ud(x) on ΓD (6)

• the finite element equilibrium equations:

∫
Ω

�ℎ(�) ∶ "(u∗ℎ) dΩ = ∫
Ω

b(�).u∗ℎ dΩ + ∫
ΓN

T(�).u∗ℎdΓ ∀u∗ℎ ∈  0
ℎ (7)

• the constitutive equation:
�ℎ(x,�) = C(x,�)"(uℎ(x,�)) in Ω (8)

The classical weak form formulation is: find uℎ ∈ {v ∈ ℎ; v|ΓD = ud} such that:

a(uℎ(�),u∗ℎ;�) = l(u
∗
ℎ;�) ∀u∗ℎ ∈  0

ℎ (9)

where  0
ℎ = {v ∈ ℎ; v ∣ΓD= 0}.

Following28, we assume that the Hooke tensor C, the body forces b and the traction forces T can be decomposed as the sum
of functions of � multiplied by deterministic functions.

C(x,�) =
Qc
∑

q=1
Θcq(�)C̄q(x), b(x,�) =

Qb
∑

q=1
Θbq(�)b̄q(x) T(x,�) =

QT
∑

q=1
ΘTq (�)T̄q(x) (10)

where Θcq ,Θ
b
q ,Θ

T
q are known functions of �, each C̄q(x) is a fourth order tensor defined in Ω, b̄q(x) are vector fields defined in

Ω, and T̄q(x) are vector fields defined on ΓN .

Remark: An approximation of this decomposition can be obtained by the use of the Karhunen-Loeve expansion29 as proposed
in30.

Furthermore, we assume that the inverse of the Hooke tensor can be decomposed as the sum of functions of � multiplied by
deterministic functions defined in Ω.

C−1(x,�) =
Qs
∑

q=1
Θsq(�)S̄q(x) (11)

where each S̄q(x) is a fourth order tensor defined on Ω. These hypotheses are required by the adaptive reduced basis method21

as shown in section 4.2.
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2.2 Structural reliability model
In this section, we describe the problem of reliability assessment1,31,10. Let us denote by S(�) = Q(uℎ(x,�)) the computational
output of interest andR(�) the threshold associated to this computational output. Classically the structure failure state is defined
by a limit state function:

G(�) = R(�) − S(�) (12)
such that

• G(�) < 0 is a failure state for the structure,

• G(�) = 0 is the limit state,

• G(�) > 0 is a safe state for the structure.

According to this definition, the system fails when G is lower or equal to zero. The failure probability Pf is then given by:

Pf = ∫
f={�∈ℝn;G(�)≤0}

f (�) d� (13)

where n is the dimension of the vector � and f (�) is a PDF. The evaluation of the integral defined by Equation (13) is not easy
because it represents a very small quantity and because the integration domain is defined implicitly. Monte-Carlo algorithm is
the main approach to solve the reliability problem. Recasting Equation (13) as:

Pf = ∫
ℝn

1(G(�)≤0)(�)f (�) d� = Ef
[

1(G(�)≤0)
]

(14)

where 1(G(�)≤0) is the failure indicator function being equal to one if G(�) ≤ 0 and zero otherwise. The probability of failure is
equal to the expectation of 1(G(�)≤0). The Monte-Carlo algorithm consists in generating a numberNMC of realizations �n of the
random vector Θ using the actual probability density function, then in computing the Monte-Carlo estimator P̂f :

P̂f =
1

NMC

NMC
∑

n=1
1(G(�)≤0)(�n) (15)

According to the central limit theorem, this estimator is asymptotically unbiased and normally distributed with variance

V ar
[

P̂f
]

=
P̂f (1 − P̂f )
NMC − 1

When the failure probability is small the relative deviation of the estimator is

� =

√

V ar
[

P̂f
]

P̂f
≈ 1

√

NMC P̂f
(16)

The relative deviation is consequently unbounded. From Equation (16), it can be seen that obtaining a relative deviation
� ≤ 10% for a probability of failure of 10−n requires about 10n+2 finite element simulations.

3 IMPORTANCE SAMPLING

3.1 Principles
The objective of importance sampling32,33,34 is to reduce the variance of the Monte-Carlo estimator P̂f . The idea is to generate
the samples �1, ...,�N with an auxiliary PDF ℎ such that the generated samples have a higher rate of falling in the failure region
than with the PDF f , because only these samples contribute to the evaluation of Pf .

Pf = Ef
[

1(G(�)≤0)
]

= ∫ 1(G(�)≤0)f (�)d� = ∫ 1(G(�)≤0)
f (�)
ℎ(�)

ℎ(�) d� = Eℎ
[

1(G(�)≤0)
f (�)
ℎ(�)

]

(17)
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Let us denote w(�) = f (�)
ℎ(�)

, then the failure probability is estimated by

P̂ IS
f = 1

N

N
∑

n=1
1(G(�n)≤0)w(�n) (18)

where P̂ IS
f is called the importance sampling (IS) estimator. The variance of this estimator is given by the following equation

V ar(P̂ IS
f ) =

V ar
(

1(G(�)≤0)w(�)
)

N
(19)

The optimal choice for ℎ is given by

ℎ∗(�) =
1(G(�)≤0)f (�)

Pf
(20)

which leads to
1(G(�)≤0)w(�) = 1(G(�)≤0)

(

f (�)
Pf

1(G(�)≤0)f (�)

)

= Pf (21)

and hence to V ar(P̂ IS
f ) = 0. The obvious difficulty of this approach is that ℎ∗ depends not only on the failure domain which is

unknown, but also on the unknown probability Pf . Nevertheless, a good sampling density ℎ will be close to the PDF ℎ∗.

