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Abstract—Genetic Programming (GP) is afflicted by an ex-
cessive computation time that is more exacerbated with data
intensive problems. This issue has been addressed with different
approaches such as sampling techniques or distributed implemen-
tations. In this paper, we focus on dynamic sampling algorithms
that mostly give to GP learner a new sample each generation.
In so doing, individuals do not have enough time to extract
the hidden knowledge. We propose adaptive sampling which is
half-way between static and dynamic methods. It is a flexible
approach applicable to any dynamic sampling. We implemented
some variants based on controlling re-sampling frequency that we
experimented to solve KDD intrusion detection problem with GP.
The experimental study demonstrates how it preserves the power
of dynamic sampling with possible improvements in learning time
and quality for some sampling algorithms. This work opens many
new relevant extension paths.

Index Terms—Genetic Programming, Machine Learning,
Training set Sampling, adaptive sampling, sampling frequency
control, KDD intrusion detection.

I. INTRODUCTION

Evolutionary Algorithms (EA) [1]–[3] are meta-heuristics
that complies with a wide range of problems and especially
those related to optimization and machine learning. Their
flexibility and expressiveness comes with two major flaws:
an excessive computational cost and a problematic parameters
setting. Genetic Programming (GP) [4] is the most affected
EA by these drawbacks.

In supervised learning field, the lack of data leads to unsat-
isfactory learners. This is no longer an issue with numerous
data sources and high data volume that we witness in the era
of Big Data. Nonetheless, this toughens up the computation
problem of GP and precludes its application in data intensive
problems.

Many techniques have been deployed to tackle the compu-
tation time issue that can be grouped in two main categories:
hardware acceleration based techniques and software based

techniques. The most affordable is software based solutions
that do not require any specific hardware configuration. Sam-
pling is the mainstream approach in this category. It relies
on reducing processing time by reducing data while keeping
relevant records.

In [5], we exposed a review of sampling methods used
with GP. Mainly, sampling methods can be classified with
regard to three properties: re-sampling frequency, sampling
scheme or strategy and sampling quantity. According to re-
sampling frequency, algorithms use a unique or a renewable
sample. They are called respectively static or dynamic. On
the one hand, in static sampling like the Historical Subset
Selection [6] and bagging/boosting [7], [8], a selection of
representative training set records needs to be performed. With
large datasets, this poses a problem of combining downsizing
and data coverage objectives. On the other hand, dynamic
sampling creates samples per generation according to its
selection strategy. Consequently, GP individuals do not have
enough time to learn from sampled data. The population might
waste some good resources for solving some difficult cases
in the current training set. Otherwise, re-sampling at each GP
iteration might be computationally expensive, especially when
using some sophisticated sampling strategies.

We propose, in this paper, a new extension to sampling
techniques in which sample renewal is controlled through a
parameter that adapts the sampling to the learning process.
This extension aims to preserve original sampling strategy
while making an enhancement in learning robustness and/or
learning time.

This paper is organized as follows: in the first section,
we expose the background of this work in GP and sampling
methods. Section III introduces the novel sampling approach
and gives how it can extend dynamic sampling. Then, in
section IV, an experimental study gives the proof of concept
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of adaptive sampling and traces its effect on learning process
through the discussion of registered results in section V.
Finally, we give some conclusions and propose further de-
velopments.

II. BACKGROUND AND RELATED WORKS

A. Genetic Programming

As any EA, GP evolves a population of individuals through
iterations called generations. Each individual represents a com-
plete mathematical expression or a small computer program.
The standard GP uses a tree representation of individuals built
from a function set for nodes and a terminal set for leaves.
When GP is applied to a classification problem, each indi-
vidual is a candidate classifier. The terminal set is composed
of dataset features and some randomly generated constants
and the function set contains mostly arithmetic and logic
functions. As for the fitness function, it is often based on
learning performance measures such as accuracy.

