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A B S T R A C T

This work deals with the free vibration analysis of laminated composite plates through a variable separation
approach. The displacement field is approximated as a sum of separated functions of the in-plane coordinates
x y, and the transverse coordinate z. This choice yields to a non-linear problem that can be solved by an iterative
process. That consists of solving a 2D and 1D eigenvalue problem successively. In the thickness direction, a
fourth-order expansion in each layer is considered. For the in-plane description, classical Finite Element method
is used.

A wide range of numerical tests involving several representative laminated and sandwich plates is addressed
to show the accuracy of the present LayerWise (LW) method. Different slenderness ratios and boundary con-
ditions are also considered. By comparing with exact or 3D FEM solutions, it is shown that it can provide
accurate results less costly than classical LW computations.

1. Introduction

Nowadays, the composite and sandwich materials are no more
confined to secondary structures, but they are also used for the primary
ones. Thus, it calls for efficient and accurate numerical tools to design
and ensure the suitable reliability. To achieve this purpose, this topics
has been the focus of attention of many researchers during the past few
years, in particular for the free vibration analysis. Various theories in
mechanics for composite or sandwich structures have been developed
and can be classified as:

• The Equivalent Single Layer (ESL) model: the different layers are
homogeneized into only one equivalent layer. Thus, the number of
unknowns is independent of the number of layers. It includes the
classical plate theories, such as the Kirchhoff plate theory (CPT),
Reissner-Mindlin [1,2] (first-order shear deformation theory, FSDT).
Higher order shear deformation theories (HSDT) are also introduced
to improve the description of the transverse shear stress through the
thickness [3]. A particular warping function is included in some of
them allowing to fulfill the free boundary conditions on the top and
bottom surface of the laminates [4–9]. This type of model can be
easily enhanced by using the so-called Murakami’s zig-zag function
as in [10]. To extend the capability of the HSDT models, the
transverse normal stress can also be included in the formulation

such as in [11–13].

• The LayerWise model (LW): it aims at overcoming the restriction of
the ESL concerning the discontinuity of out-of-plane stresses on the
interface layers and taking into account the specificity of layered
structure. But, the number of degrees of freedom (dofs) depends on
the number of layers. It was widely developed by Reddy [8,14,15]
and also in [16,17]. Note the mixed approach addressed in [18].

These two families of models have been gathered into the so-called
Carrera’s Unified Formulation (CUF) [19] with a displacement-based or
Reissner’s Mixed Variational Theorem (RMVT) formulation. Then, CUF
was extended to deduce the Generalized Unified Formulation (GUF)
[20,21] and the Sublaminate Generalized Unified Formulation (SGUF)
[22] in which the order of expansion for each displacement/transverse
stress component can be chosen independently.

As an alternative, refined models have been developed in order to
improve the accuracy of ESL models avoiding the additional compu-
tational cost of LW approach. The consideration of the continuity of the
transverse shear stresses at the interfaces between the layers allows to
derive the so-called zig-zag models. The interested readers can refer to
[23,9,24–27].

A partial aspect of the broad research activity about models for
layered structures is given herein. More complete reviews on the
models, in particular in the vibration analysis framework, can be found
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in [28–32].
Over the past years, some methods based on the separation of

variables have shown interesting features to model such types of
structures. On the one hand, Kerr has extended the Kantorovich method
(EKM) by considering it as only a first step of an iterative procedure
[33,34]. A semi-analytic approach is deduced by considering the se-
paration of the two in-plane spatial variables of the plate. The free vi-
bration analysis is carried out in [35] for composite plates including
only one term for the solution, while several couples are considered in
[36] for isotropic plates. In these studies, a iterative process in which
two successive eigenvalue problems are solved, is performed. Note that
the composite plate models involving in the latter are based on a FSDT
and HSDT (Reddy’s model) theory. A more complete review of the
applications of the EKM approach can be found in [37]. On the other
hand, the Proper Generalized Decomposition (PGD) has been widely
developed since the works of Ladevèze in the Latin framework [38] and
Chinesta [39–41] for the model reduction. It has been successfully used
in the context of the separation of in-plane/ out-of-plane coordinate
variables for the static analysis of composite structures in [42–46]. The
present work belongs to this latter family and is an extension towards
the free vibration analysis. In this way, the displacements are written
under the form of a sum of products of bidimensional polynomials of
(x,y) and unidimensional polynomials of z. A piecewise fourth-order
Lagrange polynomial of z is chosen and a 2D eight-node quadrilateral
FE is employed for the in-plane coordinates. Each unknown function of
(x,y) is classically approximated using one degree of freedom (dof) per
node of the mesh and the LW unknown functions of z are global for the
whole plate. Finally, the deduced non-linear problem implies the re-
solution of two eigenvalue problems alternatively. This process yields
to a sequence of low-dimensional problems (2D and 1D) in which the
number of unknowns is smaller than a classical Layerwise approach.
For the present scope, only one or two couples will be considered. The
later will be built simultaneously, without the use of a greedy algorithm
as it is carried out in [47,48]. In these two works, only the lowest ei-
genvalue of the involved problem is determined. It should be noted that
the interesting feature of the present approach lies on the possibility to
have a higher-order z-expansion and to refine the description of the
mechanical quantities through the thickness without increasing the
computational cost. This is particularly suitable for the modeling of
composite structures.

