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Abstract—In this paper, we focus on the problem of low rank
signal subspace estimation. Specifically, we derive new subspace
estimator using the Bayesian minimum mean square distance
formulation. This approach is useful to overcome the issues
of low sample support and/or low signal to noise ratio. In
order to be robust to various signal distributions, the proposed
Bayesian estimator is derived for a model of sources plus outliers,
following both a compound Gaussian distribution. In addition,
the commonly assumed complex invariant Bingham distribution
is used as prior for the subspace basis. Finally, the interest of the
proposed approach is illustrated by numerical simulations and
with a real data set for a space time adaptive processing (STAP)
application.

Index Terms—Subspace estimation, Bayesian estimation, min-
imum mean square distance, compound Gaussian, complex in-
variant Bingham distribution, STAP.

I. INTRODUCTION

An ubiquitous problem in statistical signal processing is to
infer the low rank signal subspace where the information lies
in. It is a fundamental problem with widespread applications
such as PCA [1], interference cancellation [2] and direction
of arrival (DoA) estimation [3].

Classically, the subspace estimator is derived from the
singular value decomposition (SVD) of the sample covariance
matrix (SCM) by extracting its leading eigenvectors. The latter
corresponds to the maximum likelihood (ML) estimator in
a Gaussian setting. This estimation process presents good
performance at high signal to noise ratio (SNR) or for large
number of samples. However, outside these standard regimes,
the latter usually exhibits poor performance. Additionally, it
is not robust to the presence of outliers and/or heavy tailed
distributed observation.

First, a possible solution to overcome the sensitivity to low
SNR and/or small number of samples is to introduce prior
information on the subspace of interest. More specifically, sev-
eral approaches adopted a Bayesian setting in the estimation
process. Notably, the minimum mean square distance (MMSD)
approach showed its interest in the non standard regimes [4],
[5]. The MMSD minimizes the average Euclidean distance
between the true subspace and its estimate, which is a natural
formulation for the problem of subspace estimation.

Second, to overcome the robustness issue, a possible alter-
native is to consider the compound Gaussian (CG) distribution
modeling [6]. Such family of distributions provides a good fit
to non Guassian real data [7] and allows to develop robust
estimation procedures [8]–[10].

In order to enjoy best of both the CG modeling and the
Bayesian subspace estimation approaches, we derive a new
MMSD estimator for the data modeled as a CG distributed sig-
nal of interest embedded in heterogeneous noise (CG outliers
plus white Gaussian noise) [11]. For this model, the complex
invariant Bingham (CIB) [12] is considered as a prior of the
subspace of interest.

We adopt the following notations: the operator Tr{.} stands
for the trace of a given matrix and E{.} is the expectation
operator, etr{.} is the exponential of the trace of a given ma-
trix, ∝ stands for “proportional to”, det(.) is the determinant
operator, PP {.} is an operator which extracts the P strongest
eigenvectors of a given matrix, diag(.) is a diagonal matrix
built from a given vector and UNP =

{
U ∈ CN×P |UHU = I

}
is the set of N × P unitary matrices. {wn}n∈1...N denotes
the set of vectors wn,∀n ∈ {1 . . . N}, this writing is often be
contracted in {wn} and d

= stands for “has the same distribution
as”.

II. BACKGROUND

A. Compound Gaussian distribution

The CG distribution is commonly used in signal processing
applications for its good fit to real data [7]. It encloses a
large panel of distributions such as K-distribution, Weibull
distribution and student-t distribution [6]. A CG distributed
random vector s is denoted as s ∼ CG(0,Σ, τ) with

s
d
=
√
τg (1)

where, τ is a positive random scalar, called texture, g ∼
CN (0,Σ) is called the speckle. In this work, we assume that
there is no prior information on the texture probability density
function (pdf), and consider this parameter as deterministic
unknown. This relaxation provides more robustness to various
signal distributions [8], and such assumption has few impact
in terms of subspace estimation accuracy [13].