3.2 Cross-Entropy approach to determine a good Importance Sampling distribution
The idea of the Cross-Entropy (CE)35,36,23 is to choose the IS density ℎ in a specified class of densities such that the cross-
entropy or Kullback-Leiber (K-L) divergence between the optimal importance sampling density ℎ∗ and ℎ is minimal. The K-L
divergence between two PDF f and g is given by:

(f, g) = Ef
[

ln
f (�)
g(�)

]

= ∫ f (�) ln f (�)
g(�)

d� = ∫ f (�) lnf (�)d� − ∫ f (�) ln g(�)d� (22)

Let us define ℎ� a family of PDF indexed by the parameter � (� could be the mean and the covariance matrix in case of Gaussian
densities). The objective is then to find �∗ which minimizes the Kullback-Leiber divergence (ℎ∗, ℎ�)

�∗ = argmin
�

(ℎ∗, ℎ�) = argmin
�

(

−∫ ℎ∗(�) lnℎ�(�)d�
)

(23)

substituting ℎ∗(�) from Equation (20) in Equation (23) we obtain

�∗ = argmax
� ∫

(

1(G(�)≤0)f (�)
)

lnℎ�(�)d� = argmax
�

Ef
[

1(G(�)≤0) lnℎ�(�)
]

(24)

Remark: In23, it is shown that solving the cross-entropy problem defined by Equation (23) yields an estimate with minimum
variance.

�∗ can be estimated by solving the following stochastic program

�∗ = argmax
�

1
NCE

NCE
∑

n=1
1(G(�n)≤0)

f (�n)
ℎ�(�n)

lnℎ�(�n) (25)

where �1, ..,. �NCE areNCE random samples generated according to the probability density ℎ�. In practice, ones does not solve
directly Equation (25) since it requires the knowledge of several samples such that G(�n) ≤ 0, which is not the case for rare
event evaluation. To circumvent this difficulty, the optimization problem (25) is solved by a multilevel iterative method35,23 with
a decreasing sequence of thresholdsG0 > G1 > ... ≥ 0 chosen adaptively using a quantile definition. At each iteration, the value
of �k−1 is available and ones determine in practice

�k = argmax
�

1
NCE

NCE
∑

n=1
1(G(�n)≤Gk)

f (�n)
ℎk−1(�n)

lnℎ�(�n) (26)

The algorithm is initialized by choosing a parameter � (typically 10−2 ≤ � ≤ 10−1, see35,23 for more details), and by defining
ℎ0 = f . At each iteration k of the algorithmNCE samples �1, ..,. �NCE are generated according the probability density ℎk−1, the
values of the limit state function G(�n) are computed and Gk is set to the max(0, G�) where G� is the value of the �-quantile of
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(

G(�1), ...G(�NCE )
)

. Then, Equation (26) is solved and we set ℎk = ℎ�k . LetK be the final iteration whenGK = 0,NIS samples
�1, ..,. �NIS are generated according to the probability density ℎ�K and the importance sampling estimator is computed by

P̂ IS
f = 1

NIS

NIS
∑

n=1
1(G(�n)≤0)

f (�n)
ℎK (�n)

(27)

The Cross-Entropy algorithm is described in Algorithm 1.

Remark: The maximization of Equation (26) can often be solved analytically, in particular when the probability density family
is composed by independent Gaussian or log-normal random variables, as used in this paper (see section 6).

Algorithm 1 Pseudocode for the IS based on a CE optimization

input: the PDF f ,NCE (number of samples used for the CE optimization),NIS (number of samples used for the IS
estimation), � a parameter in [10−2, 10−1]
output: P̂ IS

f

Define ℎ0 = f . Set G0 such that G0 > 0.
Set k = 0 (iteration counter)
while Gk > 0 do

Set k = k + 1
Generate random samples

(

�1, ..,�NCE
)

according to the probability density ℎk−1. Compute G(�n) (for n = 1, NCE).
Compute Gk = max(0, G�), where G� is the �-quantile of

(

G(�1), ..., G(�NCE )
)

Use
(

�1, ..,�NCE
)

and
(

G(�1), ..., G(�NCE )
)

to solve

�∗ = argmax
�

1
NCE

NCE
∑

n=1
1(G(�n)≤Gk)

f (�n)
ℎk−1(�n)

lnℎ�(�n)

Set �k = �∗ and ℎk = ℎ�k .
end while
Set ℎopt = ℎk
GenerateNIS samples according to the probability density ℎopt and compute P̂ IS

f

P̂ IS
f = 1

NIS

NIS
∑

n=1
1(G(�n)≤0)

f (�n)
ℎopt(�n)

3.3 Simple 1D example
A simple 1D test problem proposed in18 is considered here to illustrate the CE algorithm. The unknown displacement u(x,�)
describes the deformation of a bar of section S and lengthLwhich is loaded by a traction F on x = L and clamped at x = 0 (see
Fig 1 ). The random parameters are the Young modulus E of the bar and the traction F . They are functions of two independent
Gaussian random variables (�1, �2) defined in Table 1

E(�1) = E0(1 + �g(�1)) with g(�1) =
2 arcsin(Erf( �1√

2
))

√

�2 − 8
and

F (�2) = �2
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E(   )
F(   )

L

FIGURE 1 Unidimensional bar

Remark: The nonlinear mapping g is chosen such that the probability density function ofE(�1) has a bounded support. Actually,
the upper and lower limits for E are

E0

(

1 − �
√

�2
�2 − 8

)

≤ E(�1) ≤ E0

(

1 + �
√

�2
�2 − 8

)

This definition allows precluding negative non-physical values of the Young modulus if 0 ≤ � <
√

�2−8
�2

.