We now outline the remainder of this article. First, the classical
mechanical formulation for the free vibration analysis is recalled. Then,
it is applied in the particular framework of the PGD dedicated to the
composite plate. The particular assumption on the displacements yields
a non-linear problem. An iterative process is chosen to solve this one.
The FE discretization is also described. Then, numerical tests are per-
formed to show the performance and the limitations of the method. A
convergence study is first proposed to illustrate the behavior of the
approach to capture different modes and the associated natural fre-
quencies. Then, the modeling of various representative laminated and
sandwich plates is addressed. The influence of the slenderness ratio, the
degree of anisotropy and boundary conditions is studied. Finally, an
illustration of the computational cost is proposed to show the efficiency
of the method when compared to the classical Layerwise approach. The
assessment of the results is made by comparing with exact solutions, 3D
FEM, quasi-3D results (displacement-based approach with a fourth-
order Layerwise expansion LD4) and results available in open literature.

2. Reference problem description: the governing equations

Let us consider a composite plate structure occupying the domain
= ×Ω ΩzV where = ×a bΩ [0, ] [0, ] (a b, being the dimensions of the

plate) and = ⎡⎣− ⎤⎦Ω ,z
h h
2 2 in a Cartesian coordinate x y z( , , ). h is the

thickness of the plate, see Fig. 1.

2.1. Constitutive relation

The plate can be made of NC perfectly bonded orthotropic layers.
The constitutive equations for a layer k can be written as

=σ εCk k( ) ( ) (1)

where we denote the stress vector by σ , the strain vector via ε.
We have
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where Cij
k( ) are the three-dimensional stiffness coefficients of the layer

k( ).
Note that this 3D constitutive law is used in the present formulation.

2.2. The weak form of the boundary value problem

In the present study, the surface force density and the body force
density are not considered. Considering the vibration problem, the
displacement x y z td( , , , ) is assumed to be written as

=x y z t ωt x y zd u( , , , ) exp( ) ( , , ). We assume that a prescribed displace-
ment =u 0 is imposed on ΓD.

Using the above matrix notations and for admissible displacement
∈δ δUu , the variational principle is given by: find ∈ Uu such that:

∫ ∫= ∀ ∈ε σδ d ω ρ δ d δ δUu u u u( ) ,T T2V V
V V (3)

where U is the space of admissible displacements, i.e.
= ∈ =U Hu u 0{ ( ( )) / on Γ }D

1 3V . We have also δ
= ∈ =U Hu u{ ( ( )) / 0 on Γ }D

1 3V . ρ is the mass density.
This problem can be expressed as

= ∀ ∈a δ δ δu u u( , ) 0 U (4)

with

∫ ∫= −
× ×

ε εa δ δ d d ω ρ δ d du u u C u u u( , ) ( ) ( ) Ω Ω Ω ΩT
z

T
zΩ Ω

2
Ω Ωz z (5)

3. Application of the separated representation to the plate

In this section, we introduce the application of the variables se-
paration for composite and sandwich plate for the vibration analysis.
This specific separation has shown interesting features in the frame-
work of static analysis [43,45]. The separated formulation is briefly

Fig. 1. Geometry of the plate and orientation of the fibers of the laminated
plate.
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introduced in the subsequent sections.

3.1. The displacement and the strain field

The displacement solution u is constructed as the sum of N products
of separated functions ( ∈ +N is the order of the representation)

∑= ∘
=

x y z z x yu f v( , , ) ( ) ( , )
i

N
ii

1 (6)

where zf ( )i and x yv ( , )i are unknown functions which must be com-
puted during the resolution process. zf ( )i and x yv ( , )i are defined on Ωz
and Ω respectively. The “∘” operator in Eq. (6) is Hadamard’s element-
wise product. We have:
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The strain can be expressed with respect to the reference frame in
which the dependance with respect to the space coordinates is omitted
as follows:
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where the prime stands for the classical derivative ( ′ =fi
df
dx

i ), and () α, for
the partial derivative.

3.2. Formulation of the problem to be solved

The expression of the strain, Eq. (8), introduced in the problem in
Eq. (4) yields a non-linear parametrized problem that is solved by an
iterative process. In the present study, only one or two couples are built,
i.e. =N 1 or 2. It is enough for the considered test cases.

