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Abstract

We propose a probabilistic approach for estimating parameters of an
option pricing model from a set of observed option prices. Our approach
is based on a stochastic optimization algorithm which generates a random
sample from the set of global minima of the in-sample pricing error and
allows for the existence of multiple global minima. Starting from an IID
population of candidate solutions drawn from a prior distribution of the
set of model parameters, the population of parameters is updated through
cycles of independent random moves followed by “selection” according to
pricing performance. We examine conditions under which such an evolving
population converges to a sample of calibrated models.

The heterogeneity of the obtained sample can then be used to quantify
the degree of ill–posedness of the inverse problem: it provides a natural
example of a coherent measure of risk, which is compatible with observed
prices of benchmark (“vanilla”) options and takes into account the model
uncertainty resulting from incomplete identification of the model.

We describe in detail the algorithm in the case of a diffusion model,
where one aims at retrieving the unknown local volatility surface from a
finite set of option prices, and illustrate its performance on simulated and
empirical data sets of index options.

Keywords: model calibration, option pricing, inverse problems, volatility, evo-
lutionary algorithms, stochastic optimization.
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(June 2003), Université de Paris X (MODALX) CREST Financial Econometrics seminar, In-
stitute for Mathematics and Applications, Minneapolis (April 2004) and Bernoulli Satellite
Meeting on Monte Carlo and particle methods (Barcelona 2004). We thank Kasra Barkeshli,
Pierre DelMoral, Randall Douc, Helyette Geman, Dominick Samperi Franck Viollet for helpful
discussions.

1



Contents

1 Evolutionary algorithms for model calibration 6
1.1 Model calibration as an optimization problem . . . . . . . . . . . 6
1.2 Evolutionary optimization: a brief overview . . . . . . . . . . . . 9
1.3 Evolutionary algorithms for model calibration . . . . . . . . . . . 13

2 Recovering diffusion coefficients from option prices 15
2.1 An algorithm for reconstructing local volatility . . . . . . . . . . 16
2.2 Representation of the local volatility surface . . . . . . . . . . . . 17
2.3 Generating the initial population . . . . . . . . . . . . . . . . . . 18
2.4 Computation of the objective function . . . . . . . . . . . . . . . 19
2.5 The evolution scheme . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Numerical experiments 21

4 Empirical results: DAX index options 24

5 Applications and extensions 27
5.1 Quantifying model uncertainty . . . . . . . . . . . . . . . . . . . 28
5.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A B splines 32

B Proof of Proposition 2 33

2



Stochastic models of financial markets usually represent the evolution of
the price of a financial asset as a stochastic process (St)t∈[0,T ] defined on some
probability space (Ω,F ,P). An option on S with maturity T then corresponds
to a random variable HT , whose value is revealed at T and depends on the
behavior of the underlying asset S between 0 and T . For example, a call
option with maturity Ti and strike price Ki is then a financial contract which
pays out max(0, STi

−Ki) = (STi
−Ki)+ to the holder at the maturity date Ti.

The main focus of option pricing theory has been to define a notion of value for
such options and compute this value. In arbitrage-free markets, the assumption
of linearity of prices leads to the existence of a probability measure Q equivalent
to P such that the value Vt(H) of a terminal payoff HT is given by:

Vt(HT ) = B(t, T )EQ[HT |Ft] (1)

where B(t, T ) is a discount factor. For option pricing purposes, it is sufficient to
know this pricing measure Q. For example the value Ct(T,K) of a call option
with maturity T and strike K is given by

Ct(T,K) = B(t, T )EQ[(ST −K)+|Ft] (2)

Since the famous Black Scholes model was introduced in 1973, option markets
have evolved to become autonomous, organized markets with a fairly high degree
of liquidity especially for index options and foreign exchange options. In such
markets, the market prices of a series of liquid options, which are often call
or put options, are readily observed. These market prices are then used as a
benchmark to “mark to market” or calibrate an option pricing model, which can
then be used to compute prices of more complex (“exotic”) options or compute
hedge ratios.

The well-known smile and skew patterns in market option prices has led to
the development of option pricing models generalizing the Black-Scholes model:
local volatility (diffusion) models, stochastic volatility models, models based on
jump processes. The price to pay for more realistic models is the increased
complexity of model calibration: as noted by [Jacquier & Jarrow (2000)], in
presence of complex models “the estimation method becomes as crucial as the
model itself”.

The availability of market prices for options has also made it feasible to
identify such pricing models from market prices of options: this can be done by
parameterizing the pricing measure by some parameter θ ∈ E and choosing θ
to match an observed set (C∗

t (Ti,Ki), i = 1..I) of call option prices:

C∗
t (Ti,Ki; θ) = B(t, Ti)EQθ

[(STi
−Ki)+|Ft] i = 1..I (3)

The parameter θ can be a finite dimensional vector: this is the case for instance
in the Heston stochastic volatility model [Heston], the Merton jump-diffusion
model or the CEV model. Alternatively, in the non-parametric approach, θ is
identified with the local characteristics of the stochastic (risk-neutral) process S
and is typically an element of an infinite dimensional space: the local volatility
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function in the case of diffusion models [Dupire 1994] or the Lévy measure in
the case of models with jumps [Cont & Tankov (2004)].

Determining the model parameter θ to match the market prices of a set of
benchmark options is known to practitioners as the “model calibration” prob-
lem: it is the inverse problem associated to the option pricing problem. One
of the difficulties in solving this inverse problem is that in practice the market
information is insufficient to completely identify a pricing model: if the model
is sufficiently rich, several sets of model parameters may be compatible with the
market prices, leading to ill-posedness and model uncertainty.

Because of possible model misspecification, it is neither feasible nor mean-
ingful in practice to match exactly the market prices. Therefore, the calibration
problem is often reformulated as an optimization problem, where the goal is
to minimize the pricing error or discrepancy between model prices and market
prices for a set of liquidly traded options. A common way to measure this dis-
crepancy is to use the (quadratic) difference between market and model prices,
which leads to the nonlinear least squares method:

inf
θ∈E

G(θ) G(θ) =
I∑

i=1

|Cθ(t, St, Ti,Ki)− C∗
t (Ti,Ki)|2wi (4)

where wi > 0 is a weight, C∗
t (Ti,Ki) is the market price of a call option observed

at date t and Cθ is the model price computed with a parameter θ. However the
optimization problem (4) is not easy to solve. As a function of the parameter
θ, the objective function G is neither convex nor does it have any particular
structure enabling the use of gradient-based minimization methods to locate
the minima. Also, G(.) is not given explicitly: its computation often involves
a numerical method -either a finite difference solver, a Fourier transform or a
Monte Carlo simulation- and computing its gradient may be even more difficult.
More importantly, it is not clear whether there G has a unique global minimum
and, even if this is the case, whether the minimum can be reached by a gradient-
based algorithm.

A remedy proposed in the literature [Avellaneda et al (1997), Coleman et al (1999),
Cont & Tankov (2004), Crépey (2003), Jackson et al (1999), Lagnado & Osher (1997)]
has been to use a regularization method, adding to the objective function (4) a
convex penalization criterion F : E → R+ which makes the problem well-posed
and for which a gradient-based optimization procedure can be used:

inf
θ∈E

G(θ) + αF (θ)

Examples of penalization criteria are smoothness norms for volatility func-
tions [Crépey (2003), Jackson et al (1999), Lagnado & Osher (1997)] and rel-
ative entropy [Avellaneda et al (1997), Cont & Tankov (2004)] for probability
measures. When applied to a given set of market prices, these methods yield a
single set of model parameters calibrated to the market but require the extra
step of determining the regularization parameter α.