Random variable distribution mean value standard deviation
�1 Gaussian m1 �1
�2 Gaussian m2 �2

TABLE 1 Statistical properties of the random variables

The limit state function is given by
G(�1, �2) = uc − u(L, �1, �2)

The analytical expression of the quantity of interest is easily available

u(L, �1, �2) =
F (�2)L
E(�1)S

The PDF f in this example is given as a function of the mean values and the standard deviations of �1, �2.

f (�1, �2;m1, �1, m2, �2) =
2
∏

i=1

1
√

2�i
exp

(

−1
2

(

�i − mi
�i

)2
)

(28)

The family of PDF to be optimized for the parameter � = (m̃1, �̃1, m̃2, �̃2) will be defined by

ℎ(�1, �2; m̃1, �̃1, m̃2, �̃2) =
2
∏

i=1

1
√

2�̃i
exp

(

−1
2

(

�i − m̃i
�̃i

)2
)

(29)

As an example we consider the following values:

• Geometrical values: L = 1, S = 0.1.

• Young’s modulus: E0 = 200, � = 0.3, m1 = 0, �1 = 1.

• Applied traction: m2 = 1, �2 = 0.1.

• Critical displacement: uc = 0.1

A standard Monte-Carlo method with 106 samples gives an estimate P̂f = 1.48 × 10−4, with a relative deviation � = 8.2%.
With 107 samples we obtain an estimate P̂f = 1.54 × 10−4, with a relative deviation � = 2.5%. For the IS method based on CE
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k Gk m̃1 �̃1 m̃2 �̃2
1 0.058 0 1 0.5 0.1
2 0.022 −1.64 0.66 0.56 0.086
3 0.00014 −2.59 0.37 0.64 0.060
4 0 −3.10 0.46 0.73 0.055

TABLE 2 Convergence of the CE optimization

optimization we use the following parameters: � = 0.1, NCE = 103 and NIS = 104. Table 2 displays the results of the CE
optimization.
Using the estimated optimal parameter vector �4 = (−3.10, 0.46, 0.73, 0.055), the final iteration with NIS = 104 samples

gives an estimate of P̂ IS
f = 1.51 × 10−4, with a relative deviation � = 1.5%. In this case for an equivalent relative deviation we

have reduced our simulation effort by a factor 103. However, in practical mechanical computation it is mandatory to reduce the
cost of generation of each sample. The aim of the section 4, is to introduce the so-called reduced basis method.

4 REDUCED BASIS METHOD

The purpose of a Reduced Basis Method is to provide a fast evaluation urb(�) of the value of the displacement field uℎ(�) and
hence a fast evaluation Q(urb(�);�) of any quantity of interest Q(uℎ(�);�). In this section we recall a classical displacement
approach which consists in performing a Galerkin projection onto a reduced basis space that is assumed to represent accurately
the solutions of the problem to be solved. The construction of this reduced basis space, that will be detailed in section 5, is
aimed to control the accuracy of the computed failure probability. To control this accuracy we define and compute an error
estimator which is an upper bound of the error on the quantity of interest |Q(uℎ(�);�) − Q(urb(�);�)|. The computation of
this upper bound necessitates the construction of a stress field that satisfies the finite element equilibrium equations (Equations
7). Following the approach developed in21, in order to obtain a fast evaluation of this stress field, we propose in section 4.1 to
build, from the displacement reduced basis, a stress reduced basis which satisfies the finite element equilibrium equations. In
this paper, we use a reduced basis strategy which permits to control the quality of the reliability analysis which was proposed
in21. We present the main ingredients of this strategy in the following subsections.

4.1 Offline Phase
Let udir ∈ ℎ be a displacement field such that udir|ΓD = ud . Let us introduce a set of samples in the parameter space Ns =
{�1,… ,�Ns}, where �n ∈ , and for each �n compute a finite element solution u0ℎ(�

n) in  0
ℎ described by the corresponding

vector of nodal values qn.

a(u0ℎ(�
n),u∗ℎ;�

n) = f (u∗ℎ;�
n) − a(udir,u∗ℎ;�

n) ∀u∗ℎ ∈  0
ℎ (30)

On this space, following37,38,39, we perform a Gram-Schmidt orthonormalization process for the inner product a(u, v; �̄) (�̄ being
a fixed value of the random vector which is selected a priori as shown in Section 5.1). The reduced basis space is then defined by

 0,Ns
rb = span {�1,… ,�Ns} ⊂  0

ℎ (31)

The choice of the samples in the parameter space Ns and of the associated reduced basis  0,Ns
rb depends on the sampling

strategy (see38 for more details).

To construct the stress reduced basis, we follow the method presented in21. The first step consists in building a stress �neu(�)
which verifies the F.E. equilibrium (Equation 7) for all � in  (We refer the reader to21 for more details about the construction
of �neu(�)). Let us consider the set of stress fields computed from the snapshot solutions (Equation 30)

�nrb = C(�n)"(u0ℎ(�
n) + udir) for n ∈ {1,… , Ns} (32)

and the set of stress fields defined by
Δ�nrb = �

n
rb − �neu(�

n) (33)
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It follows that {Δ�nrb, for n ∈ {1,… , Ns}} is a set of stress fields equilibrated to zero in the FE sense. An orthonormal basis
0,Ns
rb = {�1,… , �Ns} is built from Δ�nrb by a Gram-Schmidt process with respect to an internal product ∫Ω �1 ∶ C

−1(�̄)�2 dΩ.