The problem to be solved can be written as

∑ ∘ = ∀ ∈
=

a δ δ δf v u u( , ) 0,
i

N
ii

1

U
(9)

The test function becomes
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N
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Introducing the test function defined by Eq. (10) into the weak form
Eq. (9), the two following equations can be deduced:

• for the test function δf
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• for the test function δv
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From Eqs. (11) and (12), a coupled non-linear problem is derived. A

fixed point method is chosen to solve it. Starting from an initial function
̃ ̃f v( , )(0) (0) , we construct a sequence ̃ ̃f v( , )l l( ) ( ) which satisfy Eqs. (11)

and (12) respectively. For each of them, an eigenfrequency/ eigenmode
problem is solved. Only 1D or 2D functions have to be found, as the
other one is assumed to be known (from the previous step of the fixed
point strategy). So, the approach leads to the algorithm given in the
Algorithm 1 where a iterative process is performed. The fixed point
algorithm is stopped when the distance between two consecutive terms
are sufficiently small.

Note that the initialization of the process is an important step of the
algorithm. It will be discussed in the numerical examples. For

>m 1mode , the converged z-function f 1at the first stage is used for the
next one. In the present approach, each eigensolution is obtained in-
dependently from the others to build the most accurate z-functions
associated to the involved mode.

Algorithm 1 Algorithm

for =m 1mode to Nmode do

Initialize ̃f (0)

=l 0

Compute mmode
th eigenfrequency/eigenmode ̃v l( ) from Eq. (12), ̃f (0) being known

while < ∊ErrfixedPt fp do
l = l + 1

Compute pmode
th eigenfrequency ̃ωf

l( )/eigenmode ̃f l( ) from Eq. (11), ̃ −v l( 1) being

known, pmode such that ̃ωf
l( ) is the nearest eigenfrequency from ̃ −ωv

l( 1).

Compute pmode
th eigenfrequency ̃ωv

l( )/eigenmode ̃v l( ) from Eq. (12), ̃f l( ) being k-

nown, pmode such that ̃ωv
l( ) is the nearest eigenfrequency from ̃ωf

l( ).

end while

Set ̃=f fmmode l( )

Set ̃=v vmmode l( )

Set ̃=ω ωmmode v
l( )

Check for convergence
end for

3.3. Finite element discretization

In this section, the plate Finite Element approximation is presented
for only one couple, i.e. =N 1, for convenience reasons. A classical fi-
nite element approximation in Ω and Ωz for v f( , ) is introduced. The
elementary vector of degrees of freedom (dof) associated with one
element Ωe of the mesh in Ω is denoted qe

v. The elementary vector of
dofs associated with one element Ωze of the mesh in Ωz is denoted qe

f .
The displacement fields and the strain field are determined from the
values of qe

v and qe
f by

= = = =v N q B q f N q B q, , ,e xy e
v

v
e

xy e
v

e z e
f

f
e

z e
fE E (13)

where

= v v v v v v v v v[ ]v
eT 1 1,1 1,2 2 2,1 2,2 3 3,1 3,2E

= ′ ′ ′f f f f f f[ ]f
eT

1 1 2 2 3 3E

The matrices N B N, ,xy xy z , Bz contain the interpolation functions,
their derivatives and the jacobian components.

3.4. Finite element problem to be solved on Ω

For the sake of simplicity, the functions ̃f l( ) which are assumed to be
known, will be denoted ̃f . And the function ̃v l( ) to be computed will be
denoted v . The strains included in Eq. (12) are defined as

̃ ̃∘ =ε f v f( ) Σ ( )z vE (14)

with
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For convenience reasons, the displacement u is written under the

form ̃
̃
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The variational problem defined on Ω from Eq. (12) is

̃ ̃∫ ∫− =δ f d ω δ f dk v m v( ) Ω ( ) Ω 0T
z

T
zv vΩ

2
Ω

E E (16)

where

̃ ̃ ̃ ̃ ̃ ̃∫ ∫= =f f f dz f ρ f f dzk Σ CΣ m D D( ) ( ) ( ) ( ) ( ) ( )z
T

z
T

z z z zΩ Ωz z (17)

The introduction of the finite element approximation Eq. (13) in the
variational Eq. (16) leads to the eigenvalue/ eigenmode problem:

̃ ̃− =f ω fK M q[ ( ) ( )] 0z z
v2 (18)

where

• qv is the eigenvector of the nodal displacements, associated with the
finite element mesh in Ω,

• ̃fK ( )z is the mechanical stiffness matrix obtained by summing the
elements’ stiffness matrices ̃ ̃∫=f f dK B k B( ) [ ( ) ] Ωz

e
xy
T

z xy eΩe

• ̃fM ( )z is the mechanical mass matrix obtained by summing the
elements’ stiffness matrices ̃ ̃∫=f f dM N m N( ) [ ( ) ] Ωz

e
xy
T

z xy eΩe

3.5. Finite element problem to be solved on Ωz

As in the previous section, the known functions ̃ −v l( 1) will be de-
noted ̃v and the functions ̃f l( ) to be computed will be denoted f . The
strain included in Eq. (11) is defined as