With or without regularization, deterministic optimization methods will at
best locate one of the (local or global) minima of the fitting criterion, but have
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nothing to say about the multiplicity of solutions of the initial (non-regularized)
calibration problem (4). In other words, they provide a point estimate but
no information about parameter uncertainty. However, the non-uniqueness of
the solution of the original calibration problem is not simply a mathematical
nuisance: the multiplicity of solutions contains interesting information on model
uncertainty, which is lost through the process of regularization.

We describe here a probabilistic approach to the model calibration problem,
which takes into account the multiplicity of solutions and the reflects the
ill-posed character of the problem instead of suppressing it. Our method is
based on a stochastic algorithm which generates a random sample from the set
of calibrated models. Starting from an IID population of candidate solutions
drawn from a prior distribution on the set of model parameters, the population
of parameters is updated through cycles of independent random moves followed
by “selection” using the calibration criterion. We examine conditions under
which such an evolving population converges to the set of global minima of a
pricing error such as (4), which may or may not be reduced to a single element.

Our approach naturally leads to a family of pricing models compatible with
market prices. This family can then be used to quantify model uncertainty
and its impact on derivative prices and provides an example of a coherent risk
measure [Artzner et al(1999)] compatible with a set of observed option prices.

While most of the existing literature on estimation of parameters from option
prices has approached the problem in the framework of a deterministic optimiza-
tion, yielding point estimates of model parameters [Andersen & Andreasen (2000),
Avellaneda et al (1997), Coleman et al (1999), Crépey (2003), Cont & Tankov (2004),
Jackson et al (1999)], several authors [Ait Sahalia & Lo (1998), Jacquier & Jarrow (2000),
Lo (1986)] have cast this problem into a statistical framework, which leads to
distributions on model parameters. Nonparametric kernel regression was used
in [Ait Sahalia & Lo (1998)] for estimation of state price densities from option
prices. This approach assumes IID errors across options and can produce, in
addition to SPD estimates, confidence intervals on such estimates in large sam-
ples. By contrast with these methods, we do not rely on large sample results
nor do we assume IID errors across options. Closer to the spirit of this work,
[Jacquier & Jarrow (2000)] propose a Bayesian approach in the framework of
the Black Scholes model: starting from a prior distribution on model parame-
ters and an assumption on the distribution of observational errors, a posterior
distribution is obtained by taking into account the observed option prices and
a Monte Carlo algorithm is proposed for simulating from this posterior. The
general idea of our approach is similar: we start from a prior distribution on
model parameters, end up with a sample of model parameters and allow for
model misspecification. However, our approach is based not on the applica-
tion of the Bayes formula but on the minimization a pricing error such as (4)
and does not rely on a specific distribution for observational errors (which is
not known in practice). The computational complexity of the Bayesian ap-
proach has prevented it from being applied beyond the case of simple case such
as Black-Scholes. The scope of application of our method is not limited to the
Black Scholes model, as illustrated by the example of diffusion models in Section
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2.
Section 1 presents a general methodology for model identification based on

a set of observed option prices, applicable to a wide range of models. Section 2
specializes these results to the case of one-dimensional diffusion model (“local
volatility” model) and describes in detail the algorithm used in this case. In
order to assess the performance of our method, we first perform some numerical
experiments on simulated data: these tests are presented in section 3. Section 4
presents the results obtained by applying the method to an empirical data set of
DAX option prices. Section 5 discusses the implications of our methodology for
measuring model uncertainty and its extensions beyond the setting of diffusion
models or European options.

1 Evolutionary algorithms for model calibration

In this section we formulate a general framework for the model calibration prob-
lem and describe the use of a class of stochastic optimization methods, known
as evolutionary algorithms, for solving it. After presenting the mathematical
setting of the problem, we present the idea behind evolutionary optimization
methods, their convergence properties and discuss how they apply in the context
of model calibration.

1.1 Model calibration as an optimization problem

Consider an underlying asset modeled as stochastic process (St)t∈[0,T ] on some
probability space (Ω,F ,Ft,P). Denote by B(t, T ) the discount factor, with
B(T, T ) = 1. An arbitrage-free pricing rule can be represented as a measure
Q ∼ P such that the discounted price Ŝt = B(t, T )St is a martingale under Q.
Let M(S) denote the set of such pricing rules. An option pricing model is given
by a (parameterized) family of pricing measures

θ ∈ E → M(S) (5)
θ → Qθ (6)

For each θ ∈ E, Qθ is a probability measure on E such that (B(t, T )St)t∈[0,T ] is
a martingale. Consider now a set of benchmark options, with terminal payoffs
denoted by Hi, i = 1..I. Typically these benchmark options are European calls
and puts in the case of index or foreign exchange option markets, or caps and
floors in the case of interest rate markets. However for the sequel, we need
not assume this is the case; the benchmark options may have path-dependent
features, for example.

Denote by Ci(θ), i = 1..I the values of benchmark options at t = 0 under
the pricing rule given by the parameter θ:

Ci(θ) = B(t, T ) EQθ [ Hi |F0]

6



We will assume the parameter-to-price map

C : E �→ RI

θ �→ C(θ) = (Ci(θ), i = 1..I) (7)

is continuous; this is the case for all option pricing models of interest. We
assume now that the prices of these benchmark options are observed on the
market at t = 0; denote these prices by C∗

i , i = 1..I. The pricing rule Qθ is said
to be compatible with the market prices (C∗

i )i=1..I if

∀i = 1..I, Ci(θ) = C∗
i (8)

Eq. (8) should be seen as a system of implicit constraints for the model parame-
ter θ and the calibration problem consists in determining (the set of parameters)
θ satisfying (8). However, (8) may have no solution at all. Typically, if the model
is misspecified, the observed option prices may not lie within the range of prices
attainable by the model. Also, observed option prices are “noisy” estimates,
defined up to a bid–ask spread: although they may be compatible, in the sense
of bid-ask spreads, with the model prices for some parameter θ, they may not
verify the equality (8) exactly for any given θ ∈ E. For these reasons, it is a
common approach to replace (8) by its least squares version:

inf
θ∈E

G(θ) G(θ) =
I∑

i=1

wi|Ci(θ)− C∗
i |2 (9)

where wi > 0 are a set of weights. In cases where the option prices Ci(θ) de-
pends continuously on θ and when E is a compact subset of a finite dimensional
space (i.e. there are a finite number of bounded parameters), the least squares
formulation always admits a solution. However, the solution of (9) need not be
unique: G may in fact have several global minima, when the observed option
prices do not uniquely identify the model. Even in the case where there is a
unique global minimum, it may be difficult to compute using gradient-based op-
timization methods commonly used for this purpose. Besides the fact that the
gradient of G is often not known explicitly, in most cases G is a continuous but
non-convex function: figures 1–3 show examples of the function G for some pop-
ular parametric option pricing models, computed using a data set of DAX index
options prices on May 11, 2001. Figure 1 corresponds to the quadratic pricing
error in a lognormal-mixture diffusion model, described in [Brigo & Mercurio]:
it displays a flat profile, many parameter combinations yielding equivalent fits.
The quadratic pricing error in the Heston stochastic volatility model [Heston],
shown in figure 2 as a function of the “volatility of volatility” and the mean
reversion rate, displays a line of local minima. Finally, the pricing error for the
Variance Gamma model [Madan & Milne (1991)] in figure 3 displays a strongly
nonconvex profile, with two distinct minima in the range of observed values.