The main steps of GP with dynamic or active sampling are:
1) Randomly create a population of individuals where tree

nodes are taken from a given function and terminal
sets. Then evaluate their fitness value by executing each
program tree against the initial training subset.

2) According to a fixed probability, individuals are crossed
or mutated to create new offspring individuals.

3) Select a new training subset with a given sampling
algorithm.

4) New solutions are evaluated against new sample and a
new population is made up by selecting best individuals
from parents and offspring according to their fitness
values.

5) Loop step 2 and 4 until a stop criteria is met.
The evaluation is the prevailing step with regard to the

overall computation cost and it depends simultaneously on
the sample size, the population size and each individual
complexity.

B. Dynamic Sampling

In this section we present some dynamic sampling algo-
rithms with focus on those used in the conducted experiments
in section IV.

1) Random Subset Selection (RSS): Gathercole et al. [6]
proposes a simple algorithm that selects at every generation
g a record i among T records in the initial dataset with a
uniform probability Pi(g):

∀i : 1 ≤ i ≤ T, Pi(g) =
S

T
(1)

where S is the target subset size. The sampled subset has a
fluctuating size around S.

2) Dynamic Subset Selection (DSS): DSS algorithm [9]–
[11] is inspired by boosting techniques and aims to bias
selection to keep difficult cases (i.e. fitness cases frequently
unsolved by the best solutions) and fitness cases that have not
been selected for several generations.

DSS computes two measures: a difficulty degree Di(g) and
an age Ai(g) starting with 0 at first generation and updated
at every generation. The difficulty is incremented for each
classification error and reset to 0 if the fitness case is solved.
The age is equal to the number of generations since last
selection, so it is incremented when the fitness case has not
been selected and reset to 0 otherwise.
Selection probabilityPi(g) in eq. (3) depends on each fitness
weight Wi(g) (eq. (2)).

∀i : 1 ≤ i ≤ T, Wi(g) = Di(g)
d +Ai(g)

a (2)

where d and a are given parameters denoting respectively the
difficulty exponent and the age exponent.

∀i : 1 ≤ i ≤ T, Pi(g) =
Pi(g) ∗ S∑
T
j=1Wj(g)

(3)

3) Balanced sampling: Balanced sampling [12] aims to
improve classifier accuracy by correcting the original dataset
imbalance within majority and minority class instances. It
has some methods based on the minority class size and thus
reduces the number of instances like the methods studied in
this paper. Several approaches are proposed, we summarize
hereafter three sampling techniques used with GP. First, Static
Balanced Sampling that selects cases with uniform probability
from each class without replacement until obtaining a bal-
anced subset of the desired size. Then, Basic Under-sampling
(BUSS) (resp. Basic Over-sampling) selects all minority (resp.
majority) class instances and then an equal number from the
majority (resp. majority) class randomly.

4) RSS-DSS and DSS-DSS: Curry et al. conceived an
extension to the DSS algorithm into a 3 levels hierarchy [13].
At level 0, the data set is first partitioned into blocks that are
sufficiently small to reside within RAM alone. Then, at level 1,
one block is chosen from this partition based on RSS or DSS.
Finally, at level 2, the selected block is considered as the full
dataset on which DSS was applied for several generations.
Depending on the level 1 algorithm, two approaches are
possible: RSS-DSS hierarchy or DSS-DSS hierarchy.

5) RSS-TBS (TBS: Topology Based Selection): Based on
the same idea, Hmida et al. proposed two new variants of
hierarchical sampling : the RSS-TBS and the BUSS-RSS-
TBS [14]. The RSS-TBS uses the Topology Based Subset
Selection at level 2 instead of RSS or DSS. The second
variant BUSS-RSS-TBS extends the first variant with a Basic
Under-sampling at the level 0 block creation. BUSS favors the
minority class by calculating the block size according to their
cardinalities. For majority class, an equal number of instances
are selected randomly.

