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Abstract

The standard relation of logical consequence allows for non-standard

interpretations of logical constants, as was shown early on by Carnap.

But then how can we learn the interpretations of logical constants, if

not from the rules which govern their use? Answers in the literature

have mostly consisted in devising clever rule formats going beyond the

familiar what follows from what. A more conservative answer is possible.

We may be able to learn the correct interpretations from the standard

rules, because the space of possible interpretations is a priori restricted by

universal semantic principles. We show that this is indeed the case. The

principles are familiar from modern formal semantics: compositionality,

supplemented, for quantifiers, with topic-neutrality.

Keywords: logical consequence, logical constants, Carnap’s Problem, se-
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1 Introduction: Carnap’s Problem

The aim of Carnap’s book Formalization of Logic (1943) was to point out the

existence of what he called non-normal interpretations of classical logic: non-

standard interpretations of logical constants which nevertheless validate all the

classical laws. He also indicated ways to strengthen the usual proof systems so

that such interpretations would not arise. In his review, Church recognized the

problem, but was sceptical of Carnap’s remedy, arguing that the proposed proof-

theoretic revisions were “a concealed use of semantics” [6, p. 496]. Instead, he

suggested, the use of semantic notions should be made explicit and vindicated,

since no purely syntactic solution would work.

Later logicians and philosophers discussing the issue have not followed Church’s

advice, however, but mostly engaged in the strengthening of proof rules. In this

paper we do exactly what Church recommended. More precisely, we show that

assuming a few largely uncontroversial principles of semantic interpretation —

the most important of which is the principle of compositionality — Carnap’s

Problem can be solved. Moreover, in contrast with earlier attempts, which

in effect deal only with propositional logic, we show that the result holds for

first-order logic as well. Indeed, eliminating non-normal interpretations of the

quantifiers is the hard case, in the light of which any tentative solution to Car-

nap’s problem should be evaluated.

But do we really need to worry about Carnap’s Problem? Carnap himself

took the issue quite seriously, and so do those who have pursued it later. At

least we can safely say the following. Logical constants are instrumental to

inference, and their usage is captured by means of syntactic rules in a formal

system. When the language is given a definition of truth, logical constants

receive interpretations representing their contributions to the semantic values

of sentences in which they occur. So it certainly is a legitimate question to ask

if the proof rules for logical constants determine these interpretations.

One may go further and consider the presence of non-normal interpretations

unsatisfactory in principle, at least for a basic system like first-order logic. Car-

nap seems to have taken the absence of such interpretations to be desirable in

its own right, expressing the ability of a syntactic system to adequately reflect

semantics, on a par with more familiar properties such as soundness and com-

pleteness. Also, from the perspective of a theory of meaning, failure of proof
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rules to determine semantic interpretation appears to spell trouble for an ac-

count of meaning as use applied to the logical constants; witness the renewed

interested in Carnap’s Problem in connection with debates about inferentialism

(e.g. [16, 8]). At the very least, the presence of non-normal interpretations would

make it hard to learn the (classical) meaning of logical constants for someone

with access only to their rules of proof.

2 The space of solutions

We shall first further explore the space of possible solutions, in order to compare

our explicitly semantic approach to existing solutions. Carnap’s Problem is

the underdetermination of semantics (the interpretation of logical constants)

by syntax (a syntactically defined notion of consequence). Therefore, since the

problem concerns the match between syntax and semantics, three different kinds

of strategies naturally emerge:

(a) Syntactic strategy: one may target the syntax, and strengthen the proof

system, so that it imposes additional burdens on the semantics.

(b) Semantic strategy: one may target the semantics, and a priori constrain

the class of possible interpretations, so that making the semantics deter-

minate is easier.

(c) Strong pairing strategy: one may target the relationship between syntax

and semantics and require more than correctness of provable sequents, so

that the same proof system places heavier constraints on the semantics

which is to match it.

Carnap himself followed a syntactic strategy and outlined different ways

to strengthen proof systems that would eliminate non-normal interpretations.