4.2 Online Phase
The reduced basis approximation consists in solving Equation (5) in  0

rb + {udir}. A key point to justify the use of the reduced
basis approximation is thatNs is assumed to be much smaller than the number of degree of freedom of the F.E. modelNFE (i.e.
Ns << NFE). The reduced basis solution for the displacement field writes

urb(�) = udir +
Ns
∑

n=1
�n�n (34)

The coefficients �n are computed by solving

a(u0rb(�),u
∗
rb;�) = f (u

∗
rb;�) − a(udir,u

∗
rb;�) ∀u∗rb ∈  0

rb (35)

which leads to an algebraic system
[K(�)] [�] = [F(�)] (36)

The elements of [K(�)] and of [F(�)] are defined by

Kij(�) = a(�i,�j ;�) and Fi(�) = f (�i;�) (37)

Thanks to the decomposition (Equation 10) of C, b and T, Kij and Fi can be written as a linear combination of the functions
Θcq(�), Θ

b
q(�) and Θ

T
q (�)

Kij(�) =
Qc
∑

q=1
K̄ijqΘqc (�) and Fi(�) =

Qb
∑

q=1
b̄iqΘbq(�) +

QT
∑

q=1
T̄iqΘTq (�) (38)

where
K̄ijq = ∫

Ω

C̄q"(�i) ∶ "(�j)dΩ, b̄iq = ∫
Ω

b̄q .�idΩ, and T̄iq = ∫
ΓN

T̄q .�idΓ

The reduced basis solution for the stress field writes

�erb(�) = �neu(�) +
Ns
∑

n=1
�n�n (39)

The coefficients �n are computed in order to minimize a distance between the stress field �rb(�) computed from the reduced
basis solution urb(�) through the constitutive equation (�rb(�) = C(�)"(urb(�))) and �erb(�)

�erb(�) = argmin
(�1,...,�Ns )

�(�) (40)

where
�(�) = ∫

Ω

(�rb(�) − �erb(�)) ∶ C
−1(�)(�rb(�) − �erb(�)) dΩ (41)

The minimization of Equation (40) leads to the algebraic system

[S(�)] [�] = [G(�)] (42)

The elements of [S(�)] and of [G(�)] are defined by

Sij = ∫
Ω

C−1(�)� j ∶ � i dΩ (43)

and
Gi = ∫

Ω

� i ∶ ("(urb) − C−1(�)�neu(�)) dΩ (44)

Thanks to the decompositions (Equation 10) and (Equation 11) Sij andGi can be written as a linear combination of the functions
Θsq(�), Θ

b
q(�) and Θ

T
q (�)

Sij =
Qs
∑

q=1
S̄ijqΘsq(�)
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Gi = c̄i0 +
Ns
∑

j=1
c̄ij�j −

Qs
∑

j=1

( Qb
∑

q=1
b̄ijqΘsj(�)Θ

b
q(�) +

QT
∑

q=1
T̄ijqΘsj(�)Θ

T
q (�)

)

where
S̄ijq = ∫

Ω

Sq� i ∶ � j dΩ, c̄i0 = ∫
Ω

� i ∶ "(udir) dΩ, c̄ij = ∫
Ω

� i ∶ "(�j) dΩ

and
b̄ijq = ∫

Ω

� i ∶ S̄jC(�̄)"(ubq)dΩ, T̄ijq = ∫
ΓN

� i ∶ S̄jC(�̄)"(uTq )dΓ

4.3 Error estimator and bounds on the quantity of interest
The computation of error bounds on linear Quantities of Interest (QoI) has been developed by many authors40,41,42,43,44 for
measuring the gap between an exact QoI and a QoI computed from a finite element analysis. The error bounds between a QoI
computed from a finite element analysis and a QoI computed by a reduced modeling approach have been studied since early
200045,16,19,46,47. In this paper, we use the bounds proposed in48,21 within the framework of the application of the error in the
constitutive relation to reduced basis computations. These bounds are obtained by using the parallelogram inequality as proposed
in41,45.
For any realization of the random vector � the error introduced by the reduced approximation is given by

erb(�) = uℎ(�) − urb(�) (45)

due to the linearity assumption, one has

Q(erb(�);�) = Q(uℎ(�);�) −Q(urb(�);�) (46)

Following44, we consider the following auxiliary problem: find uauxℎ ∈  0
ℎ such that:

a(u∗ℎ,u
aux
ℎ (�);�) = Q(u∗ℎ(�);�) ∀u∗ℎ ∈  0

ℎ (47)

and its solution uauxrb in the reduced basis

a(uauxrb (�),u
∗
rb;�) = Q(u

∗
rb;�) ∀u∗rb ∈  0

rb (48)

It can be shown that (we refer the reader to43,49,48,21 for more details)

−e−rb(�) ≤ Q(erb(�);�) ≤ e+rb(�) (49)

where
e+rb(�) =

1
2

(

‖�erb(�) − �rb(�)‖�,� ‖�
aux,e
rb (�) − �auxrb (�)‖�,�+ < �

e
rb(�) − �rb(�),�

aux,e
rb (�) − �auxrb (�) >�,�

)

e−rb(�) =
1
2

(

‖�erb(�) − �rb(�)‖�,� ‖�
aux,e
rb (�) − �auxrb (�)‖�,�− < �

e
rb(�) − �rb(�),�

aux,e
rb (�) − �auxrb (�) >�,�

)

�rb(�) and �auxrb (�) are the stresses computed from the reduced basis solutions urb(�) and uauxrb (�) through the constitutive
equation, �erb(�) and �

aux,e
rb (�) are stress fields equilibrated in the FE sense which are computed, for a given value of �, as

proposed in section (4.2). ‖�‖�,� is defined by

‖�‖2�,� =< �, � >�,� with < �1, �2 >�,�= ∫
Ω

�1 ∶ C−1(�)�2 dΩ

From Equations (46) and (49) it follows that the quantity of interest Q(uℎ(�);�) is bounded by

Q(urb(�);�) − e−rb(�) ≤ Q(uℎ(�);�) ≤ Q(urb(�);�) + e+rb(�) (50)