From figures 1–3 it is readily observed that, given the prices of the benchmark
call and put options, there are several – sometimes a full range of – model

7



0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6
0

500

1000

1500

2000

2500

3000

α

σ
1
=0.15 , α=0.3

σ
1

Figure 1: Error surface for lognormal density mixture model, DAX options.

5

10

15 0

0.5

1

1.5

3

4

5

6

7

8

Volatility of volatility

Pricing error in Heston model: SP500 options data, 2000.

Mean reversion parameter 

Lo
g 

er
ro

r

Figure 2: Error surface for the Heston stochastic volatility model, DAX options.

8



0.1

0.15

0.2

0.25

0
1

2
3

4
5

6
7

8
0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

σ
κ

B 

A 

Figure 3: Error surface for Variance Gamma (pure jump) model, DAX options.

parameters which are equally compatible with these market prices. In any of
these (real) examples, gradient-based algorithms will converge to local minima
of G or, at best, to one of the global minima of G, leaving us uninformed about
the other possible solutions and their multiplicity. The existence of multiple
solutions is not due to a specific numerical optimization method, but inherent
to the ill-posedness of the problem at hand: instead of ignoring or bypassing
it using an exogenous criterion, it is thus interesting to explore the various
solutions and try to quantify the associated model uncertainty. We will now
describe a probabilistic approach, based on evolutionary optimization, which
attempts at sampling from the set of solutions of (9), instead of selecting one
of them using an exogenous criterion.

1.2 Evolutionary optimization: a brief overview

Evolutionary algorithms, introduced in [Holland], are order-zero stochastic op-
timization methods: they require neither differentiability nor convexity of the
functions being optimized. Evolutionary algorithms are based on a random
search of the parameter space by a population of optimizers undergoing “evo-
lutionary pressure” based on an analogy with Darwinian selection of species
[Holland, Bäck]. They are widely used to solve complex – high dimensional
and nonconvex – optimization problems [Kallel et al.]. This section gives an
overview of evolutionary algorithms and their convergence properties.

Consider a search space E and a continuous “fitness” functionG : E �→ [0,∞[
to be minimized on E. In practice E will be taken to be a compact set but this
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condition is not strictly necessary. An evolutionary algorithm with objective
function G is based on the evolution of a population of candidate solutions
(individuals), denoted by XN

n = (θi
n, i = 1 · · ·N), where n is the current step

(generation), N is the population size and θi
n is a candidate minimizer of G.

For X = (θ1, ..., θN ) ∈ EN denote [X] = {θ1, ..., θN}.
The idea is to “evolve” the population θi

n, i = 1 · · ·N through cycles of
modification (mutation) and selection in order to improve the performance of
its individuals, as measured by the fitness function G. At each iteration n, the
population undergoes three transformations:

XN
n −→

mutation
V N

n −→
crossover

WN
n −→

selection
XN

n+1 (10)

During the mutation stage, individuals undergo independent random transfor-
mations, as if performing independent random walks in E, resulting in a ran-
domly modified population V N

n . In the crossover stage, pairs of individuals
chosen from the population to “reproduce’: each pair gives birth to a new indi-
vidual, which is then added to the population. This results in a new diversified
population Wn

N , regrouping parents and children, with > N elements. This new
population is now evaluated using the fitness function G(.): we compute G(x)
for every x ∈ [WN

n ]. Elements of the population are now selected for survival
with according to their fitness: those with a lower value of G have a higher
probability of being selected. One such selection rule is the following: each in-
dividual x ∈ [WN

n ] is selected with probability proportional to exp[−βnG(x)].
Here βn > 0 is a parameter called the selection pressure: βn → ∞ leads to
elitist selection, retaining only the individuals with lowest values of G(.) while
βn → 0 means we select individuals at random, regardless of their performance.
The N individuals thus selected then form the new population, XN

n+1.
The role of mutation is to explore the parameter space and the optimiza-

tion is done through selection. The idea is that, by analogy with Darwinian
evolution, cycles of mutation followed by selection will globally improve the
population’s performance and lead it to regions where G(.) is minimal. Note
that the gradient of G is not used at any time: movements are totally random,
corrected only through the selection procedure. Crossover is used to enhance
the search in parameter space. Aside from the crossover step, the mutation–
selection cycle is similar to the prediction–correction step in the EM algorithm
or in filtering problems. The following flow chart summarizes the structure of
an evolutionary algorithm.
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n← 0

Draw N IID points in E from prior distribution µ0: θi
0 ∼ µ0.

Initialize population XN
0 = (θ10, θ

2
0 · · · , θN

0 )

Evaluate XN
0 : compute G(θi

0), i = 1 · · ·N

while (desired fitness level not reached)do

begin
n− 1→ n
Mutation: randomly modify individuals in
XN

n−1 �→ V N
n

Generate new individuals by crossover �→WN
n

Evaluate WN
n : compute G(x), x ∈ [WN

n ]
Select XN

n from WN
n

end

In mathematical terms, the evolutionary algorithm described above corre-
sponds to simulating an (inhomogeneous) Markov chain (XN

n )n∈N in EN .

• The initial population is an IID sample drawn from a prior distribution
µ0 on E:

θi
0

IID∼ µ0 i = 1..N

• Mutation: each individual θi evolves independently following a transition
kernel Mn(x, dy) on E.

• Selection: at the n-th iteration, given the population θi
n, i = 1..N each

individual θi
n is selected with probability exp[−βnG(θi

n)]; if not selected,
it is replaced by another individual θj

n selected with probability:

exp[−βnG(θj
n)]∑N

k=1 exp[−βnG(θk
n)]

The selection pressure βn is progressively increased: βn →∞ as n→∞.

• Crossover: each pair (θi, θj) is selected according the selection mechanism
above and then evolves following a transition kernel Cn on E2.

Asymptotics and concentration properties of mutation/selection algorithms have
been studied [Cerf (1996), Cerf (1998), Del Moral & Miclo (2000), Del Moral & Miclo (2001),
Del Moral & Miclo (2003), Löwe (1996)] using ”small noise” asymptotics and
large deviation techniques. Most studies are limited to mutation–selection al-
gorithms, not including crossover, which complicates the picture. In the sequel
we will give convergence results in the framework where there is no crossover.
These results give various conditions on the mutation and selection kernel under
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which, for large n the population becomes concentrated on the set of minima of
G.

A first set of results [Cerf (1996), Cerf (1998)] states that, when E is finite
and for a large enough population size N ≥ N0, if the mutation allows to explore
sufficiently the parameter space and the mutation noise is gradually decreased
to zero as n → ∞ then the population gradually settles down on the set of
global optima of G.