B. Complex invariant Bingham distribution

The CIB [12] is a probability distribution for a matrix U ∈
UNP that represents a subspace orthonormal basis. We denote
U ∼ CIB(κ, ŪŪH) when U has as pdf of the form

pCIB(U) ∝ etr
{
κUHŪŪHU

}
(2)

in which κ denotes the concentration parameter and the semi
unitary matrix Ū ∈ UNP represents the center of distribution.
We note that the pCIB(U) is invariant to post-multiplication



of U by any P × P unitary matrix Q. This means that pCIB
also characterizes a distribution for the subspace represented
by the orthogonal projector UUH , which is our main interest.

The inclusion of an appropriate Bayesian prior can signif-
icantly improve the performance of an estimation process.
However, the design of this prior depends on the consid-
ered application and comes from relevant physical consid-
erations/models on the system. As an example, in radar
processing, a physical model of the response of the background
can be found in [14] and will be used to build a prior in the
application section V.

C. MMSD estimator

A natural distance between a subspace basis U and its
estimate Û can be defined by the Frobenius norm of the
difference between the range spaces spanned respectively
by these two basis. Based on this formulation, the MMSD
estimator is defined as

ÛMMSD = arg min
Û

E
{
‖ ÛÛH −UUH ‖2F

}
(3)

where the expectation operator is applied to all parameters in-
volved in the signal model. Based on [4], the MMSD estimator
of U can be reformulated as the P principal eigenvectors of
a given matrix M(p(U|Y)) as

ÛMMSD = PP {M(p(U|Y))} (4)

with
M(p(U|Y)) =

∫
UUHp(U|Y)dU. (5)

The expression of the above matrix depends on the posterior
probability distribution of U, which is related to both its
prior distribution and the signal model. In the following, we
will present a model for data distributed as a CG signal of
interest embedded in heterogeneous noise (CG outliers plus
white Gaussian noise). We will then propose an algorithm to
compute the corresponding MMSD estimator.

III. PROPOSED ESTIMATOR

A. Data Model

Let us denote N the size of the data, K the number of
samples, and P the rank of signal subspace. Y ∈ CN×N the
data matrix and U ∈ UNP is the unknown orthonormal basis of
the signal subspace of interest. The data is modeled as a sum
of CG sources sk, white Gaussian noise nk and CG outlier ck.
For this model, the samples {yk} (the columns of Y) reads
as

yk = sk + ck + nk, ∀k ∈ [[1,K]] (6)

For each of the parameters, we will assume the following
distributions:
• The signal sk ∼ CG(0,ΣP , τk) lies in low rank subspace

of dimension P which is assumed pre-established1. The

1The proposed results can be applied using plug-in rank estimates or by
integrating physical prior knowledge on this parameter [15] (an example is
given in Section V).

SVD of the source scatter matrix is assumed to be ΣP =
UUH . Notice that, as done in [9], [11], the non-null
eigenvalues of ΣP are assumed to be equal to 1. The
hypothesis of eigenvalues equality is a relaxation that is
made for tractability purposes but still offers interesting
performance in practice [11]. Additionally, any scaling of
the signal CM is absorbed in the textures τk of the CG
distribution.

• The signal subspace orthonormal basis is distributed as
U ∼ CIB(κ, ŪŪH).

• The potential outlier is distributed as ck ∼ CG(0,Σc, βk),
with a covariance matrix defined by Σc = IN −UUH =
U⊥U⊥

H

, where U⊥ is orthonormal complement of the
source subspace basis. This outlier model is interesting
in terms of robustness since it corresponds to the less-
informative prior, as well as the worst-case outlier in
terms of subspace estimation.

• The additive noise nk is distributed as nk ∼
CN (0, σ2IN ). For the sake of clarity the variance σ2 is
assumed pre-estimated, but the generalization to unknown
σ2 is trivial.