Remark: If Q does not depend linearly on uℎ, bounding of the quantity interest is much more difficult and there are few works
addressing the subject (see37,19 for quadratic outputs or50 for mean von Mises stress over a subdomain).
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4.4 Bounds of the limit state and on the failure probability
The approximate limit state function computed from the reduced basis analysis is

Grb(�) = R(�) −Q(urb(�);�) (51)

The approximate failure probability computed by a Monte-Carlo method is given by

P̂ rb
f = 1

NMC

NMC
∑

n=1
1(Grb(�)≤0)(�

n) (52)

and from Equation (50) the following computable bounds of the limit state function G(�) are obtained

G−rb(�) ≤ G(�) ≤ G+rb(�) (53)

where
G−rb(�) = Grb(�) − e

+
rb(�) and G

+
rb(�) = Grb(�) + e

−
rb(�) (54)

Let us introduce the failure domain associated with the lower bound and the upper bound of the limit-state function and the
associated failure probabilities

+
f = {�; Grb(�) − e

+
rb(�) ≤ 0} and 

−
f = {�; Grb(�) + e

−
rb(�) ≤ 0}

P̂ +f =
1

NMC

NMC
∑

n=1
1+

f
(�n) and P̂ −f =

1
NMC

NMC
∑

n=1
1−

f
(�n) (55)

As −
f ⊂ f = {�;G(�) ≤ 0} ⊂ +

f we obtain the following bounds for the failure probability

P̂ −f ≤ P̂f ≤ P̂ +f (56)

Remark: It must be noticed that the obtained bounds concern the failure probability P̂f computed from aMonte-Carlo algorithm.
The quality of the Monte-Carlo estimator will be classically assessed in the examples presented in section 6 via the central limit
theorem and the computation of the relative deviation � (Equation 16).
Furthermore, to control the reduced basis algorithm an error estimator "G(�), which is an upper bound on the error on the

limit state function eG(�) = |G(�) − Grb(�)|, is introduced

eG(�) ≤ "G(�) = max(e−rb(�), e
+
rb(�)) (57)

Properties:

1. If for all �n, "G(�n) = 0 then P̂ −f = P̂
+
f = P̂f .

2. If P̂ −f = P̂
+
f then "G(�n) = 0 for all �n and P̂f = P̂ −f = P̂

+
f .

5 REDUCED BASIS ALGORITHM FOR RARE EVENTS SIMULATIONS

The Monte-Carlo method (see Section 2.2 and Equation 15) is the reference method to compute the failure probability. To
evaluate a failure probability Pf = 10−n with a relative deviation � = 10% the Monte-Carlo method necessitates 10n+2 FOM
computations. To reduce the computational effort it is interesting to introduce reduced ordermodels based on the RBmethod20,21.
As shown in Section 4, this method involves the construction of a basis (the so-called reduced basis). The construction of this
reduced basis can be performed offline in a training space as proposed in20 or adaptively during the Monte-Carlo simulation
as proposed in21. In any case 10n+2 ROM computations are performed in order to evaluate the failure probability Pf . For rare
events simulations, it is mandatory to reduce not only the cost of the computations but also their number. The method developed
here proposes to reduce the number of samples needed by using an IS estimator along with the reduced basis approximation.
In Section 3, we presented the CE method for computing an IS optimized distribution. The idea of the method proposed in this
paper is to build the reduced basis while the iterations of the CE method are performed. As, at each iteration k the optimization
process involves only the samples � such that the limit-state function G(�) is below a given threshold Gk (Equation 26), the
reduced basis approximation is improved only when these samples are not computed with a sufficient accuracy in the actual
reduced basis.
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Compared to a classical MC-IS algorithm, the advantage of the proposed algorithm is that the computations of the IS failure
probability is done with a ROM rather than a FOM. Compared to a classical MC-RB algorithm, the advantage of the proposed
algorithm is that the number of computations of Monte-Carlo samples performed in the ROM is greatly reduced.

1. Offline stage : Construct the reduced bases while performing the iterations of the CE algorithm.

2. Online stage : Compute the importance sampling estimator, together with its inferior bound and superior bound, with the
reduced bases defined in step 1.

5.1 Offline stage
The initial step of the algorithm consists in computing a displacement field udir satisfying the boundary conditions (Equation 6)
and a stress field �neu(�) satisfying the equilibrium in the FE sense (Equation 7). The computation of udir and �neu(�) involves
the choice of a particular value of � denoted �̄, a simple choice is to use the mean value of the random vector �̄ = Ef [�]. This
value will also be used in the Gram-Schmidt orthonormalization algorithm. The idea is to construct the reduced bases along
with the CE optimization process. For each sample �n generated during the CE optimization, an approximate solution urb(�n)
of uℎ(�n) is computed in the reduced basis space 0,nrb

rb . The approximate limit state function Grb(�n) is computed as well as its
upper bound G+rb(�

n) and lower bound G−rb(�
n). Two cases must be distinguished:

• If G−rb(�
n) > Gk−1 then G(�n) > Gk−1 and this sample will not contribute to the optimization problem (Eq 58).

• If G−rb(�
n) ≤ Gk−1 this sample may or may not contribute to the optimization problem (Eq 58).