�̃ ̃∘ =ε v f v( ) Σ ( )xy f (19)
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and the displacement is ̃
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The variational problem defined on Ωz from Eq. (11) is

�̃ ̃∫ ∫− =δ v dz ω δ v dk f m f( ) ( ) Ω 0T
xy

T
xy zf fΩ

2
Ωz z

E
(21)

where ̃vk ( )xy and ̃vm ( )xy can be expressed under the following sepa-
rated form:

̃ ̃ ̃ ̃ ̃ ̃∫ ∫= =v v v d v ρ v v dk CΣ m D D( ) Σ ( ) ( ) Ω ( ) ( ) ( ) Ωxy
T

xy
T

xy xy xy xyΩ Ω (22)

The introduction of the finite element discretization Eq. (13) in the
variational Eq. (21) leads to the eigenvalue/eigenmode problem:

̃ ̃− =v ω vK M q[ ( ) ( )] 0xy xy
f2 (23)

where

• q f is the vector of degree of freedom associated with the F.E. ap-
proximations in Ωz.

• ̃vK ( )xy is obtained by summing the elements’ stiffness matrices:

̃ ̃∫=v v dzK B k B( ) [ ( ) ]xy
e

z
T

xy z eΩze (24)

• ̃vM ( )xy is obtained by summing the elements’ mass matrices:

̃ ̃∫=v v dzM N m N( ) [ ( ) ]xy
e

z
T

xy z eΩze (25)

4. Numerical results

In the numerical examples, an eight-node quadrilateral FE based on
the classical Serendipity interpolation functions is used for the un-
knowns depending on the in-plane coordinates. For the unknowns de-
pending on the z-coordinate, the displacement is described by a fourth-
order interpolation as it is justified in [45]. A Gaussian numerical in-
tegration with 3× 3 points is used to evaluate the elementary matrices.
As far as the integration with respect to the transverse coordinate is
concerned, an analytical integration is performed.

In this section, several numerical benchmark tests widely available
in open literature [32] are presented in order to evaluate the accuracy
of the present approach. Different cross-ply, angle-ply and sandwich
plates, slenderness ratios and boundary conditions are considered to
show the wide range of validity of the method.

The present approach, denoted VS-LD4, is compared with both re-
ference solutions and other models available in open literature, see
Table 1.

Note that only one couple is built for each test, unless otherwise
mentioned.

4.1. Convergence study

The behavior of the present method is first illustrated on a cross-ply
plate. The test case is described as follows:

Table 1
Models available in open literature and reference solutions.

LD4 It refers to the systematic work of Carrera and his “Carrera’s Unified Formulation” (CUF), see [49,28,50]. A LayerWise model based on a
displacement approach where each component is expanded until the fourth order is given; +NC12 3 unknown functions are used in this kinematic.
It provides quasi-3D solution and could be considered as a reference solution.

3D FEM 3D FEM solution is also used as a reference solution. It is computed by the commercial code ANSYS using the quadratic 20-node brick element
(SOLID146). 3D FEM Abaqus solutions are also provided in [51].

Exact solution It can be found in [52,53].
Kant & Swaminathan 2001 It involves ESL model with a third-order expansion of each component of the displacements [54]. It is based on an analytical approach inclunding

12 generalized unknowns.
Zhen et al. 2010 It is related to a global–local higher order shear deformation theory [55] involving 13 generalized unknowns. The continuity of the transverse shear

stresses is fulfilled. It is based on an analytical approach. The stretching effect is not taken into account.
Kulkarni & Kapuria 2008 It refers to a third-order zigzag theory, denoted ZIGT [51], where the transverse shear stresses are continuous at the ply interfaces. 7 degrees of

freedom per node are involved in this theory. The stretching effect is not taken into account.
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geometry: square cross-ply plate with length-to-thickness ratio =S 5,
constituted of one or six layers, ° ° ° ° ° ° °[0 ], [0 /90 /0 /90 /0 /90 ] respec-
tively. All the layers have the same thickness.
boundary conditions: simply-supported plate
material properties: = = = = =E αE E E ν ν ν, , 0.251 2 2 3 12 13 23

= = = = =G G E G E ρ ρ0.6 , 0.5 , constantek
12 13 2 23 2

( )
0

mesh: N N,x y are the number of elements along the x and y-axis,
respectively.
results: the natural frequencies ω are normalized as =ω hω ρ E¯ 10 /0 2
reference values: LD4 model

In Table 2, two features of the method are shown: (i) the influence
of the initialization, denoted Init. 1 and 2; (ii) the convergence of each
fixed point associated to one vibration mode. For Init. 1, the in-
itialization of the z-functions is such that in-plane displacements are
linear and transverse one is constant through the thickness. This

Table 2
Fixed point convergence study – natural frequency ω̄ – square cross-ply plate – =a h/ 5 – =NC 1 – =α 40 – = =N N 12x y .