These hypotheses lead to (yk|τk, βk,U) ∼ CN (0,Σk) with

Σk = τkUUH + βkU
⊥U⊥

H

+ σ2IN (7)

Then, the pdf of Y conditional to {τk}, {βk},U reads

p(Y|{τk}, {βk},U) =
K∏
k=1

p(yk|τk, βk,U)

∝
K∏
k=1

exp{−yHk Σ−1
k yk}

det(Σk)
(8)

Thanks to the Sherman Morisson Woodbury lemma, the ex-
pression of Σ−1

k is given by

Σ−1
k =

1

σ2 + βk
I− τk − βk

(σ2 + τk)(σ2 + βk)
UUH (9)

From (2) and (8), the posterior probability of
(U|Y, {τk}, {βk}) is expressed as

p (U|Y, {τk}, {βk}) ∝ p (Y|U, {τk}, {βk}) pCIB(U)

∝
K∏

k=1

exp{−yH
k Σ−1

k yk}
det(Σk)

pCIB(U)

∝
K∏

k=1

hkexp{
τk

σ2(σ2 + τk)
yH
k UUHyk}

∝
(

K∏
k=1

hk

)
etr{UHMU}etr

{
κUHŪŪHU

}

∝
(

K∏
k=1

hk

)
etr{UH(M + κŪŪH)U} (10)

with
hk =

1

(τk + σ2)P (βk + σ2)N−P

M = Ydiag
(

τ1 − β1

(σ2 + τ1)(σ2 + β1)
, . . . ,

τK − βK

(σ2 + τK)(σ2 + βK)

)
Y

H

In the following, we propose an iterative algorithm to compute
the MMSD estimator for such model.



B. MMSD Algorithm derivation
According to the data model (6) and the generic expression

of the MMSD (4), the subspace estimator of U is expressed
as the solution of the following optimisation problem

minimize
Û,{τk},{βk}

EY,U

{
‖ ÛÛH −UUH ‖2F

}
subject to τk ≥ 0, βk ≥ 0 ∀k

ÛHÛ = IP

(11)

This problem is hard to solve due to the non-convex constraints
and the expectation function. Therefore, we propose a block
coordinate descent algorithm that updates sequentially the
basis of interest U and the texture parameters {τk} and
{βk}. The algorithm has a guaranteed convergence in terms
of objective value and is summed up in the box Algorithm 1.

1) Update of the basis U: For fixed texture {τ tk} and {βtk},
the update of U is obtained by solving the following problem

minimize
Û

EY,U

{
‖ ÛÛH −UUH ‖2F

}
subject to ÛHÛ = IP

(12)

From (10) and (4), the expression of the updated orthonormal
basis Ût+1 reads

Ût+1 = PP

{∫
UUHp(U|Y, {τ tk}, {β

t
k})dU

}
= PP

{∫
UUHetr{UH(Mt + κŪŪH)U}dU

}
(13)

with

Mt = Ydiag
({

τ tk − βtk
(σ2 + τ tk)(σ2 + βtk)

})
YH (14)

Using Proposition 1 of [4] extended to the complex case, we
can obtain a closed form solution of the update as

Ût+1 = PP
{
Mt + κŪŪH

}
(15)

This update has the same complexity as the deterministic case
[11]. It does not require a Gibbs sampling step [4].

2) Update of textures {τk} and {βk}: For fixed basis Ût+1,
the update of texture {τk} and {βk} are the solutions of the
problem

maximize
{τk},{βk}

p(Y|Ût+1, {τk}, {βk})

subject to τk ≥ 0, βk ≥ 0 ∀k
(16)

The above problem is equivalent to minimizing the negative
log-likelihood as

minimize
{τk},{βk}

K∑
k=1

ln (det(Σk)) + yHk Σ−1
k yk

subject to τk ≥ 0, βk ≥ 0 ∀k
(17)

The objective function is separable in the τk’s and the βk’s.
Following the same methodology as in [11], the blocks {τ̂ t+1

k }
and {β̂t+1

k } are updated as

τ̂ t+1
k = max

(
yHk Ût+1Ût+1H

yk
P

− σ2, 0

)
, ∀k (18)