One was to formalize logical contradiction on a par with logical consequence,

the other to allow for multiple conclusions. This second option has become

popular among proof theorists (see [19]; the idea goes back to Gentzen’s notion

of a sequent). Alternatively, one may add a primitive notion of rejection, con-

strued as a pragmatic force complementary to assertion [20, 18]. Technically,

these systems all succeed in eliminating non-normal interpretations in classi-

cal propositional logic. Moreover, [10] shows that categorical characterizations
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of connectives can even be given for many-valued propositional logics, using

multi-sided sequents. But it is easy to share Church’s scepticism about the

philosophical significance of these results for Carnap’s Problem. Where does

the extra expressive power embodied in these proof formats come from? Pre-

cisely because they outreach the familiar notion of inference (according to which

some proposition follows from some other propositions), such formats may be

suspected to rely upon semantic notions which are not part and parcel of our

inferential practice. For example, multiple conclusions appear to presuppose

a primitive understanding of disjunctive contents, and building the duality of

assertion and rejection into the proof system could be argued to presuppose a

grasp of negation (see [21] for a detailed rebuttal of multiple conclusions for the

inferentialist).

Even more importantly, success in the propositional case for strategy (a) does

not easily carry over to the first-order case. The latter is only cursorily dealt

with in the literature, and existing treatments either assume a non-standard

interpretation of quantifiers ([5, 9]), or relax the standards for what it means

to fix the interpretation of quantifiers ([20]). Non-standard treatments construe

universal and existential quantification as infinitary conjunction and disjunction

(under the assumption that every element in the domain has a name, and that

the proof system contains an ω-rule). This procrustean strategy shows at best

that if quantifiers are reduced to connectives, what works for connectives works

for quantifiers as well. But since at least [15] we recognize ∀ and ∃ as instances

of generalized quantifiers, and the real question is whether the proof rules allow

any other generalized quantifiers than these.

The strong pairing strategy, strategy (c) above, has recently been advocated

in [8]. Standardly, the semantics matching a syntactically given consequence

relation is simply to be such that the consequence relation is correct with re-

spect to it. Whenever a sequent is derivable, it must be valid, that is, any

interpretation which makes its antecedents true is to make its consequent true

as well. When rules are given which generate the consequence relation, stronger

ties may be demanded. Inference rules are not only a way to produce derivable

sequents. They say that if some consequences hold, some other consequence

holds. Hence, as Garson suggests, one may ask that the semantics be such that

inference rules preserve validity. Whenever a sequent can be obtained by means

of an inference rule from sequents which are valid with respect to the semantics,
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that sequent should also be valid. Garson shows that such a strengthening of the

ties between syntax and semantics resolves the underdetermination and yields

intuitionistic semantics. The cost for this solution is a rather complex grasp of

logical consequence — involving not just the knowledge of valid consequences,

but the understanding of validity preserving mechanisms. After all, valid logical

reasoning is often from premisses that are not themselves valid.

In the present paper, we wish to make a case for strategy (b). We will show

that correctness with respect to classical logical consequence, together with

a few principles of semantic interpretation, jointly suffice to fix the classical

interpretation of the logical constants. Thus a potential learner does not need

to grasp more than the idea of valid consequence — truth preservation, rather

than the stronger notion of validity preservation as in (c) — and can get to

the classical meanings. Comparing with solutions obtained along the lines of

strategy (a), nothing more than standard inferential practice will be needed, and

the classical interpretation of quantifiers will be recovered, by the same tactics

which crack the propositional case. Thus, strategy (b), which, despite Church’s

recommendation, has never been put to work, would seem to provide the most

satisfactory solution to Carnap’s Problem.1

Comparison with strategy (c) as implemented in Garson’s work draws at-

tention to the importance of the choice of the underlying semantic framework.

In [8], the models with respect to which logical connectives get an interpreta-

tion are sets of valuations. By contrast, Carnap’s Problem is usually phrased in

a simpler extensional framework, where models are just valuations [5, 10, 19].

This matters. First, for the question to be well-defined, one needs not only to

pick up a certain relation of logical consequence, but also to fix the syntax and

semantics of the language in which it is formulated. For logical languages, syn-

tax is unproblematic, but one must choose the semantic values of expressions of

various categories. Second, the richer the semantic values are, the more difficult

Carnap’s Problem becomes. In keeping with Carnap’s original framing of the is-

sue, we first adopt a standard extensional setting, solving Carnap’s Problem for

propositional logic in Section 4 and for first-order logic in Section 5. But maybe

we made our task too easy by sticking to an extensional semantics? In Section

6, we ask — and answer — Carnap’s question in a different, but also standard,

framework for propositional logic, namely, that of possible worlds semantics.