mmode Init. 1 – Bending modes Init. 2 – in-plane modes

1,1 2,1 3,1 1,2 2,2 1 (AntiS†) 1 (Sym†) 2 (AntiS†) 2 (Sym†)

1 4.293 5.918 9.067 9.348 10.222 4.866 7.910 9.733 11.560
4.075 4.866
4.075 4.866

2 5.701 7.909
5.649 7.898
5.649 7.898

3 8.864 9.733
8.659 . 9.733
8.659 9.733

4 9.053 11.559
8.916 11.549
8.916 11.549

5
9.947

. 9.783
9.783

LD4 4.075 5.649 8.659 8.916 9.783 4.867 7.898 9.733 11.549

† AntiS and Sym refer to Anti-symmetric and Symmetric modes, respectively.

Table 3
Convergence study – natural frequency ω̄ – square cross-ply plate – =a h/ 5 –

=NC 6 – =α 40.

=N Nx y Modes

1,1 1,2/ 2,1 2,2 1,3

2 4.5399 8.7007 16.0726 16.3270
4 4.4798 8.2308 10.7975 12.5653
8 4.4769 8.1881 10.7034 12.3042
12 4.4767 8.1857 10.6996 12.2875
24 4.4767 8.1851 10.6987 12.2834

24 (LD4) 4.4767 8.1851 10.6987 12.2834
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Fig. 2. f z( )i – square cross-ply plate – =a h/ 5 – =NC 6 – =E E/ 401 2 .
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initialization corresponds to the CLT model with a 3D constitutive law.
The five first bending modes are recovered and it must be denoted that
the error between first and converged values are less than 5%. For Init.
2, a random initialization or a distribution such that the in-plane dis-
placements are constant and the transverse one is linear through the
thickness allow us to capture the in-plane modes. It should be noted
that the convergence rate of each fixed point is high, as the correction
of these functions is small. Only three or four iterations are sufficient to
obtain a converged value of the eigenpulsations. Moreover, it can be
concluded that the agreement with the LD4 model is very satisfactory.

A convergence study on the in-plane mesh is also carried out for the
six layers configuration. From Table 3, it can be stated that the con-
vergence rate is very good, a = =N N 12x y mesh is sufficient to obtain
the 5 first modes. The distribution of the z-functions fi through the
thickness is also given in Fig. 2 for 4 modes. We can notice that the f3
functions associated to the modes 1,1 and 2,2 are nearly constant
through the thickness, which is not the case for the modes 1,2 and 1,3.
Thus, the correction of the z-functions is required to obtain accurate
results. Indeed, using the f3 function associated to the first mode for the
three following ones leads to an error rate of 4.5, 5 and 8%, respectively
( =ω̄ 8.5472 (mode 1,2); =ω̄ 11.2488 (mode 2,2); =ω̄ 13.2595 (mode
1,3)).

4.2. Cross-ply multilayered composite plate

In this section, symmetric and anti-symmetric cross-ply laminated
composite plates are considered with different number of layers and
varying the E E/1 2 ratio. The data is given as follows:

geometry: square cross-ply plate with length-to-thickness ratio =S 5,
made of 2 to 10 layers (alternating orientation °0 and °90 , excepted
for the four layers ° ° ° °[0 /90 /90 /0 ]). All the layers have the same
thickness.
boundary conditions: simply-supported plate
material properties: same material as in Section 4.1
mesh: = =N N 24x y
results: the fundamental frequency ω is normalized as

=ω hω ρ E¯ 10 /0 2
reference values: exact solution from [53] and 3D FEM solution
computed by ANSYS with a refined converged mesh

The values of the fundamental frequency are summarized in Table 4
for each configuration. The present approach gives excellent results
when compared to the LD4 and 3D FEM solutions, regardless of the
degree of anisotropy and the number of layers. The separated re-
presentation does not affect the quality of the results.

Note that the exact solution can be different from the 3D FEM re-
sults with a maximum error rate of 4% ( = =NC E E3, / 401 2 ). It seems
that the results available in open literature are closed to the obtained
3D FEM results, see [55] for instance.

4.3. Sandwich plate ° ° ° °core[0 /90 / /0 /90 ]

In this section, the analysis of a non-symmetric sandwich plate is
carried out. The ratio of anisotropy between the face and the core is
high. The test is detailed below:

geometry: square sandwich plate with length-to-thickness ratios
∈S {10, 100}. The thickness of each face sheet is =tc

h
10 .

boundary conditions: simply-supported plate
material properties: Face sheets: =E 1311 GPa, = =E E 10.342 3 GPa,

= = =ν ν ν0.22, 0.4912 13 23 ,
= =G G 6.89512 23 GPa, =G 6.20513 GPa, =ρ 1627f kg/m3

Core (isotropic material): = = = −E E E 6.89 101 2 3
3 GPa,

= = =ν ν ν 012 13 23 ,
= = = −G G G 3.45 1012 23 13

3 GPa, =ρ 97c kg/m3

mesh: = =N N 24x y

results: the natural frequencies ω are normalized as
=ω ωb h ρ E¯ / /f f

2
2

reference values: the exact solution is provided in [52].