The approach we adopt here is to study the distribution of individuals in
large populations (N →∞) [Del Moral & Miclo (2000), Del Moral & Miclo (2001)].
In this framework, one considers as primary object not the positions (θi

n) of
the individuals but the population distribution µN

n = N−1
∑N

i=1 δθi
n
, which

then defines a flow (µN
n )n≥0 on M1(E), the space of probability measures on

E. Under some technical conditions on the mutation and selection kernels
[Del Moral (2004)], the flow µN

n weakly converges as N →∞ to a distributional
flow (µn)n≥0 given by the measure–valued dynamical system1

µn+1 = µn Mn Sn
µn

(11)

where mutation and selection steps are represented by (nonlinear) transforma-
tions acting on µn: Mn is the mutation kernel at the n-th generation and Sn

µ is
a (state-dependent) transition kernel corresponding to the selection rule

Sn
µ(x, dy) = e−βnG(x)δx(dy) + (1− e−βnG(x))

e−βnG(y)µ(dy)∫
µ(dz) exp[−βnG(z)]

(12)

Conditions under which this convergence is uniform with respect to n ≥ 0 are
given in [Del Moral et al. (2001)]: the distribution of the individuals in the
evolutionary algorithm XN

n then behaves like a sample from µn as n → ∞.
The Markov chain (XN

n )n≥0 described above then corresponds to a N -particle
approximation of the measure-valued dynamical system (11). The goal is then
to choose the mutation kernels Mn and the selection parameter βn such that
when n→∞ the distribution µn concentrates on the minima of G. By contrast
with the situation described in [Cerf (1998)], finiteness of E is not needed. Also,
one can keep the mutations time-homogeneous and concentrate the population
on the set of optima by gradually increasing the selection rate βn as n → ∞
[Del Moral & Miclo (2003)].

Denote by H(Q|P ) the relative entropy of a probability distribution Q with
respect to P and define

I(µ) = inf
K

∫
E

µ(dx) H(K(x, .)|M(x, .)) (13)

where the infimum is taken over all Markov kernels with stationary measure
µ. The following result [Del Moral & Miclo (2003), Prop.4.2.] shows that if the
mutation kernel verifies a mixing condition and the selection pressure is pro-
gressively increased, the population concentrates in the level set corresponding
to the “minimum” of G in the following sense:

1Here µM designates the action of M on the measure µ: µM(dy) =
∫

E µ(dx)M(x, dy).
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Proposition 1 (Asymptotic behavior when n→∞) Let G be a function
of bounded oscillation, choose βn = na, a ∈]0, 1[ and assume the mutation
kernel Mn = M satisfies the following

Mixing condition ∃ε > 0,∀(x, y) ∈ E2,M(x, .) ≥ εM(y, .) (14)

Then the population concentrates in the level set corresponding to G∗:

∀δ > 0, µn(G(θ) ≥ G∗ + δ)→ 0 as n→∞.
where G∗ is the solution of the variational problem

G∗ = inf{
∫

E

G(θ)µ(dθ), µ ∈M1(E), I(µ) <∞} (15)

We will see in section 2 that, under appropriate conditions on the kernel M , G∗

coincides with the essential infimum of G with respect to the invariant measure
of the kernel M .

Another interesting property of this Markov chain, usually known under the
(obscure) name of ”propagation of chaos”, states the following: under some
technical conditions and if the initial population is IID, when population size
N → ∞, the joint law of any finite subset (θ1n, ..., θ

k
n) (k fixed) of individuals

converges weakly to a product law.2 This result can be interpreted as follows:
when the population size N is large, the individuals in each finite subpopulation
(θ1n, ..., θ

k
n) will behave as if they were independent. This suggests the following

statistical interpretation : if N is large then, for large n a finite subpopulation
(θ1n, ..., θ

k
n) can be viewed as a sample of independent draws from the level set

{x ∈ E,G(x) ≤ G∗ + δ}: one can use the evolutionary algorithm to obtain a
sample of independent δ-optima from the function G.

1.3 Evolutionary algorithms for model calibration

Consider now the setting of option pricing models described in Section 1.1. We
consider the pricing error G : E �→ [0,∞[ defined by:

G(θ) =
I∑

i=1

wi|Ci(θ)− C∗
i | (16)

where Ci(θ) are model prices and C∗
i are observed (transaction or mid-market)

prices for the benchmark options. We will assume that the parameter space E
is compact: in most cases, it is simply a compact subset of Rd. If the model
is capable of perfectly fitting the data, then minG = 0 otherwise minG > 0.
However, even if minG = 0 we are not necessarily interested in computing the
zeros of G. Recall that mid-market or transaction prices C∗

i are defined up to a
2We refer to [Del Moral & Miclo (2000)] for a precise formulation of results on propagation

of chaos for evolutionary algorithms and other particle systems.
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bid-ask interval [Cbid
i , Cask

i ]. Thus, it is not meaningful for a model to retrieve
the value of C∗

i with a precision much higher than |Cbid
i − Cask

i |. Define now
the a priori error level δ by:

δ =
I∑

i=1

wi|Cbid
i − Cask

i | (17)

Given the uncertainty on option values due to bid-ask spreads, one cannot mean-
ingfully distinguish a “perfect” fit G(θ) = 0 from any other fit with G(θ) ≤ δ.
Therefore, all parameter values in the level set {θ ∈ E,G(θ) ≤ δ} correspond
to models which are compatible with the market data (Cbid

i , Cask
i )i=1..I . As

noted before, in general the evolutionary algorithm described above allows to
reach the level G∗ ≥ minG given by (15). We will later see that under some
conditions G∗ coincides with the (essential) infimum of G. If G∗ > δ then no
model in the class considered is capable of reproducing market prices with the
required accuracy and the model is clearly misspecified. Thus, we will assume
in the sequel that

G∗ ≤ δ (18)

We will see that this assumption can indeed be verified in all empirical examples
below. In this case the level set {θ ∈ E,G(θ) ≤ δ} is not empty : some parameter
values will satisfy the calibration requirement within the desired accuracy, and
our objective will be to sample from this set.

When (18) is satisfied, under the conditions of Proposition 1, the evolution-
ary algorithm yields a population of points which converges to a sample of model
parameters compatible with the market data (Cbid

i , Cask
i )i=1..I in the sense that

G(θ) ≤ δ. Note that this means that, as n → ∞, elements of the population
end up in the level set {θ ∈ E,G(θ) ≤ δ} so we obtain not only one solution but
a population of model parameters calibrated to market data. Using the “prop-
agation of chaos” property described above, one can sample a subpopulation of
such parameters and regard it as a sample of statistically independent draws
from the set of calibrated model parameters.

Compared to existing algorithms for estimating model parameters from op-
tion prices, evolutionary optimization methods present the following advantages:

• No interpolation of option prices is required: contrarily to implied tree
[Derman et al (1996)] methods or methods based on the Dupire formula
[Dupire 1994], we does not require call/put prices for all strikes or maturi-
ties nor any ad-hoc interpolation of observed prices. They than therefore
be applied to index options where the number of observations is large
(I � 100 − 200) but also to equity options for which data is scarcer
(I � 20− 30).

• They avoid computing the (high dimensional) gradient of the objective
function, an essential but difficult step in other algorithms.
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• They do not require convexity of the objective function being minimized.
As seen in figures 1–2, this property does not hold in many commonly
used models.

• Evolutionary algorithms provide a population of solutions instead of a
single model uncertainty/ degree of ill-posedness is reflected in the hetero-
geneity of this population.

We will now present a case study to show how this methodology can be used to
estimate parameters of an option pricing model from market data.