In the next section, we lay down the semantic principles which will guide
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us. Finding restrictions on possible interpretations which do the job is not

difficult. As noted by Garson, it would suffice, for propositional logic, to only

consider valuations in which at least one connective among ¬, ∨, →, and ↔
receives its standard interpretation: the interpretation of all the other is hereby

forced to be standard ([8, p. 32]). But such a restriction is clearly ad hoc:

why assume that the standard interpretation of one connective is known in

advance? The difficulty thus lies in finding a principled restriction on possible

interpretations which does the job. We shall argue in the next section that

general and independently motivated semantic principles provide what we need.

3 Three semantic principles

Our semantic strategy is completely standard from the perspective of contempo-

rary formal (model-theoretic) semantics, in which compositionality is a corner-

stone. It can also be supported by a learnability argument. Suppose the only

empirical evidence available to a learner of the meaning of the logical constants

is their behaviour in inferences. Carnap’s observation seems to indicate that

this is not enough. But if there are semantic principles one can assume to

hold for any language, these might sufficiently constrain the range of possible

interpretations.

The argument rests on the hypothesis that a competent speaker needs to

know the classical meaning of logical constants. This follows from the fur-

ther assumption that semantic competence encompasses mastery of (classical)

truth-conditions (even if meaning is not equated with truth conditions). Log-

ical constants carve out truth-conditional content, and the fact that principles

governing their use may suffice to fix their interpretation in advance is a distinc-

tive property of logical constants. The extension of empirical predicates such

as “red” or “blue” is not fixed by the functional role of colour concepts alone;

it essentially depends on the way the world is. By contrast, we do not expect

the world to help us determine which truth-function interprets “and” and which

interprets “or”, or which more elaborate function is the interpretation of “all”

or “some”. If this is to be knowable at all, it is knowable by any speaker who

masters the appropriate rules of use.

The following three principles, which may be regarded as semantic universals,

will suffice:
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• Non-triviality: The language contains at least one false sentence.

• Compositionality: The semantic value of a compound expression is deter-

mined by the semantic values of its immediate constituents and the mode

of composition.

• Topic-neutrality (needed only for the first-order case): Logical constants

are permutation invariant.

Non-triviality is a very weak requirement, hardly in need of motivation. The

learnability argument for compositionality is well known: If a language can ex-

press indefinitely many distinct propositions, compositionality is our currently

best explanation of its learnability (see e.g. [17] for discussion). And topic-

neutrality, in the precise form of invariance under permutations of the universe,

is almost universally agreed to be a necessary condition for logicality.2 It guar-

antees that the logical core of a language is general enough to carve out content

in any conceivable situation of language use, irrespective of what objects are

being talked about.

Once again, note that one must choose the semantic values of expressions

belonging to a given syntactic category. Only then does compositionality make

a definite contribution. In the next two sections, we take for granted a standard

extensional framework for propositional and first-order logic, and in the last

section we look at propositional logic in an intensional framework where the

semantic values of sentences are sets of worlds.

Thus, the learnability argument presupposes that our hypothetical language

learner already knows, or guesses, what kind of language is to be learnt: what the

syntactic categories are, and what kinds of things expressions of these categories

stand for. We are not claiming that this framework may itself be derived from

a learnability argument, nor that it should be. It could well be adopted just

on the basis of its simplicity: if the learner succeeds in making sense of the

data available to her using extensional semantic values, she has no incentive to

consider richer semantic values. Of course, as linguistic data flows in, she may

have to adjust and go for richer values.

Now suppose I know, or assume, that a given expression is of a certain

category, though I don’t know what it means. Then its interpretation must

belong to a certain class of semantic objects, but this class may well be infinite,

even uncountable. Can I find out exactly which interpretation it has, merely
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by studying the given relation of logical consequence? This is (our version of)

Carnap’s question.3

4 Non-normal interpretations in propositional

logic

We start with classical propositional logic, where non-triviality and composi-

tionality suffice to solve Carnap’s Problem. Let PL be a standard language

for propositional logic, usually with connectives ¬,∧,∨,→, but others may be

added. A valuation is a bivalent assignment of truth values 1 or 0 to all sen-

tences.4 A consequence relation is a relation ` between sets of sentences and

sentences. A valuation v is consistent with a consequence relation ` if and only

if, whenever Γ ` ϕ, if v(ψ) = 1 for all ψ ∈ Γ, then v(ϕ) = 1. Carnap’s ques-

tion, expressed in the current terminology, is about the valuations which are

consistent with �PL, where �PL is classical logical consequence in PL.