Algorithm 1: Robust MMSD subspace estimator

input : Y, Ū, σ2, P , K, N , κ
output : ÛMMSD, {τk}, {βk}
initialize: Û0, {τ0

k}, {β0
k}

1 while stop criterion unreached do
22 Update Ût+1 = PP

{
κŪŪH + Mt

}
33 Update τ̂ t+1

k = max
(

yH
k Ût+1Ût+1Hyk

P − σ2, 0

)
44 Update β̂t+1

k = max
(

yH
k Û⊥

t+1
Û⊥

t+1H

yk

N−P − σ2, 0

)
5 end

and

β̂t+1
k = max

(
yHk Û⊥

t+1

Û⊥
t+1H

yk
N − P

− σ2, 0

)
, ∀k (19)

In the following, we illustrate the interest of the proposed
approach through numerical simulations and STAP detection
application.

IV. NUMERICAL SIMULATIONS

A. Setup

The performance of the proposed estimator is illustrated
through Monte-Carlo simulations. We evaluate the average
fraction of energy (AFE) of a given estimator Û as

AFE(Û) = E{Tr{UHÛÛHU}}/P (20)

The AFE is considered since it evaluates the closeness of the
true range space UUH towards its estimate ÛÛH .

The data matrix Y is generated according to the model
in (6). The white Gaussian noise is generated as nk ∼
CN (0, σ2I). The signal follows a CG distribution as in (1)
with sk

d
=
√
τkgk ∀k, τk ∼ Γ(ν, 1

ν ), gk ∼ CN (0, αUUH),
and signal to noise ratio SNR=log( ασ2 ). When outliers are
present in a sample, they are generated as ck

d
=
√
βkdk ∀k,

βk ∼ Γ(ν′, 1
ν′ ), dk ∼ CN (0, γ(I − UUH)), and outlier to

noise ratio ONR=log( γσ2 ). The signal subspace basis follows
U ∼ CIB(κ, ŪŪH), where κ denotes the concentration
parameter and the center of distribution Ū is randomly chosen.

B. List of estimators

We compare the following estimators:
• ÛSCM: the estimator built from the SVD of the SCM.
• ÛMLE: the estimator from [11], corresponding to the MLE

estimator for the considered context, while assuming no
prior distribution on the orthonormal basis U.

• ÛMMSD-U: the MMSD estimator for uniformly distributed
sources [4].

• ÛMMSD-G: the MMSD estimator in presence of Gaussian
sources [5].

• ÛMMSD-CG: the proposed MMSD estimator detailed in the
box Algorithm 1.

• Ū is the center of distribution on U (non adaptive
estimator).
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Fig. 1. AFE w.r.t. number of corrupted samples for N=30, K=20, P=5,
ν = ν′=1, ONR=SNR=15dB, U ∼ CIB(κ, ŪŪH), κ = 60.

C. Results

Figure 1 displays the AFE of the different estimators w.r.t.
the number of corrupted samples where we distinguish two
types of samples: the corrupted ones, generated as yk =
sk + ck + nk, and the non corrupted ones, generated as
yk = sk + nk. In this context, the non-robust estimators
ÛSCM, ÛMMSD-U, and ÛMMSD-G exhibit poor performances due
to the presence of outliers. Conversely, the estimators ÛMLE
and ÛMMSD-CG, show a better resistance to sample corruptions
since they account for outliers in their derivation. The proposed
estimator ÛMMSD-CG reaches a better AFE than ÛMLE thanks
to the inclusion of the prior information.

Figure 2 displays the AFE in function of ONR where the
data are generated as: yk = sk+nk, ∀k ∈ [[1,K−1]] and only
the last sample contains an outlier as yK = sK + cK + nK .
In this scenario, the same conclusion as in Figure 1 can be
drawn. Interestingly, the proposed estimator ÛMMSD-CG can
exploit both the Bayesian prior information and the outlier
modeling to resist high ONR contexts.