The values of the six first natural frequencies are shown in Table 5

Table 4
Fundamental frequency ω̄ – square cross-ply plate – =a h/ 5.

NC E E/1 2

10 20 40 100

2 VS-LD4 2.782 3.057 3.411 3.906
LD4 2.782 3.057 3.411 3.906

3D FEM 2.782 3.057 3.411 3.905
exact 2.794 3.069 3.425 –

3 VS-LD4 3.265 3.695 4.092 4.530
LD4 3.265 3.695 4.092 4.530

3D FEM 3.265 3.695 4.092 4.530
exact 3.284 3.824 4.300 –

4 (Sym) VS-LD4 3.310 3.799 4.273 4.789
LD4 3.310 3.799 4.273 4.789

3D FEM 3.310 3.799 4.273 4.7897
exact 3.258 3.762 4.272 –

6 VS-LD4 3.342 3.908 4.477 5.072
LD4 3.342 3.908 4.477 5.072

3D FEM 3.342 3.908 4.477 5.072
exact 3.365 3.936 4.509 –

9 VS-LD4 3.408 4.005 4.603 5.234
LD4 3.408 4.005 4.603 5.234

3D FEM 3.408 4.005 4.603 5.233
exact 3.443 4.055 4.668 –

10 VS-LD4 3.399 4.003 4.614 5.259
LD4 3.399 4.003 4.614 5.259

3D FEM 3.399 4.003 4.614 5.259
exact 3.425 4.034 4.649 –

Table 5
Comparison of natural frequencies ω̄ – square sandwich plate ° ° ° °core[0 /90 / /0 /90 ].

S Mode VS-LD4 LD4 Kant & Swaminathan 2001 Zhen et al. 2010 Exact [52]

10 1,1 1.8492 (0.0) 1.8492 (0.0) 4.8594 (162) 1.9418 (5.1) 1.8480
1,2 3.2227 (0.1) 3.2226 (0.1) 8.0187 (150) 3.3625 (4.4) 3.2196
2,2 4.2941 (0.1) 4.2938 (0.1) 10.2966 (140) 4.4677 (4.1) 4.2894
1,3 5.2341 (0.2) 5.2331 (0.2) 11.7381 (124) 5.4086 (3.5) 5.2236
2,3 6.1056 (0.1) 6.1046 (0.1) 13.4706 (121) 6.3060 (3.5) 6.0942
3,3 7.6933 (0.2) 7.6919 (0.2) 16.1320 (110) 7.9154 (3.1) 7.6762

100 1,1 11.9469 (0.0) 11.9457 (0.0) 15.5093 (30) 12.2374 (2.5) 11.9401
1,2 23.4233 (0.1) 23.4144 (0.0) 39.0293 (67) 24.3213 (3.9) 23.4017
2,2 30.9723 (0.1) 30.9608 (0.0) 54.7618 (77) 32.2539 (4.2) 30.9432
1,3 36.1898 (0.1) 36.1664 (0.0) 72.7572 (101) 37.8300 (4.6) 36.1434
2,3 41.4961 (0.1) 41.4744 (0.0) 83.4412 (101) 43.3893 (4.6) 41.4475
3,3 49.0742 (1.4) 49.0363 (1.4) 105.3781 (111) 52.1795 (4.8) 49.7622
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for both semi-thick and thin plates. Higher-order models fail to compute
the eigenfrequencies, even for the thin case. The error rates vary from
3.1 to 162%. On the contrary, the LayerWise approaches, VS-LD4 and
LD4, drives to results in excellent agreement with the exact solution.

The error rate is less than 1.4%. Once again, the results of these two
models are very close.

Then, the influence of the core to face thickness ratio (t t/c f ) is ad-
dressed in Table 6. The accuracy of the separated representation

Table 6
Comparison of natural frequencies ω̄ for different t t/c f ratios – square sandwich plate ° ° ° °core[0 /90 / /0 /90 ] – =S 10.

t t/c f VS-LD4 LD4 Kant & Swaminathan 2001 Zhen et al. 2010 Exact [52]

4 1.9092 (0.04) 1.9092 (0.04) 8.9948 (371) 1.9405 (1.7) 1.9084
10 1.8492 (0.06) 1.8492 (0.06) 4.8594 (162) 1.9418 (5) 1.8480
30 2.3341 (0.08) 2.3341 (0.08) 2.8481 (22) 2.5146 (7.8) 2.3321
50 2.5682 (0.09) 2.5682 (0.09) 2.8625 (11) 2.7777 (8.2) 2.5658

Table 7
Comparison of natural frequencies ω̄ for different boundary conditions – square sandwich plate ° ° ° °core[0 /90 / /90 /0 ] – =S 5.