III. CONTROLLING SAMPLING FREQUENCY

A. Sampling approach

Sampling frequency (f ) is a main parameter for any active
sampling technique. It defines how often the training subset is
changed across the learning process. When f=1, the training
sample is extracted at each generation and the sampling ap-
proach is considered as a generation-wise sampling technique.



Most of the sampling techniques applied with GP belong to
this category. This is the case of the techniques described in
section II-B. When f is set to 1, individuals in the current
population have only one generation to adapt their genetic
materials to the current environment characterized by the
training sample. It is very difficult even impossible for a
population to solve all cases in a training set in one generation.
A higher value of f corresponds to a lower number of samples
to be generated. We think that the sampling frequency must
be updated according to the evolution state and the difficulty
of the current training set.

The fundamental idea behind adaptive sampling by control-
ling the sampling frequency is to add an extra parameter to
sampling algorithms acting as a moderator or re-sampling reg-
ulator. While active or dynamic methods use a fixed renewal
frequency equal to 1, adaptive sampling decides to generate
a new sample for the subsequent generations according to a
condition that must be true.

Fig. 1 depicts this approach. GP based learner interacts
with sampling process by providing adequate data about the
learning process in order to perform the underlying selection
strategy. For example, DSS needs to know misclassified cases
to update the difficulty value. Then, the sampling algorithm
delivers a new sample generated according to the updated data.
With adaptive sampling, a predicate controls the re-sampling
decision. We assume that any data required to evaluate this
predicate is available within the data dispensed by the GP
engine.

Dataset 

True

Sample 

Sampling 

Learning process 
(GP) 

 

Learning
state 

Adaptive 

Dataset 

Sample 

Sampling 

Learning process 
(GP) 

 

Learning
state 

Dynamic

False

Re-sampling
predicate 

Fig. 1. Adaptive vs Dynamic sampling

Various predicates can be used for adaptive sampling that
are based on other parameters such as:

• generations number,
• population mean fitness,
• mean fitness improvement rate,
• best fitness improvement rate,
• etc.
The straightforward approach is to define a threshold per

measure and the predicate is then a comparison of the current
value to the corresponding threshold.

For example, if we define a threshold of 0.002 to best
fitness improvement rate then GP will continue to use the
same sample if the best fitness of the current generation is
better than the previous generation with 0.2%. Otherwise a
new sample must be created. In a more complex approach,
threshold can be auto-adapted to learning process.

We propose below some new techniques to adapt the
sampling frequency. After a brief recall of the classic method
considering the sampling frequency as an EA input parameter
with a fixed value usually set to 1, we introduce the determin-
istic sampling frequency which the value evolves according
to predefined schema. We then present the adaptive sampling
frequency based on the current state of the population. It uses
either the evolution of the mean fitness or the number of
resolved cases to decide whether to create a new sample or to
carry on learning with the previous one.

B. Fixed Sampling Frequency

The sampling frequency f is set before starting the GP
run like any GP parameter. This value remains unchanged till
the last generation. This can be represented by the following
algorithm:
Input: f{sampling frequency}

1: for all generation g < gmax do
2: if g mod f = 0 then
3: re-sample
4: end if
5: end for

C. Deterministic sampling frequency

When a deterministic control of the sampling frequency is
applied, the frequency f gets different values during the GP
run. It is guided by a function that delivers the same values
at each run. Thus, frequency can increase, decrease or have a
complex curve.

An increasing frequency starts with samples having short
lifetime. By the end of the run, samples are used for a larger
number of generations. This can be achieved through the
following steps:

1: for all generation g < gmax do
2: f = (C × g)α {C,α ∈ R}
3: if g mod f = 0 then
4: re-sample
5: end if
6: end for



The opposite process (i.e. decreasing frequency) uses the
same steps but updates frequency with a decreasing function
such as: f = (C × (gmax − g))α.