In the first case the quality of value ofGrb(�n) provided by the reduced basis
0,nrb
rb is sufficient and the simulations are continued

on the same reduced basis. In the second case, the reduced bases 0,nrb
rb and 0,nrbrb are improved only if the error estimator on the

limit state function is greater than a fixed tolerance "G(�n) ≥ �CE ; in this case the problem is solved in the finite element space
and new reduced basis spaces 0,nrb+1

rb and 0,nrb+1rb are constructed. When the values ofG(�1), ..., G(�NCE ) have been computed,
we compute their �-quantileGk and we optimize the parameters � in order to minimize the Kullback-Leibler divergence between
the auxiliary PDF ℎ� and the optimal auxiliary PDF for the limit-state function defined by the threshold Gk: G(�) = Gk. The
algorithm is given in Algorithm (2).
It must be noticed that the reduced bases are constructed iteratively for decreasing thresholds G1 > G2 > ... > Gk > 0,

whereas our actual limit-state function is defined byG(�) = 0. To obtain bases which accurately describe the limit-state function,
a new iteration of the optimization process is added. In this iteration, we add vectors in the reduced bases when the RB accuracy
is insufficient to certify the state of the structure, and we optimize the parameters � in order to minimize the Kullback-Leibler
divergence between the auxiliary PDF ℎ� and the optimal auxiliary PDF for the limit-state function G(�) = 0. The algorithm is
given in Algorithm 4. In this stage, the reduced bases are increased when the error estimator on the limit state function is greater
than a fixed tolerance �LCE with �LCE ≤ �CE , in order to describe accurately the limit-state defined by G(�) = 0.

5.2 Online stage and error assessement
During the online stage, the optimized values �∗ of the � parameters are used to generate the random variables such that a
sufficient number of samples are in the failure domain. And the values of the limit-state function and its bounds are computed
in the reduced bases computed along with the CE optimization which have been constructed to accurately represent the limit
state function. The algorithm is given in Algorithm 5.

Then, the failure probability and the bounds are estimated by

P̂ rb,IS
f = 1

NIS

NIS
∑

n=1
1(G(�n)≤0)

f (�n)
ℎopt(�n)

, P̂ +,ISf = 1
NIS

NIS
∑

n=1
1(G−rb(�n)≤0)

f (�n)
ℎopt(�n)

and P̂ −,ISf = 1
NIS

NIS
∑

n=1
1(G+rb(�n)≤0)

f (�n)
ℎopt(�n)

(60)
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Algorithm 2 Pseudocode for the CE optimization algorithm

input: the PDF f ,NCE (number of samples used for the CE optimization), �CE (Acceptable error on the estimation of the
limit state function : G(�) ≤ Gk), � a parameter in [10−2, 10−1]
output:  0,nrb

rb , 0,nrbrb and ℎopt

Define ℎ0 = f . Set G0 such that G0 > 0.
Set k = 0 (iteration counter).
Generate a random sample � according to the probability density ℎ0. Compute uℎ(�) on the finite element mesh. Compute
�1 = uℎ(�)−udir and �1 = �ℎ(�)−�neu(�). Initialize the reduced bases

0,1
rb = span {�1} and 0,1rb = span {�1}. Set nrb = 1.

while Gk > 0 do
Set k = k + 1
GenerateNCE random samples �1, ..., �NCE according to the probability density ℎk−1
for n = 1, NCE do

Compute Grb(�n), G−rb(�
n), G+rb(�

n) and "G(�n) by Algorithm (3)
if "G(�n) ≥ �CE and G−rb(�

n) ≤ Gk−1 then
Compute G(�n) on the finite element mesh. Increase the reduced bases  0,nrb

rb and 0,nrbrb . Set nrb = nrb + 1 and
Grb(�n) = G(�n).

end if
end for
Compute Gk = max(0, G�), where G� is the �-quantile of Grb(�1), ..., Grb(�NCE )
Use �1, ..., �NCE to solve

�∗ = argmax
�

1
NCE

NCE
∑

n=1
1(Grb(�n)≤Gk)

f (�n)
ℎk−1(�n)

lnℎ�(�n) (58)

Set �k = �∗ and ℎk = ℎ�k .
end while
Set ℎopt = ℎk

Algorithm 3 Pseudocode for the computation of Grb(�), G−rb(�), G
+
rb(�) and "G(�

n)

input: �,  0,nrb
rb , 0,nrbrb

output: Grb(�), G−rb(�), G
+
rb(�) and "G(�

n)

Compute urb(�) and uauxrb (�) in the reduced basis 
0,nrb
rb

Compute �erb(�) and �
aux,e
rb (�) in the reduced basis 0,nrbrb

Compute e−rb(�) and e
+
rb(�) from (49)

Compute "G(�n) from (57)
Compute Grb(�), G−rb(�) and G

+
rb(�) from (51) and (54)

6 NUMERICAL EXAMPLES

6.1 Example 1
In this first example, we aim at validating the algorithm by a comparison with a standard Monte-Carlo algorithm. We consider
a plate with two rectangular holes proposed in51. The structure is submitted, in plane strain, to a normal traction P = 10MPa
applied along the vertical edge and the plate is considered to be composed of three different materials. The symmetry of the
problem allows to study only one fourth of the plate as shown in Figure 2 .
The Poisson ratios are fixed �1 = �2 = �3 = 0.30. The Young’s moduli Ei are random independent variables such that their

PDF is lognormal with a mean valuemE = 200GPa and a standard deviation �E = 40GPa. The quantity of interest considered
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Algorithm 4 Pseudocode for the last iteration of the CE optimization algorithm

input: the PDF f ,NCE (number of samples used for the CE optimization), �LCE (Acceptable error on the estimation of the
limit state function),  0,nrb

rb , 0,nrbrb and ℎopt the optimized density probability computed by Algorithm (2)
output:  0,nrb

rb , 0,nrbrb and ℎopt

Generate a random sample �1, ..., �NCE
according to the probability density ℎopt

for n = 1, ..., NCE do
Compute Grb(�n), G−rb(�

n), G+rb(�
n) and "G(�n) by Algorithm (3)

if G+rb(�
n) > 0 and G−rb(�

n) < 0 then
The RB accuracy is insufficient to certify the state of the structure
if "G(�n) > �LCE then

Compute G(�n) on the finite element mesh. Increase the reduced bases  0,nrb
rb and 0,nrbrb . Set nrb = nrb + 1 and