Following Carnap, call a valuation v normal if it interprets the connectives

as the intended truth functions, that is, if v is #-boolean for each connective #,

where

v is ¬-boolean if for every ϕ, v(¬ϕ) = 1 iff v(ϕ) = 0

v is ∧-boolean if for every ϕ and ψ, v(ϕ ∧ ψ) = 1 iff v(ϕ) = v(ψ) = 1

etc.

Carnap showed that there are exactly two kinds of non-normal valuations con-

sistent with �PL. The first consists just of the valuation vT which gives every

sentence the value 1. It is trivially consistent with �PL, but since vT(p) =

vT(¬p) = 1, it is not ¬-boolean (the other connectives can be interpreted nor-

mally). The second kind has at least one false sentence and fails to be boolean

for at least one binary connective. A typical example is the valuation v∗ given

by

v∗(ϕ) = 1 iff ϕ is a tautology

Since logical consequences of tautologies are themselves tautologies, v∗ is con-

sistent with �PL, but we have v∗(p) = v∗(¬p) = 0 and v∗(p ∨ ¬p) = 1, so
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v∗ is neither ¬-boolean nor ∨-boolean. In fact, Carnap showed that all non-

normal valuations of the second kind classify each unary and binary connective

as boolean or not in the same way. And all valuations consistent with �PL are

∧-boolean, which points to an asymmetry between ∨ and ∧ that Carnap found

alarming.

With a consequence relation allowing multiple conclusions, the ∨-elimination

rule

ϕ ∨ ψ ` ϕ,ψ

would restore symmetry, and in fact such rules eliminate non-normal valuations.

Our point, however, is semantic: non-normal valuations of the second kind

are not compositional. To repeat, the compositionality principle says that the

semantic value of a compound expression is determined by the semantic values

of its immediate constituents and the mode of composition. In formal languages,

where the syntactic rules are clear and we don’t have to worry about ambiguous

expressions, this means that an assignment µ of semantic values to expressions

is compositional iff the following holds:

(PC) For every n-ary syntactic rule # there is a semantic composition func-

tion F# such that for every well-formed expression #(e, . . . , en) we have

µ(#(e, . . . , en)) = F#(µ(e1), . . . , µ(en)).

For the language PL, where µ is a valuation and the semantic values of

sentences are truth values, (PC) says that for every n-ary connective # there is

a function F# such that for all sentences ϕ1, . . . , ϕn,

v(#(ϕ1, . . . , ϕn)) = F#(v(ϕ1), . . . , v(ϕn)) (#-compositionality)

Thus, it follows from compositionality that, in this case, F# is an n-ary truth

function. When v is compositional we can moreover also take it to interpret #

as F#, and thus write

v(#(ϕ1, . . . , ϕn)) = v(#)(v(ϕ1), . . . , v(ϕn))

The valuation v∗ above is not ¬-compositional: v∗(p) and v∗(p ∧ ¬p) have

the same value (0), but v∗(¬p) and v∗(¬(p ∧ ¬p)) have different values. Now,

restricting attention to compositional valuations also restores the symmetry
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between ∨ and ∧. Here is the general situation, for an n-ary connective #:

(1) A compositional and �PL-consistent valuation v is #-boolean if and only

if v(#)(1, . . . , 1) = 1.

So ∧, ∨, and → get their normal interpretations by any such valuation, but

not ¬ or, say, the Sheffer stroke. In fact, the usual introduction and elimination

rules for the first three connectives fix their normal meaning. For example,

consider disjunction. We saw that there are valuations v consistent with �PL

and sentences ϕ,ψ such that v(ϕ) = v(ψ) = 0 but v(ϕ∨ψ) = 1. But this cannot

be if v is compositional, for then

v(ϕ ∨ ψ) = v(∨)(v(ϕ), v(ψ)) = v(∨)(v(ϕ), v(ϕ)) = v(ϕ ∨ ϕ) = 0

since ϕ ∨ ϕ �PL ϕ, which is in fact an instance of the usual ∨-elimination rule.

The problem with negation (or the Sheffer stroke) comes from the trivial

valuation vT, which is compositional. However, vT is the only problem:

(2) All compositional and �PL-consistent valuations are normal except vT.

In other words, the classical laws of propositional logic, together with

the semantic universals of non-triviality and compositionality, eliminate

non-normal interpretations of propositional connectives.