D. Adaptive sampling frequency

In this technique, sampling frequency value is adjusted to
be more suitable to the current learning state. Therefore, it
can increase or decrease by a varying amount. We assume,
that less performing learners need more time to improve
their performance and symmetrically efficient learners on a
particular sample need to see different data from a new sample.

Adaptive sampling can rely on various learning performance
indicators. It retrieves these indicators from the GP engine.
Hereafter, two examples of adapting techniques.

The first uses a threshold for the population mean fitness
to detect if the population is making improvements or not. In
the latter case, a new sample is generated since the old one is
fully exploited.
Input: r{mean fitness variation rate: (mean fitness(g)-mean

fitness(g-1))/mean fitness(g-1)}
Input: t{threshold}

1: for all generation g < gmax do
2: if r > t then
3: re-sample
4: end if
5: end for
The second example is based on measuring the mean

number of individuals that have resolved each record in the
sample. When this value reaches a designated value then new
records are selected in a new sample.

In the following sections, we give details about the settings
used for the conducted experiments and implementation of
adaptive sampling over some dynamic sampling algorithms
discussed in section II-B. Then we expose the experimental
results and discuss them to analyze the effect of sampling fre-
quency and adaptive sampling on GP performance in resolving
KDD intrusion detection problem.

IV. EXPERIMENTAL SETTINGS

A. Cartesian Genetic Programming

Cartesian Genetic Programming [15] is a GP variant where
individuals represent graph-like programs. It is called “Carte-
sian” because it uses a two-dimensional grid of computational
nodes implementing directed acyclic graphs. Each graph node
encodes a function from the function set.

CGP shows several advantages over other GP approaches.
Unlike trees, there are more than one path between any pair
of nodes. This enables the reuse of intermediate results. A
genotype can also have multiple outputs which make CGP able
to solve many types of problems and classification problems
in particular [16]. Otherwise, CGP has the great advantage of
counteracting the bloating effect (genotype growth), frequent
phenomena with other GP representations. CGP is easy to
implement, and it is highly competitive compared to other GP
methods.

1) CGP settings: The design of CGP parameters used in
this work is summarized in Table I. In this work, the parameter
tuning is not fully explored.

TABLE I
CGP PARAMETERS.

Parameter Value
Population size 256

Sub-populations number 1
Generations number 200

CGP nodes 300
Inputs 49

Outputs 1 (2 classes)
Tournament size 4

Crossover probability 0.9
Mutation probability 0.04

Fitness Minimize classification error

2) Terminal and function sets: The terminal set includes
41 features of the benchmark KDD-99 dataset. The function
set includes basic arithmetic, comparison and logical operators
reaching 17 functions (table II).

TABLE II
TERMINAL AND FUNCTION SETS FOR GP.

Function (node) set
Arithmetic operators: +, −, ∗, %

Comparison operators: <, >, <=, >=, =
Logic operators: AND, OR, NOT, NOR, NAND

Other: NEGATE, IF (IF THEN ELSE),
IFLEZE(IF <=0 THEN ELSE)

Terminal set
KDD-99 Features 41
Random Constants 8 in [−2, 2[

B. Dataset

The KDD-99 intrusion detection problem consists in clas-
sifying connections into normal or attack classes. It uses a
large dataset called 10% KDD-99 dataset [17]. The dataset is
already divided into training and test sets which are presented
in Table III.

TABLE III
KDD-99 DATASET.

Class Number of instances
10% Training Set Test Set

Normal 97278 60593
Dos 391458 229853
Probe 4107 4166
R2L 1126 16347
U2R 52 70
Total Attacks 396743 250436
Total examples 494021 311029

Each fitness case is described by 41 features. The original
data is preprocessed with the following steps:

• Transforming discrete nominal attributes to numeric val-
ues,



• Scaling data using MinMax scaler:

Xsc =
X −Xmin

Xmax −Xmin
,

• Binarization of attack classes: the problem is converted to
a binary classification problem with a ‘Normal’class and
‘Attack’class. The original four attack types (Dos, Probe,
R2L and U2R) are fused in a single class.