Grb(�n) = G(�n).
end if

end if
end for
Use �1, ..., �NCE to solve

�∗ = argmax
�

1
NCE

NCE
∑

n=1
1(Grb(�n)≤0)

f (�n)
ℎopt(�n)

lnℎ�(�n) (59)

Set ℎopt = ℎ�∗

Algorithm 5 Pseudocode for IS MC Algorithm

input: the PDF f ,NIS (number of samples used for the IS), 0,nrb
rb , 0,nrbrb and ℎopt the optimized density probability computed

by Algorithm (4)
output: P̂ rb,IS

f , P̂ +,ISf , P̂ −,ISf

SetN+
f = 0,Nf = 0,N−

f = 0
for n= 1,NIS do

Generate �n according to the probability density ℎopt
Compute Grb(�n), G−rb(�

n) and G+rb(�
n) by Algorithm (3)

if G+rb(�
n) ≤ 0 then

Compute wn =
f (�n)
ℎopt(�n)

,N+
f = N

+
f +wn,N rb

f = N rb
f +wn,N−

f = N
−
f +wn,

else if Grb(�n) ≤ 0 then
Compute wn =

f (�n)
ℎopt(�n)

,N+
f = N

+
f +wn,N rb

f = N rb
f +wn,

else if G−rb(�
n) ≤ 0 then

Compute wn =
f (�n)
ℎopt(�n)

,N+
f = N

+
f +wn,

end if
end for
Compute P̂ rb,IS

f = Nf

NIS
, P̂ +,ISf =

N+
f

NIS
, P̂ −,ISf =

N−
f

NIS

here is the average displacement on the line L!.

Q(u(�),�) = 1
mes(L!) ∫

L!

u(�).n!dl

The limit state function is given by
G(�) = ū −Q(u(�),�)
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FIGURE 2 Example 1: Thick plate studied

where ū is set to 7.3 × 10−5. A standard Monte-Carlo method (SMC1) with N1
MC = 5 × 104 samples gives an estimate P̂f =

2.68 × 10−3 with a relative deviation � = 8.6%. With N2
MC = 5 × 105 (SMC2) samples, we obtain P̂f = 2.34 × 10−3 with

a relative deviation � = 2.9%. For constructing the reduced bases and the CE optimization, we use the following parameters:
� = 0.1,NCE = 500, �CE = 7.3×10−6 and �LCE = 7.3×10

−7. At the end of the first step of optimization process (Algorithm 2),
we obtain reduced bases of dimension 3, and the evolution of the PDF parameters presented in Table 3 . During the last step of
optimization process (Algorithm 4) the dimension of the reduced bases increases to 5. The optimized PDF parameters are given
in Table 4 .

k Gk m̃E1 �̃E1 m̃E2 �̃E2 m̃E3 �̃E3
1 1.51 × 10−5 200 40 200 40 200 40
2 3.16 × 10−6 151.9 17.8 194.3 40.7 162.8 28.8
3 0 127.9 12.7 191.2 37.5 147.1 18.2

TABLE 3 Convergence of the CE optimization

k Gk m̃E1 �̃E1 m̃E2 �̃E2 m̃E3 �̃E3
4 0 115.6 11.5 201.4 42.6 145.6 22.6

TABLE 4 Convergence of the CE optimization last iteration

Using the estimated optimal parameter vector �4 = (115.6, 11.5, 201.4, 42.6, 145.6, 22.6) and the size 5 reduced bases with
NIS = 5×103 samples gives an estimate of P̂ rb,IS

f = 2.48×10−3, with a relative deviation � = 5.1%. We obtain as well a lower
bound of the failure probability P̂ −,ISf = 2.30 × 10−3 and an upper bound P̂ +,ISf = 2.52 × 10−3. We observe that, while 5 × 104
FOM resolutions are needed a standard MC method (SMC1) to obtain a relative deviation of � = 8.6%, the proposed algorithm
necessitates only 5 FOM resolutions to compute the RB and the IS optimized density during the offline stage and 5 × 103 ROM
resolutions to compute the failure probability during the online stage. Compared to a standard MC method, the number of finite
element simulations has been reduced by a factor 104 and the number of Monte-Carlo throws (during the online stage) has been
reduced by a factor 10.

6.2 Example 2
The second example concerns a composite structure composed of two layers linked by an interface as shown on Figure 3 . The
structure is submitted, in plane strain, to a uniform normal traction P applied along the lower and upper surfaces. The determin-
istic parameters are the value of the traction P = 9.2MPa, the crack length a = 0.15, the length of the structure L = 0.6, the
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FIGURE 3 Example 2: Composite structure studied

FIGURE 4 Example 2: Composite structure mesh

Random Variable Distribution Mean value (GPa) Standard deviation (GPa)
EF1−3 LogNormal 100 20
EF4 LogNormal 20 4
EM LogNormal 10 2
EI LogNormal 1 0.2

TABLE 5 Example 2: Statistical properties of the random variables

thickness of the layers eL = 0.14, the thickness of the interface eI = 0.02, the radius of the fibers r = 0.05 and their positions.
The random parameters, as defined in Table 5 , are the Young’s moduli of the materials � = (EF1, EF2, EF3, EF4, EM , EI )
(where Fi denotes the fibers,M the matrix and I the interface). The Poisson ratio’s are set to 0.3. Figure 4 shows the 6-node
triangular mesh used for the finite element analysis.
The Quantity of Interest is the mean value of the �yy over the subdomain ! and the limit state function is given by

G(�) = R − 1
mes(!) ∫

!