2 Recovering diffusion coefficients from option
prices

The methodology outlined above is quite general and is not tied to a certain
class of option pricing models. However, to illustrate its performance in a specific
example, we will now specialize it to the class of Markovian diffusion models,
popular in option pricing applications, where the underlying is modeled as a
diffusion process:

dSt

St
= µ(t, St)dt+ σ(t, St)dWt (19)

The model parameter here is the local volatility function σ(., .). The calibra-
tion problem then consists of identifying the local volatility function σ(S, t) from
prices of call or put options observed in the market. This is usually done by
parameterizing the volatility function with some parameter θ �→ σθ and mini-
mizing the quadratic pricing error over parameter values θ ∈ E:

G2(θ) =
I∑

i=1

wi|Cσθ (t, St, Ti,Ki)− C∗
t (Ti,Ki)|2 (20)

here C∗
t (Ti,Ki) is the market price of a call option with strike K and maturity

T and Cσ(., ., Ti,Ki) is the model price. The model price is obtained as the
solution of the partial differential equation:{

∀S > 0, t ∈ [0, T [, ∂Cσ

∂t + σ2(t,S)S2

2
∂2Cσ

∂S2 − rS ∂Cσ

∂S = rC(t, S;T,K).
Cσ(T, S, T,K) = (S −K)+.

(21)

Various numerical methods have been proposed for estimating local volatil-
ity functions from call option prices. Dupire [Dupire 1994] presents a formula
for reconstructing local volatility functions from a continuum of call option
prices; however this formula involves taking derivatives from discrete data and
is numerically unstable. A discretized version of the Dupire formula is the im-
plied tree method of Derman & Kani [Derman et al (1996)], which is prone to
similar instabilities leading to “negative probabilities”. Other methods, based
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on nonlinear least squares [Coleman et al (1999)] or regularized versions of it
[Achdou & Pironneau, Avellaneda et al (1997), Crépey (2003), Jackson et al (1999),
Lagnado & Osher (1997), Samperi (2002)] all lead to minimization problems
which are solved using gradient based algorithms.3 In the non-parametric case,
the minimization variable is the function σ(., .). After discretization, this leads
to a (nonconvex) minimization problem in a high dimensional space, which
presents the following difficulties:

• The gradient of G is costly to compute. This makes gradient-based opti-
mization methods rather time consuming.

• The objective function G is not convex and typically presents many (local
or global) minima. As a consequence, gradient based methods tend to get
trapped in local minima. Also, lack of convexity creates problems when
using duality techniques as in [Avellaneda et al (1997), Samperi (2002)]
and may lead to a duality gap.

We will now describe how the evolutionary algorithm described above can be
adapted to the reconstruction of local volatility functions from option prices and
allows to overcome these problems.

2.1 An algorithm for reconstructing local volatility

Evolutionary optimization algorithms are often criticized for their slow conver-
gence; however, much of this criticism is due to the use of black-box evolution
operators embedded in general-purpose libraries, which may have no relation
with the problem at hand. In our case, a priori knowledge of the structure of
local volatility functions will allow us to design the Markov chain in a way that
improves considerably the convergence and accuracy of the algorithm.

The ingredients of the algorithm are the following:

1. A pricing algorithm (in this case, a finite difference solver) which takes as
input a local volatility function, a strike and a maturity and returns the
value of the option in the model (19): [σ(., .),K, T ]→ Cσ(T,K)

2. A parameterization of the set of admissible local volatility surfaces:

E �→ H

θ �→ σθ(., .) (22)

where H is a space of smooth functions [0, T ]×R→ R+ which satisfy our
a priori assumptions on the behavior of a local volatility function.

3. A prior distribution µ0 on E summarizing our prior information on the
local volatility function σ(., .): its level, its degree of smoothness, etc.

4. A set of market prices of call options: C∗ = (C∗(Ti,Ki), i = 1..I)

3See [Crépey (2003)] for a review.
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5. An objective function to be minimized on E: while (20) is a common
choice, it should be noted that the only reason for using squared errors
is to obtain differentiability. Since the evolutionary algorithm does not
require differentiability of the objective function, instead of the quadratic
pricing error we can also use the absolute pricing error which yields more
stable numerical values:

G(θ) =
I∑

i=1

wi|Cσθ (t, St, Ti,Ki)− C∗
t (Ti,Ki)| (23)

We now describe each of these ingredients in more detail.

2.2 Representation of the local volatility surface

We consider a representation similar to the one adopted in [Jackson et al (1999)].
Consider a tenor T = {T1, ..., TL} of maturities and let ∆x > 0 be a positive
number representing the resolution of the representation in the log-strike/price
dimension and xk = k∆x, k = −K..0..K. For each maturity T ∈ T we represent
the local volatility function σ(T, .) as a function of log-price x = ln(S/S0) in the
following way4: for any maturity T ∈ T, we represent σ(T, .) as a cubic spline:

∀i = 1..L, σθ(Ti, .) =
M∑

m=0

θ(i,m)φm(.) (24)

where φ0(S) = 1 is the constant function equal to 1 and (φm,m = 1..M) is the
B-spline basis associated with the ”knots” (xk, k = −K, .., 0, ..,K), described in
the appendix. For t /∈ T, we define σ(t, x) by linear interpolation: if t ∈ [Ti, Ti+1]
we set

σ(t, x) =
Ti+1 − t
Ti+1 − Ti

σ(Ti, x) +
t− Ti

Ti+1 − Ti
σ(Ti+1, x) (25)

For t > Tn or t < T1 we extrapolate by:

∀t > Tn, σ(t, x) = σ(Tn, x) (26)
∀t < T1, σ(t, x) = σ(T1, x) (27)

In practice, all coefficients θ(i,m) are taken to be bounded: they are positive
and bounded from above by some positive number, say c. Denote by H the
space of local volatility functions generated in this way. H is a subset of a
finite dimensional space of smooth functions [0, T ] × R �→ R. A smooth local
volatility surface σ(., .) ∈ H is thus represented by the matrix of nd coefficients,
which we will denote by θ = [θ(i,m),m = 0..M, i = 1..L] ∈ [0, c]d. σ(., .)
will be positive if these coefficients are positive. This representation separates
the ”Black-Scholes” component, represented by the coefficients θ(., 0) from the
other coefficients θ(i,m),m = 1..M which represent the implied volatility smile
or skew.

4By abuse of notation, we continue to denote by σ(t, x) the volatility in the log-price
variable.
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2.3 Generating the initial population

The first step in the evolutionary algorithm is to generate a family of local
volatility functions σj

0(., .), j = 1..N which constitute the initial population of
candidate solutions. As described in Section 1, we generate this initial popula-
tion using some prior distribution on the local volatility surface, capturing the
information available on its level and shape.

What prior information do we possess on local volatility functions? First,
the at-the-money implied volatilities can give a good idea of the level of local
volatilities: by analogy with a Black-Scholes model with time-varying volatility,
we can set the constant (level) component θ(., 0) according to:

∀Ti ∈ T, θ(i, 0) =

√
Ti+1Σ2

ATM (Ti+1)− TiΣ2
ATM (Ti)

Ti+1 − Ti
(28)

where ΣATM (T ) is the at-the-money implied volatility for the maturity T . Apart
from this, the only other prior requirement we might have is to require the local
volatility to be “smooth” in (t, x): in practice, this means we want to avoid
highly oscillatory behavior. To integrate this requirement we use a smoothness
prior i.e. a prior distribution on H which generates surfaces which are typically
smooth as a function of price (and to a lesser extent, in the time variable). In
order to quantify the smoothness we can use for instance the (semi)-norm:

||σ||21,2 =
∑
T∈T

∫ T

0

dt

∫ A

−A

dx[|∂
2σ

∂x2
(t, x)|2 + |∂σ

∂t
(t, x)|2] (29)

A possible choice of smoothness prior is then to choose a Gaussian measure
restricted to E with density:

a

(2π)LM/2
exp[−||σ||

2
1,2

2γ2
] (30)

where a is a normalization constant. A typical draw from this Gaussian measure
will thus be a surface σ with ||σ||1,2 of the order γ so the parameter γ can be
used to control the smoothness of surfaces generated from this prior.