Mode VS-LD4 (1 couple) VS-LD4 (2 couples) LD4 Abaqus 3D FEM [51]

CCCC 1,1 12.177 (1.0) 12.071 (0.2) 12.054 (0.1) 12.046
1,2 18.462 (1.0) 18.324 (0.3) 18.285 (0.1) 18.270
2,1 20.856 (1.3) 20.625 (0.2) 20.588 (0.1) 20.572
2,2 25.174 (1.2) 24.943 (0.3) 24.895 (0.1) 24.873
1,3 26.643 (0.9) 26.458 (0.2) 26.435 (0.1) 26.405
3,1 30.962 (1.0) 30.722 (0.2) 30.673 (0.1) 30.644
2,3 31.808 31.559 31.519
3,2 34.153 33.903 33.847

CFCF 7.611 (0.9) 7.556 (0.1) 7.550 (0.1) 7.544
9.450 (2.2) 9.261 (0.2) 9.246 (0.0) 9.241
15.758 (1.0) 15.642 (0.2) 15.612 (0.1) 15.598
17.655 (1.8) 17.383 (0.2) 17.353 (0.1) 17.340
19.308 (1.9) 18.967 (0.1) 18.954 (0.0) 18.951
23.920 (1.3) 23.637 (0.1) 23.609 (0.0) 23.598

CFFF 3.546 (3.9) 3.414 (0.1) 3.411 (0.0) 3.410
4.785 (2.7) 4.663 (0.1) 4.660 (0.0) 4.658
10.927 (3.5) 10.574 (0.2) 10.559 (0.0) 10.554
13.030 (2.7) 12.696 (0.1) 12.682 (0.0) 12.677
18.032 (2.2) 17.657 (0.0) 17.649 (0.0) 17.648
18.986 (1.2) 18.796 (0.2) 18.754 (0.0) 18.743

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Fig. 3. 6 first modes – CCCC – square sandwich plate ° ° ° °core[0 /90 / /90 /0 ] – =S 5.
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Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Fig. 4. 6 first modes – CFCF – square sandwich plate ° ° ° °core[0 /90 / /90 /0 ] – =S 5.

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Fig. 5. 6 first modes – CFFF – square sandwich plate ° ° ° °core[0 /90 / /90 /0 ] – =S 5.

Table 8
Comparison of natural frequencies ω̄ – square antisymmetric plate ° − ° ° − °[45 / 45 /45 / 45 ] – =S 5 – simply-supported.

Bending modes In-plane modes

VS-LD4 (1 couple) 13.09 (12.6) 21.18 (6.9) 29.70 (11) 32.57 (10) 32.57 (9) 36.81 (8) 17.20 (0.0) 34.41 (0.0)
VS-LD4 (2 couples) 11.84 (1.8) 20.29 (2.4) 27.03 (1.0) 29.99 (1.4) 30.87 (3.4) 35.16 (3.1) 17.20 (0.0) 34.41 (0.0)

LD4 11.64 (0.1) 19.82 (0.0) 26.75 (0.0) 29.58 (0.0) 29.86 (0.0) 34.22 (0.4) 17.20 (0.0) 34.41 (0.0)
ZIGT [51] 12.34 (6.1) 21.10 (6.5) 21.17 (21) 29.01 (1.9) 31.66 (6) 31.77 (6.8) – –
3D FEM 11.63 19.82 26.74 29.58 29.85 34.07 17.20 34.41
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approach is very satisfactory and does not depend on the geometry. The
maximum error rate is 0.09%. The superiority of the LayerWise ap-
proach is also proved.

4.4. Different boundary conditions

In this section, different boundary conditions are considered for a
symmetric sandwich plate. The configuration is summarized as:

geometry: square five-layer sandwich plate ( ° ° ° °core[0 /90 / /90 /0 ])
with length-to-thickness ratios =S 5. The thickness of each face
sheet is h

20
.

boundary conditions: CCCC, CFCF, CFFF with C: Clamped, F: Free
material properties:
Face sheets: =E 276f

1 GPa, = =E E 6.9f f
2 3 GPa,

= = =ν ν ν0.25, 0.3f f f
12 13 23 ,

= = =G G G 6.9f f f
12 23 13 GPa, =ρ 681.8f kg/m3

Core: = = = −E E E 5.776 10c c c
1 2 3

1 GPa, = = =ν ν ν 0.0025c c c
12 13 23 ,

= = −G G 1.079 10c c
12 13

1 GPa, = −G 2.2215 10c
23

1 GPa, =ρ 1000c kg/m3

mesh: = =N N 24x y

results: the natural frequency ω is normalized as =ω ωa ρ E¯ 100 /f
f

2
reference values: 3D FEM Abaqus from [51]

The natural frequencies obtained with the VS-LD4, LD4 and 3D FEM
models are given in Table 7 for the three types of boundary conditions.
Using only one couple, the VS-LD4 approach drives to a maximum error
rate of 3.9% (CFFF case). The CFFF test case seems to be the most
difficult one. It is possible to reduce the error rate by building two si-
multaneous couples, the maximum error rate becomes only 0.3%.