C. Performance Metrics

We recorded, for each run, its accuracy (eq. (4)) and
False Positive Rate (FPR) (eq. (3)) to measure the learning
performance on both training and test sets. We also recorded
the learning time measuring the computational cost.

Accuracy =
True Positives+ True Negatives

Total patterns
(4)

FPR =
False Positives

False Positives+ True Negatives
. (5)

D. Framework

Software framework: Among several evolutionary com-
putation frameworks, Sean Luke’s ECJ [18] was used in this
work to implement and test the CGP. It’s an open source
framework written in Java and benefits of many contribution
packages as the one used here for implementing Cartesian GP
developed by David Oranchak [19]. This framework provides
a very flexible API using parameter files well documented in
the ECJ owner’s manual.

Hardware framework: Experiments are performed on an
Intel i7− 4810MQ (2.8GHZ) workstation with 8GB RAM
running under Windows 8.164− bit Operating System.

E. Sampling settings

In the first set of experiments, we tested six values for the
sampling frequency: 1, 10, 20, 30, 40 and 50 on four sampling
methods BRSS, BUSS, DSS and RSS. BRSS is Balanced RSS.
It is an RSS variant where the random sample is balanced
according to a given ratio between problem classes.

In the second part, we implemented four different tech-
niques to control sampling frequency. Two deterministic tech-
niques and two adaptive ones as follows:

• Deterministic+: deterministic controlling with the in-
creasing function f = (2× g)0.5,

• Deterministic-: deterministic controlling with the decreas-
ing function f = (2× (gmax − g))0.5,

• Average Fitness: adaptive controlling based on population
average fitness with a threshold of 0.001,

• Min Resolved: adaptive controlling based on the average
population proportion of the population representing the
individuals that resolved sample records. We use a min-
imum threshold of 0.5.

The underlying active sampling algorithms have their own
parameters described in Table IV.

TABLE IV
COMMON SAMPLING PARAMETERS.

Method Parameter Value
All (except BUSS) Target Size 5000
BRSS Balancing method Full dataset distribution
BUSS Target size 416

DSS Difficulty exponent 1
Age exponent 3.5

V. RESULTS AND DISCUSSION

This study is organized in 2 types of experiments. The first
aims to study the impact of sampling frequency variation on
learning time and learning performance indicators.

For each value of re-sampling frequency and controlling
technique, 21 runs of each sampling algorithm are conducted.
We report the mean learning time of each configuration and
accuracy and FPR of the best individual.

A. Effect of sampling frequency

Fig. 2 illustrates learning time variation on re-sampling
frequency for the studied algorithms. Fig. 3 and Fig.4 show the
effect of sampling frequency on two learning quality measures
accuracy and FPR.
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Fig. 2. Variation of the mean learning time with the re-sampling frequency.

The shape of the curves in Fig. 2 reveals two distinct
behaviors when the sampling frequency increases. The first
concerns the BUSS, BRSS and RSS algorithms that have
recorded an insignificant decreasing variation of the average
learning time. The second behavior is that of DSS with a more
remarkable decrease.

Indeed, for a frequency equal to 1, 200 sampling operations
are made and for a frequency of 50 this number goes down to
4. Time saving depends on the time needed to perform sample
creation with respect to the time spent for a whole generation.
This is why the decrease in time is not very important since
population evaluation is the predominant step in the learning
time for GP.

DSS algorithm differs from other algorithms by updating
certain parameters (age and difficulty). But this does not affect
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Fig. 4. Variation of the best individual FPR with the re-sampling frequency.

the learning time since it is performed at each generation
regardless of the re-sampling frequency. In DSS, the selection
of a learning case requires the calculation of a probability
based on the age and difficulty values of the whole dataset and
subsequently a greater time than the other techniques. This is
at origin of the difference in learning time saving.