To simulate from this prior we use the representation (24). Each surface
σ(., .) is represented by its coefficients θ = [θ(i,m), i = 1..n,m = 0..M ] ∈ Rd

and the smoothness semi-norm (29) can be written as a quadratic form in θ,
given by Equation (??) in Appendix A and can thus be written as:

||σ||21,2 = tθAθ (31)

where A is a d × d matrix. We set the reference level θ(i, 0) using the at the
money implied volatility according to (28). and use a Cholesky decomposition
to find a matrix B such that A = BBt. We then set:

θi(., .) = B.εi i = 1 . . . N (32)
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where (εi, i = 1..N) are IID N(0, Id) vectors.5 Note that smoothness norms
such as (29) have also been used in [Crépey (2003), Jackson et al (1999)] as
regularization terms in order to penalize G(.). Using a smoothness prior as
defined here allows to introduce information on the smoothness of the volatility
surface via the prior, without modifying the objective function G.

2.4 Computation of the objective function

We choose as weights in the objective function

wi = max(
1

V ega(Ti,Ki)
, 100)

where V ega(Ti,Ki) is the Black-Scholes Vega of the option computed using the
market implied volatility. This weight ’converts’ errors in price into errors in
implied volatility, thus rescaling all terms in the sum defining G to the same
order of magnitude. Thresholding by 100 avoids overweighting of options very
far from the money. In order to compute the objective function at each step, the
option prices Cσ(t0, S0;Ti,Ki) have to be computed from the volatility surface
σ(., .) and substituted in (23). This can be done in principle by solving the
partial differential equation (21) to compute Cσ(t, S;T,K). The price we are
interested in is then given by Cσ(t0, S0;T,K). This method is in fact quite
heavy because it implies solving (21) at each time step for each option in the
observation set. In the case where the calibration instruments are European call
options, this procedure can be speeded up by a factor equal to the number of
options being calibrated, by remarking that the call option price C(t0, S0, T,K),
as a function of the strike and maturity (K,T ), verifies the Dupire equation
[Dupire 1994] :

∂C

∂T
+Kr

∂C

∂K
− K2σ2(T,K)

2
∂2C

∂K2
= 0. (33)

∀K ≥ 0, C(t0, S, t0,K) = (S −K)+.

Solving this equation will then give us the whole range of call prices for all
strikes and maturities in a single sweep. Using a logarithmic change of variable
x = ln(K/S0) and u(T, x) = C(t0, S0;T, S0e

x), (33) is equivalent to:

∂u

∂T
=
σ2

2
∂2u

∂x2
−

(
σ2

2
+ r(t)

)
∂u

∂x
(T, x) (34)

∀x ∈]−∞,∞[, u(0, x) = (S0 − S0e
x)+

Equation (34) is then localized to a bounded domain x ∈ [−A,A] and discretized
using an implicit finite difference scheme on a uniform grid. Unconditional
stability of the implicit scheme reduces the number of time steps and allows to

5Note that, in fact, since the coefficients θ(i, m) are bounded the actual distribution cor-
responds to a truncated Gaussian distribution, values larger than the bounds being rejected
and replaced by new ones.
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use coarser grids in the first stages of the evolution and refine progressively as
the need for precision appears. For the localized problem we use the numerical
boundary conditions:

u(T,A) = 0 u(T,−A) = S0(1− e−A) (35)

which correspond to the asymptotic behavior of call prices for small and large
strikes. The instantaneous discount rate r(t) is modelled as a piecewise constant
function computed from a set of discount factors with maturities {T1, ..., TL}.

2.5 The evolution scheme

As described in Section 1, the population of parameters undergoes a cycle of
mutation, crossover and selection at each iteration. In the case of volatility func-
tions, we need to ensure that these transformations allows to explore sufficiently
the parameter space but avoids generating pathological volatility functions with
non-smooth or oscillating features.

• Mutation: the mutation step amounts to randomly modifying each volatil-
ity function by adding a noise term to the spline coefficients. Noise terms
are IID across individuals in the population but in order to conserve the
smoothness of the surfaces, they cannot be IID across spline components.
We choose them to have the covariance A defined in (45):

∀j ∈ {1, · · · , N},∀i = 1..n θj(i, .)←− θj(i, .) +B.εj

where εj ∼ N(0, IM ) are IID across individuals and B is as described in
section 2.3. More precisely, since E is bounded, moves beyond the im-
posed bounds are rejected: denoting by V N

n = (γi
n, i = 1..N) the modified

population:

γj
n(i, .) = θj

n(i, .) +B.εj if θj
n(i, .) +B.εj ∈ [0, c]d

γj
n(i, .) = θj

n(i, .) if θj
n(i, .) +B.εj /∈ [0, c]d

The mutation kernel M is thus a “truncated” Gaussian kernel:

M(x, dy) = M(x, x)δx(dy) + 1y∈E

exp[− 1
2

t(y − x)A−1(y − x)]√
(2π)d|A| dy

where M(x, x) = 1−N(x,A)([0, c]d) (36)

is the probability that the mutation leaves the point x unmodified and
N(x,A) is the normal distribution centered at x with covariance A.

• Selection: at the n-th iteration, given the population θi
n, i = 1..N each

individual σi
n is selected with probability exp[−βnG(θi

n)]; if not selected, it
is replaced by another individual θj

n selected according to the distribution:

exp[−βnG(θj
n)]∑N

k=1 exp[−βnG(θk
n)]
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The selection parameter is increased with the number of iterations:

βn = na with 0 < a < 1.

• Crossover: this extra step is not strictly required for convergence but
enhances the search procedure in practice. First, we select, using the
selection procedure outlined above, two individuals σj and σk from the
population. The probability of an individual being selected is therefore
proportional to its calibration performance. Then, we generate an inde-
pendent uniform random variable α ∈ [0, 1] and create a new individual
σl by convex combination : σr = ασj + (1 − α)σk. σr is then added to
the current population. Note that this operation preserves smoothness of
the surfaces since

||σr||1,2 ≤ α||σk||1,2 + (1− α)||σj ||1,2

Neglecting the effect of the crossover step in the convergence analysis, we obtain
the following convergence result, a proof of which is outlined in the appendix:

Proposition 2 (Convergence to global minima) Let µn denote the distri-
bution of the population after n mutation-selection cycles described above. Then,
as n→∞, µn concentrates on the set of global minima of the pricing error G:

∀ε > 0, µn(G(θ) ≥ min
E

G+ ε) n→∞−→ 0.

3 Numerical experiments

To assess the performance of the algorithm we perform a series of numerical
tests in which the algorithm is used to retrieve a known diffusion coefficient (i.e.
local volatility function) from a set of option prices generated from it.

Figure 4 shows the local volatility function σ0(., .) used for the test.6 A set
of call option prices C∗(0, S0, Ti,Ki) was computed from σ0(., .) by solving the
Dupire partial differential equation (33). In order for the test set to be similar
to the empirical data sets available to us, we used 70 unevenly spaced values
of strikes and maturities for (Ti,Ki), i = 1..70. To each of these prices, we add
independent noise components with standard deviation equal to 0.1% of the
option price; this observational noise simulates the effect of bid-ask spreads in
real data.