V. APPLICATION

A. STAP detection

STAP is a technique used in airborne radar in order to
detect moving targets embedded in interference background
[14]. UnderH1 (a target is present) the K+1 available samples
are assumed to follow the model

H1 :

{
z0 = d + c0 + n0,

zk = ck + nk, ∀k ∈ [[1,K]]
(21)

For each sample k ∈ [[0,K]], we observe the contribution of
an additive noise, which is modeled as a sum of low rank
clutter ck embedded in white Gaussian noise nk. The sample
z0 is the tested cell which may contain a potential moving
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ÛSCM
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ÛMMSD-U
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Fig. 2. AFE w.r.t. ONR (in dB) for N=30, K=20, P=5, ν=ν′=1, SNR=10dB,
U ∼ CIB(κ, ŪŪH), κ = 60.

target d = αp with α is the amplitude and p is the steering
vector. In STAP, the steering vector p is parameterized by
the target speed and its DoA. Usually, a detection test is
performed over a grid (speed×DoA) in order to test for every
possibility. In general, the secondary data zk, ∀k ∈ [[1,K]] are
assumed to be i.i.d., signal outlier free, and are used in the
derivation of an adaptive detection process. However, we will
test the robustness of this process to corruption by targets in
the following.

B. Experimental setup

The data is provided by the French agency DGA/MI and
described in [16] (in french). We note that the ground clutter
response ck lies in low dimensional subspace spanned by the
orthonormal basis Uc of rank P , that can be evaluated thanks
to the Bernnan rule [17]. A common detection procedure in
this context is the use of the low rank adaptive normalized
matched filter (LR-ANMF):

Λ̂(Π̂c) =
|pHΠ̂

⊥
c z0|2

|pHΠ̂
⊥
c p||zH0 Π̂

⊥
c z0|

(22)

where Π̂c = ÛcÛ
H
c denotes the clutter subspace projector

(CSP) estimated from the secondary data, and Π̂
⊥
c is its

orthogonal complement. From (22), we note that the perfor-
mance detection of the LR-ANMF depends on accuracy of
the clutter subspace estimation step. We will compare the
following detectors:
• Λ̂SFPE where the CSP is built from the SVD regularized

Tyler’s estimator [18]. The regularization parameter is
chosen so that the best visible results are obtained.

• Λ̂MLE where the CSP is built from the robust estimator
proposed in [11].

• Λ̂MMSD where the CSP is built from the proposed MMSD
subspace estimator. The prior Ū of pCIB is computed from



Fig. 3. Output of the detectors for 1 (top) and 2 (bottom) corrupted sample(s) in the secondary data set. K ≈ 3P so K < N , P = 46, N = 256.

the SVD of the STAP covariance matrix model from [14].
The concentration parameter κ is adjusted manually since
the latter is unknown (adaptive estimation procedures
will be considered in future works). It is also worth
mentioning that this detector offers a trade-off between
the MLE detector ΛMLE (for κ = 0) and the “prior only”
detector Λprior(ŪŪH) (for κ→∞).

In our setup, the tested cell z0 contains 10 synthetic targets
that can be detected by applying the LR-ANMF over a grid
(speed×DoA). We will focus on a challenging scenario, where
few secondary data is available (K ≈ 3P < N ), and where
some of them are corrupted by the presence of the same targets
as in z0. We test the robustness to this corruption i.e., if targets
are still visible in the detector’s output.

C. Results
Figure 3 displays the output of the given detectors in

presence of 1 corrupted samples and 2 corrupted samples. All
of the tested detectors appear robust to a single corruption,
even with a challengingly low sample support. The use of the
physical prior in Λ̂MMSD appear to reduce (at least visually) the
false alarms in some areas. Most interestingly, the proposed
Λ̂MMSD allows for interference rejection and target detection
when more than one sample is corrupted, thanks to a robust
formulation that also includes prior knowledge.
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