�yy(�)d! (61)

where R is a deterministic value set to 180MPa.
A standard Monte-Carlo method (SMC1) with 107 samples gives an estimate P̂f = 3.16 × 10−4 with a relative deviation

� = 1.8%. For constructing the reduced bases and the CE optimization we use the following parameters: � = 0.1, NCE = 500,
�CE = 18MPa and �LCE = 1.8MPa. The optimization process converges in 4 iterations (Algorithms 2 and 4) and we obtain
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reduced bases of dimension 9. The optimized PDF parameters are given in Table 6 . Using optimized PDF parameters and the
size 9 reduced bases with NIS = 104 samples gives an estimate of P̂ rb,IS

f = 3.19 × 10−4, with a relative deviation � = 2.9%.
We obtain as well a lower bound of the failure probability P̂ −,ISf = 2.81 × 10−4 and an upper bound P̂ +,ISf = 3.72 × 10−4.
To compare with a Monte-Carlo simulation performed by a RB without CE optimization, we run the Monte-Carlo simulation
with the reduced basis approximation computed during the offline step and the initial PDF f , and we compute the failure
probability P̂f with the Monte-Carlo estimator (Equation 15). The number of samples used is NMC = 4 × 106, and we obtain
P̂f = 3.12 × 10−4, with a relative deviation � = 2.8%. In this case, we have reduced the number of computations of the ROM
during the online phase by a factor 4 × 102.

Random Variable EF1 EF2 EF3 EF4 EM EI
Mean Value (GPa) 95.9 97.8 113.0 15.76 8.10 1.84
Standard deviation (GPa) 19.6 19.4 27.2 2.88 2.19 0.25

TABLE 6 Example 2: optimized PDF parameters

Two series of tests are performed to check the robustness of the failure probability estimate. The algorithm is run 10 times
with the following parameters � = 0.1, NCE = 500, NIS = 104, �CE = 18MPa, �LCE = 1.8MPa, then with the same

parameters but with a smaller tolerance �CE = 1.8MPa, �LCE = 0.18MPa. The evolution of the ratio r =
P̂ rb,ISf

P̂f
for the two

set of computations is shown in Figure 5 . It can be observed that the ratio is very sharp varying from 0.9 to 1.1 and that the
estimate becomes more reliable when the tolerance decreases. For �LCE = 1.8MPa the size of the reduced bases varies from 9
to 10 for the different runs and for �LCE = 1.8MPa the size of the reduced bases varies from 15 to 17. Figure 6 displays the
variation the failure’s probability bounds ( P̂ +,ISf and P̂ −,ISf ) for 10 runs and shows that the bounds gaps become narrower as
the tolerance decreases.
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0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
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FIGURE 5 Evolution of r =
P̂ rb,ISf

P̂f
for 10 runs

Figure 7 shows the relative deviation � as a function of NIS the number of sampling points. In this case, we have built
the optimized PDF and the reduced basis with the following parameters: � = 0.1, NCE = 500, �CE = 0.18MPa, �LCE =
0.018MPa, leading to nrb = 28. It can be observed that in this case 103 samples are sufficient to obtain a relative deviation
inferior to 10%.
Table 7 shows the evolution of the failure probability and the evolution of the number of the elements in the reduced bases

when loading P decreases. The algorithm is run with the following parameters: � = 0.1, NCE = 500, NIS = 104, �CE =
1.8MPa, �LCE = 0.18MPa. The failure probability decreases rapidly with the force drop. However, it can be seen that there is
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FIGURE 6 Variation of the failure’s probability bounds ( P̂ +,ISf and P̂ −,ISf ) for 10 runs

101 102 103 104 105

Number of samples

0%

10%

20%

30%

40%

Re
la

tiv
e 

de
vi

at
io

n

FIGURE 7 Evolution of the relative deviation � as a function ofNIS

no increase of the number of elements in the reduced bases and that less than 20 FE computations are sufficient to accurately
estimate the failure probability. The relative deviation remains stable between 3% and 5%. If we consider that 109 finite element
computations would be necessary to estimate the 7.4 × 10−8 failure probability we observe that the number of finite element
computations is reduced by a factor 5 × 107 and the number of computations in the reduced basis by a factor 105.

P (MPa) 9.2 9.0 8.8 8.6 8.4 8.2
P̂ rb,IS
f 3.2 × 10−4 8.4 × 10−5 1.89 × 10−5 3.4 × 10−6 5.6 × 10−7 7.4 × 10−8

P̂ +,ISf 3.7 × 10−4 8.6 × 10−5 1.94 × 10−5 3.6 × 10−6 6.3 × 10−7 7.8 × 10−8

P̂ −,ISf 2.8 × 10−4 8.1 × 10−5 1.86 × 10−5 3.3 × 10−6 5.1 × 10−7 7.1 × 10−8

Relative deviation � (%) 2.9 2.9 4.0 3.6 4.7 3.0
CE number of iterations 4 4 5 5 5 6

Nmax
s 15 16 17 18 16 19

TABLE 7 Computed failure probability and bounds
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7 CONCLUSIONS

In this paper, we have developed an adaptive computational strategy aiming to compute the failure probability of a structure in
the context of rare events simulations. We use a cross-entropy method to construct an optimized probability density function for
the importance sampling estimator. A surrogate model based on a reduced basis approach is constructed during the cross-entropy
optimization and the reduced basis vectors are chosen in order to control the quality of the estimation of the limit state function.
In the numerical examples, we show that the algorithm permits estimating failure probabilities from 10−4 to 10−7 with less

than 20 finite elements computations during the offline phase and only 104 calls to the surrogate model during the online
phase. Finally, bounds of the Monte-Carlo estimator are computed which permit to assess the quality of the reduced basis. It
is interesting to note that a possible improvement of the algorithm would be to use the bounds of the Monte-Carlo estimator to
add vectors in the reduced basis during the online process in order to prescribe certified bounds for the estimate of the failure
probability.
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