These prices are then used as inputs for the calibration algorithm described
in Section 2. A population of N = 50 solutions was used in this case. Volatil-
ity functions were parameterized as described in section 2.2, using a tenor of 3
maturities and 10 spline nodes per maturity. Figure 5 illustrates the evolution

6This function was actually obtained by calibrating a diffusion model to DAX option prices,
as described in Section 4.
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Figure 4: Local volatility function σ0(., .) used to generate option prices in the
numerical experiments.

of the population: the performance (measure with G) of the average individual,
the best individual as well as the standard deviation of the population perfor-
mance converge after 15 iterations to values very close to zero, which indicates a
population of local volatility functions with very good calibration performance.
The a priori error defined in (17) is normalized here to δ = 1: we therefore
see that in this case G∗ � δ and the level set {θ ∈ E,G(x) ≤ δ} is attained.
These local volatility functions, although very similar with regard to calibration
performance, can be quite different in their actual values: figure 6 shows some
of the best performing ones. Figure 3 shows the retrieval error in terms of im-
plied volatility. Each point represents the calibration error in implied volatility
units for one option in the data set. As shown in the figure, the input implied
volatilities are retrieved with a precision of a few basis points, which is quite
acceptable by comparison to market bid-ask spreads.

To summarize, these numerical tests show that the evolutionary algorithm
is capable of retrieving a local volatility function from a data set of option
prices with realistic size and features. Not only does the algorithm retrieve
the input local volatility function and its associated implied volatilities with a
precision of a few basis points, it also identifies other local volatility function
which are different but which lead to similar prices for the benchmark options
in the calibration set: they correspond to volatility functions which are not
distinguishable from σ0 given only the observed option prices.
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Figure 5: Numerical test: population mean, standard deviation of fitness and
fitness of best individual.
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Figure 7: Numerical test: retrieval error in terms of implied volatility. Each
point represents the calibration error in implied volatility units for one option
in the data set. Scale: 10−4 = 1 basis point.

4 Empirical results: DAX index options

Motivated by the positive results in the numerical experiments, the algorithm
described above was applied to a data set of market prices of European call and
put options on the DAX index, quoted on June 13, 2001. Around 100 option
prices were available to us on this date, with different strikes and maturities
running from a week up to one year. Figure 4 shows the implied volatility of
these options as a function of strike and maturity. Options with a Black–Scholes
vega less than 0.01 were discarded from the calibration set: such options are
too far from the money to be liquid and the uncertainty on implied volatility is
too large to be useful in our context. The weight wi was chosen as described
in Section 2.4. In this way, i-th error term in (23) is, up to first order in the
pricing error, equivalent to the error in implied volatility units.

The procedure described in Section 2 was applied to this data set to gener-
ate a population of 50 candidate solutions, which were then evolved using an
evolutionary algorithm. Figure 4 illustrates the convergence of the algorithm:
contrarily to the numerical tests shown above where the model was known to
be well specified, here convergence is not monotonous, indicating that the min-
imization is more difficult. The a priori error defined in (17) is given in this
case by δ � 40: again, we observe that the level set {θ ∈ E,G(x) ≤ δ} has been
attained. Note that fitness in the population is fairly homogeneous as indicated
by a standard deviation of G(θi) much lower than its population average. This
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Figure 8: DAX options implied volatilities: 13 June 2001.

means that most of the models in the population have a similar (and good)
calibration performance. It is therefore interesting to see if they correspond to
similar volatility functions. Figure 10 shows two of the best performing volatility
functions obtained. As seen in the figure, they have different term structures,
distinguishable by the eye. However, their calibration performance, as indicated
by the absolute pricing error (23), is quite similar. Figure 11 gives the decom-
position of the pricing errors for these two local volatility models: each point on
the graphs corresponds to the calibration error, in implied volatility units, for
one of the options in the data set. Since there is a one-to-one map between local
volatility functions and call option prices [Dupire 1994], if all strikes and matu-
rities had been included in the data sets we would have been able to distinguish
these two models; however, as can be observed from figure 11, the two diffu-
sion models display quite similar patterns of implied volatility for the quoted
strikes and maturities. Other local volatility functions, compatible with the
same data set of call options, are given in figure 12: they can be regarded is a
sample drawn from the set of calibrated local volatility functions. Recall that
the final population has a relatively small standard deviation of fitness do the
calibration performance of the corresponding diffusion models are quite similar,
even though the actual values of local volatilities and their term structures dif-
fer. What is striking is the inhomogeneity in (t, S) of their dispersion, which
decreases notably as a function of maturity. For the sake of clarity we have
represented the pointwise upper and lower envelopes of these surfaces in figure
13: the widening of this band as maturity decreases reflects the parabolic na-
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Figure 11: Calibration error in implied volatility units: DAX options.
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Figure 12: A sample of local volatility surfaces calibrated to DAX options.

ture of the inverse problem. In financial terms, it simply means that short term
options are not affected much by the value of the underlying’s (local) volatility
so their price cannot give much information on short term volatility, leading to
a large uncertainty on short term volatility. Conversely, longer term options
are strongly affected by the value of volatility so one can use them to get more
precise estimates for longer term volatility.

Similar results were obtained with DAX options on other dates. These ex-
amples illustrate that the possibility of being able to reconstruct local volatility
from call option prices in a precise manner is at best illusory: even in the case
of index options where data sets are relatively large, the parameter uncertainty
which prevails is too important to be ignored. They also show that this un-
certainty prevails even more for short maturities: in our example, short term
volatility hovers anywhere between 15% and 35%! These observations cast a
doubt on the information content of short term options in terms of volatility
and question the basis of short maturity asymptotics as a method for exploring
volatility patterns.

5 Applications and extensions

We have described a new approach to the estimation of the (risk-neutral) dy-
namics of an underlying asset from cross-sectional observations of option prices.
Our approach is based on an evolutionary algorithm in which a population of
optimizers performs a random search in the parameter space of the model, evolv-
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Figure 13: Pointwise confidence intervals for the local volatility σ(t, S) computed
from 10 best solutions, DAX options.

ing through cycles of random mutation followed by selection. We give conditions
under which the algorithm converges to a sample of models calibrated to the
market prices with a given precision.

The proposed algorithm takes as input market prices for a set of benchmark
options and produces a family of models which are marked-to-market on these
options. We have given a detailed example of how this algorithm can be im-
plemented in the case of diffusion models, where the aim is to reconstruct the
local volatility surface from prices of call options and we have illustrated its
implementability by applying it to an empirical data set of index options.

Evolutionary algorithms require neither differentiability nor convexity of the
objective function to be minimized and hence allow a wide range of fitting cri-
teria to be used. They avoid computation of gradients, which are the main
computational burden in high-dimensional optimization problems typical of non-
parametric calibration methods. In fact, their only requirement is being able
to price the options in the calibration set which makes them easy to adapt to a
wide variety of models and payoffs.