For further illustration, the in-plane coordinates functions v x y( , )3
corresponding to the 6 first eigenmodes are shown in Figs. 3–5 for the
different boundary conditions. The modal analysis implies only bending
modes.

4.5. Angle-ply multilayered composite plate

The method is assessed on other stacking sequences, namely

Table 9
comparison of natural frequencies ω̄ – square symmetric plate ° − ° − ° °[45 / 45 / 45 /45 ] – =S 5 – simply supported

VS-LD4 (1 couple) 11.8749 (3.3) 19.3921 (2.3) 21.6647 (3.6) 26.3749 (1.8) 30.4527 (3.1) 31.4943 (3.0) 33.6048 (1.7)
VS-LD4 (2 couples) 11.6505 (1.3) 19.1149 (0.9) 21.0505 (0.6) 26.0109 (0.4) 29.6352 (0.3) 30.7069 (0.4) 33.1549 (0.3)

LD4 11.5114 (0.1) 18.9479 (0.0) 20.9186 (0.0) 25.9079 (0.0) 29.5423 (0.0) 30.5726 (0.0) 33.0976 (0.1)
3D FEM 11.4938 18.9435 20.9104 25.8993 29.5401 30.5642 33.0496

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Fig. 6. 6 first modes – v x y( , )i
3 – square sandwich plate ° − ° − ° °[45 / 45 / 45 /45 ] – =S 5.

2 4 6 8 10 12
NC

10-1

100

101

102

103

104

 VS-LD4 1 mode
 LD4 1 mode
 VS-LD4 8 modes
 LD4 8 modes
 VS-LD4 2 couples - 8 modes

Fig. 7. Computational cost with respect to the number of layers – = =N N 24x y .
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symmetric and anti-symmetric angle ply configurations. The test case
comes from [51], it is described as follows:

geometry: square angle-ply plate with = ° − ° ° − °S 5, [45 / 45 /45 / 45 ]
and ° − ° − ° °[45 / 45 / 45 /45 ] stacking sequences are involved. All the
layers have the same thickness.
boundary conditions: simply-supported plate
material properties: same material as in Section 4.1
mesh: = =N N 24x y

results: the natural frequencies ω are normalized as =ω S hω ρ E¯ /2
0 2

reference values: 3D FEM solution computed by ANSYS

The six first bending modes and the two first in-planes ones of the
anti-symmetric case are given in Table 8. The stacking sequence makes
this example difficult for classical models. We can notice that even the
refined model, ZIGT, fails to give accurate results (maximum error rate
of 21%). On the contrary, a higher-order LayerWise model with a
fourth-order expansion through the thickness is required. Concerning
our approach, it should be noticed that only one couple is insufficient to
have accurate results, excepted for the in-plane modes. For the bending
modes, two couples allow us to obtain a good agreement with the re-
ference solution. Note also that about 12 iterations of the fixed point
algorithm are required to achieve the convergence. The results asso-
ciated to the symmetric case is shown in Table 9. As expected, this case
is simpler as the anti-symmetric one. One couple can be enough to have
a satisfactory accuracy.

The in-plane functions v x y( , )i
3 associated to the 6 first modes are

presented in Fig. 6. The approach has the capability to capture all the
bending modes oriented at 45°. Note that the modes 2 and 3 are not
associated to the same natural frequency.

4.6. Computational costs

To further assess the present method, Fig. 7 gives the computational
time to extract one or eight eigenfrequencies/eigenmodes with respect
to the number of layers using Matlab software. Both the LD4 model and
the method with the separated representation are compared. For this
latter, all the resolutions due to the iterative process are included. The
goal of this comparison is just to give an overall trend, but not an ac-
curate cost, as the present method involves also the computation of
some integrals over the domain Ω or Ωz which do not exist for classical
models (See Sections 3.4 and 3.5). It can be inferred from this figure
that the cost of the VS-LD4 model does not depend on the number of
layers. Thus, the gain will be high when NC increases. It should be also
noticed that the computation of 2 simultaneous couples does not affect
the efficiency of this process.

5. Conclusion

In this article, the modeling of composite plates is carried out for the
free vibration analysis through a variable separation method. The re-
sults are assessed with various representative benchmarks by com-
paring with reference solutions. It is shown that the initialization of the
iterative process has an important influence to capture the different
modes. Accurate results are obtained for cross-ply, angle-ply and
sandwich configurations involving different slenderness ratios, degree
of anisotropy and boundary conditions. Layerwise approach is needed
for some of them to achieve a good level of accuracy. It is also shown
that few couples are sufficient. Finally, the computational cost of the
present approach is lower than the classical Layerwise model.
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