From Fig. 3, the variation of the rate of accuracy, contrary
to expected results, did not make any improvement for the 2
sets. Although, there is an increase of Accuracy at frequency
50, for DSS and BRSS for the test set. However, this remains
irregular and can not be generalized.

The most noticeable shift is that of the FPR (Fig. 4).
However, no empirical correlation with the variation of the
re-sampling frequency for BRSS, DSS and RSS can be made.
Only BUSS realizes a decrease in FPR value decrease when
re-sampling frequency increases for training and test sets.

B. Adaptive sampling
Figures 5 and 6 report the experimental results of 4 sam-

pling algorithms extended with 4 different sampling frequency
techniques (section IV-E): deterministic based on an increasing
or decreasing function (Deterministic+ and Deterministic-)

0

100

200

300

400

500

600

700

BRSS BUSS DSS RSS

M
ea
n 
Ti
m
e 
(S
)

Dynamic Deterministic+ Deterministic‐ Average Fitness Min Resolved

Fig. 5. Variation of the mean learning time according to the re-sampling
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and adaptive controlling based on the population average
fitness value (Average Fitness) or the average number of
individuals that resolved the samples cases (Min Resolved).
The obtained results are compared to those from original
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dynamic algorithms (Dynamic).
For the mean learning time, results from Fig. 5 confirm the

previous remarks about this behaviour in section V-A. It is
only learning time of DSS which is clearly affected by intro-
ducing any controlling technique whether it is deterministic
or adaptive. This effect is more or less strong according to
reducing samples number used per GP run.

As regards learning performance on the test set, results do
not rise a general response to controlling sampling frequency
by means of the 4 studied techniques.

For BUSS algorithm, accuracy records an infinitesimal
improvement with controlled frequency techniques. In addition
to that, FPR made a similar change in the same direction
(Fig. 6).

For each sampling method, there is at least one frequency
control technique that allows it to improve, largely or slightly,
its learning performance. For example, for the RSS, the
‘Deterministic+’ and ‘Min Resolved’ techniques have allowed
the accuracy to move from values around 80% to values
greater than 90%. Similarly, the two deterministic methods
(deterministic + and deterministic-) and the Adaptive method
‘Min Resolved’ have improved significantly the accuracy
values for DSS sampling, whose values increased by 10% to
12%. However, a deterioration of the FPR has been recorded.

For the BUSS, only the adaptive controlling technique ‘Av-
erage fitness’ improved the accuracy, but the other techniques
do not impact its performance comparing to the generation-
wise frequency. In fact, the control of the sampling frequency,
if it does not allow an improvement of the results, does not
generate a deterioration of the performance, except for some
cases for the FPR measure.

VI. CONCLUSION

The idea of adaptive sampling has its origins in the as-
sumption that a population needs enough time (generations)
to adapt to learning data. We have formalized this principle in
the form of a re-sampling predicate that is based on a condition
to decide whether to modify the current sample or to keep it.

Experiments are limited to testing adaptive sampling by
controlling sampling frequency with simple predicates. The
results showed a slight effect on learning time. This effect
is in the direction of a decrease but with different degrees
depending on the sampling method.

With adaptive sampling, computational cost can be im-
proved according to the underlying dynamic sampling algo-
rithm only if the selection process is time consuming as it is
for DSS.

The used predicates did not deteriorate the learning accu-
racy. However, it did not have a proven positive and general-
izable effect on the quality of learning. Thus, they need to be
refined.

Many new research paths emerges from this study that are
worthy of further investigation. A first path is the exploration
of other predicates that take into account the characteristics
of the training dataset and the underlying problem to find
more relevant predicates for GP classifier improvements. A
second one is to extend the scope of adaptive sampling to
other sample properties. For instance, an adaptive sampling
can downsize or upsize the sample instead of generating a
new one. We may also combine several sampling strategies
and algorithms in a single method. Then, according to the
learning evolution, a sample is generated using the suitable
strategy in an interleaved way: we use a different algorithm at
each time we need to create a new sample.
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