5.1 Quantifying model uncertainty

Apart from the numerical advantages detailed above, it also yields, as by-
product, a way to analyze model uncertainty. Calibration algorithms based
on deterministic optimization yield a point estimate for model parameters:
they point out to one model in the class of models considered (here, the Marko-
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vian diffusion class) which approximates well the observed prices of benchmark
options. By contrast, an evolutionary approach yields an entire population of
solutions to the inverse problem, many of which price the benchmark options
with equivalent precision. The heterogeneity of this population reflects the un-
certainty in model parameters, which are left undetermined by the benchmark
options. This idea can be exploited to produce a quantitative measure of model
uncertainty compatible with observed market prices of benchmark instruments
[Cont (2003)], in the following manner. Suppose that we have calibrated a
model (Qθ)θ∈E to the benchmark payoffs Hi with market prices C∗

i , i = 1..I us-
ing the evolutionary algorithm outlined above. This yields a set of parameters
θ1, .., θk corresponding to calibrated models. Denote by Q = {Qθ1 , ...,Qθk

} the
associated pricing rules. Then for Q ∈ Q we have EQ(Hi) � C∗

i within bid-ask
bounds. Consider now an exotic or illiquid option on the same underlying, with
payoff X. Define the upper and lower price bounds by:

π(X) = sup
Q∈Q

EQ[X] π(X) = inf
Q∈Q

EQ[X] = −π(−X) (37)

then π(X) is a coherent risk measure [Artzner et al(1999)], compatible with
the market prices in the sense that for any of the traded options with payoffs
Hi, i = 1..I, π(Hi) � C∗

i within bid-ask bounds. This is in contrast with su-
perreplication costs associated with uncertainty in volatility, which are typically
way out of market bid-ask bounds. Furthermore

µ(X) = π(X)− π(X) (38)

quantifies the impact of model uncertainty on the value of the derivative X.
Once the family Q is obtained from the evolutionary calibration procedure,
computation of π(X), π(X) and µ(X) simply amounts to pricing the claim X
in each of the models; moreover, the model realizing the supremum can be
identified as the “worst case” model for the claim X. Therefore, our model cal-
ibration procedure enables to quantify the uncertainty on values of contingent
claims associated with parameter uncertainty, without much further compu-
tational effort. Properties of such measures of model uncertainty are further
discussed in [Cont (2003)].

5.2 Extensions

As noted above, since the only ingredient necessary in the calibration algorithm
is the computation of option prices, one can also include in this setting prices
of options other than European calls or puts: American options, barrier options
or any other available exotic options can also be included in the calibration
set as long as an efficient numerical algorithm is available for pricing them in
the model. To our knowledge, this is not feasible using alternative calibration
algorithms.

On the implementation side, the methodology described in section 1 is not
specific to diffusion models: the same approach can be used for other families of
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models such as stochastic volatility models, interest rate models, multivariate
models and models with jumps. We believe these extensions are of interest for
applications and will be the object of our future work.
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A B splines

Define the functions:

ψ0(x) =
1
6
(1− x)3 (39)

ψ1(x) =
1
6
(4− 6x2 + 3x3) (40)

ψ2(x) =
1
6
(1 + 3x+ 3x2 − 3x3) (41)

ψ3(x) =
x3

6
(42)
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Given a set of nodes X0 < X1 < ... < Xn the functions (ψi, i = 0..3) may be
translated and dilated appropriately by substituting for x the new variable

ξ[Xi−1,Xi] =
x−Xi−1

Xi −Xi−1
(43)

The B-spline basis (φi, i = 0..n) associated with a set of nodes X0 < X1 < ... <
Xn is defined by:

φi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x ≤ Xi−2

ψ3(ξ[Xi−2,Xi−1](x)) Xi−1 ≥ x ≥ Xi−2

ψ2(ξ[Xi−1,Xi](x)) Xi ≥ x ≥ Xi−1

ψ1(ξ[Xi,Xi+1](x)) Xi+1 ≥ x ≥ Xi

ψ0(ξ[Xi+1,Xi+2](x)) Xi+2 ≥ x ≥ Xi+1

0 x ≥ Xi+2

Smooth functions may then be built by using linear combinations of B-splines:

f(x) =
n∑

i=1

fi φi(x) (44)

Due to the smoothness properties of B-splines, f is smooth ( C2 ). Moreover
since φis have compact support the ”zone of influence” of fi on f is limited to
[Xi−2,Xi+2]. Finally, since φi ≥ 0 the expansions enables to construct positive
functions by simply imposing that fi ≥ 0. It is important to note that the B-
spline expansion (44) is not an interpolation of f at points (Xi, fi): f(Xi) = fi.

In terms of the spline decomposition (25), the seminorm ||σ||1,2 is given by

‖σ‖21,2 =
n−1∑
i=0

(Ti+1 − Ti)
M∑

m=1

θ(i+ 1,m) + θ(i,m)
2

‖φ′′
m‖2L2 (45)

+
n−1∑
i=0

M∑
m=1

(
θ(i+ 1,m)− θ(i,m)

Ti+1 − Ti
)2‖φm‖2L2

+(
θ(i+ 1,m)− θ(i,m)

Ti+1 − Ti
)(
θ(i+ 1,m− 1)− θ(i,m− 1)

Ti+1 − Ti
)(φm, φm−1)L2

+(
θ(i+ 1,m)− θ(i,m)

Ti+1 − Ti
)(
θ(i+ 1,m+ 1)− θ(i,m+ 1)

Ti+1 − Ti
)(φm, φm+1)L2

B Proof of Proposition 2

The mapping θ �→ σθ given by (24)-(25) is a continuous mapping from E ⊂ Rd

to H ⊂ H1,2([0, T ]×R). Also, from general results on continuity of solutions of
parabolic PDEs with respect to coefficients [Ladyzhenskaya et al.], the mapping
σ �→ Cσ(., .;Ti,Ki) is a continuous mapping from H1,2([0, T ]×R) to C0([0, T ]×
R). Therefore, by composition of continuous maps

G : E �→ R+

θ �→ Cσθ (t, S;Ti,Ki)
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is continuous. Using standard arbitrage bounds on call prices,

∀θ ∈ E, 0 ≤ G(θ) ≤ 2S0

I∑
i=1

wi ≤ 200IS0

so G(.) is bounded, therefore of bounded oscillation. Furthermore, it is easily
verified that since E is bounded, the mutation kernel defined by (36) verifies the
mixing condition (14). Thus, the ingredients of the evolution scheme verify the
hypotheses of Proposition 1, thus entailing the convergence of the population
to the level set G∗:

∀ε > 0, µn(G(θ) ≥ G∗ + ε) → 0 as n→∞.

where G∗ is defined by (15). From (36) it is verified that M is an irreducible
kernel. Furthermore, from (36) we see that

sup
x∈E

M(x, x) < 1 (46)

Denote by π the (unique) invariant distribution ofM : π verifies
∫

E
π(dx)M(x, dy) =

π(dy). Since the kernel M defined by (36) verifies M(x, x) > 0 for any x ∈ E,
by [Del Moral & Miclo (2003), Proposition 4.4] G∗ coincides with the essential
infimum of G with respect to π. Let us show that π is absolutely continuous
with respect to the Lebesgue measure on E. Consider a subset U ⊂ E with
Lebesgue measure 0. Using the expression of the mutation kernel (36), we have

π(U) =
∫

E

π(dx)M(x,U)

=
∫

U

π(dx)M(x, x) +
∫
π(dx)

∫
y∈U

exp[− 1
2

t(y − x)A−1(y − x)]√
(2π)d|A| dy

=
∫

U

π(dx)M(x, x) + 0 (47)

since U has measure zero. Therefore using (46) we obtain

π(U) ≤ sup
x∈E

M(x, x)π(U) < π(U) (48)

which entails that π(U) = 0: π is thus absolutely continuous with respect to
the Lebesgue measure. Therefore, the essential infimum of G with respect to π
coincides with its global minimum, which gives the result.
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