It is quite remarkable that proofs of essentially both (1) and (2) can be

found, if one looks carefully, already in [5].5 Compositionality in the setting

of classical propositional logic amounts to truth-functionality, or extensionality

as Carnap called it. He duly noted which interpretations are extensional and

which are not, but he didn’t assign any special role to this property. Church

doesn’t mention the property in his review. Carnap’s idea of semantics in 1943

was very much inspired by Tarski, but one should bear in mind that the modern

notion of model-theoretic semantics is of a significantly later date.

5 Non-normal interpretations in first-order logic

Let us now see whether our semantic strategy also cracks the first-order case.

To begin, what kind of non-normal interpretations are we to consider for first-

order quantifiers? The situation is parallel to the propositional case, where
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non-standard compositional interpretations for connectives consist in alternative

truth-functions. Guided by the syntactic category of ∀ and ∃, and more generally

by the standard interpretation of noun phrases in formal semantics, we take

symbols of this category to denote unary generalized quantifiers, that is, sets of

subsets of the domain. The standard interpretation for the existential quantifier

is the set of all non-empty subsets; for the universal quantifier, it is the singleton

of the domain. Accordingly, a non-normal interpretation for the existential or

universal quantifier is any set of subsets different from these.

More precisely, consider a first-order language L interpreted over a domain

M and the corresponding classical relation of logical consequence �L in first-

order logic. Since we assume compositionality, our interpretations amount to

giving syntactically adequate semantic values to the logical and non-logical vo-

cabulary. Since we furthermore assume non-triviality, we need not worry about

the interpretation of connectives, which has to be standard, by (2). Hence, our

interpretations can be taken to be pairs of the form M, Q where M is a stan-

dard L-structure based on M interpreting the non-logical vocabulary of L, and

Q is a set of subsets of M , interpreting ∀ (we take ∃ to be defined as ¬∀¬).

GivenM, Q, every sentence of L receives a truth-value by means of a recursive

definition of satisfaction. Clauses for atomic formulas and connectives are the

standard ones; the clause for ∀ now reads:

M, Q � ∀xϕ σ if and only if {a ∈M | M, Q � ϕ σ[x := a]} ∈ Q

where σ is an assignment over M and σ[x := a] is the assignment which is just

like σ except that σ(x) = a. In keeping with the propositional case, we say that

a pair M, Q is a normal interpretation if and only if Q = {M}. When M, Q is

normal, the previous satisfaction clause reduces to the more familiar

M, Q � ∀xϕ σ if and only if for all a ∈M, M, Q � ϕ σ[x := a]

Under our current working hypotheses, Carnap’s question is whether all

pairs M, Q consistent with �L are normal. As we shall shortly see, the answer

is negative: non-triviality and compositionality do not suffice to eliminate non-

normal interpretations. The problem is thus indeed harder for quantifiers than it

was for connectives. But, again, an independently motivated universal semantic

constraint, in this case topic-neutrality, makes it possible to zero in on normal

interpretations, so that Carnap’s Problem is solved after all.
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We shall now characterize the interpretations of ∀ which are consistent with

�L, first in general and then when topic-neutrality is assumed. For the sake

of simplicity, we will assume that our language contains predicate variables,

and not just predicate symbols — without this simplifying assumption, simi-

lar results still hold but one must restrict attention to definable sets.6 Given

an L-structure M, we say that a principal filter Q generated from a set A

is closed under the interpretation of terms in M iff it is such that, for every

term t with n free variables, for every sequence a1, . . . , an of elements of A,

||t||M(a1, . . . , an) ∈ A where ||t||M : Mn → M is the function interpreting t in

M. As a particular case, when t is a term with no free variables, the condition

is meant to require that ||t||M ∈ A. We then get the following characterization

of possible interpretations for ∀ (the proof is given in the Appendix):

(3) An interpretation M, Q is consistent with �L if and only if Q is a prin-

cipal filter closed under the interpretation of terms in M.

As it should be, the standard interpretation {M} for ∀ is among the con-

sistent ones, but, in general, there are many principal filters which are different

from the trivial filter {M}, so there will be many non-normal interpretations

for ∀. In view of (3), how wild are these non-normal interpretations? When Q

is a principal filter, there is a subset A of M such that a set B ⊆ M is in Q if

and only if A is included in B. The satisfaction clause for ∀ then simplifies to

M, Q � ∀xϕ if and only if for all a ∈ A, M, Q � ϕ σ[x := a]

Thus, the quantifiers inhabiting the jungle of non-normal interpretations are

still quite well-tamed. “All” means “all A” for some non-empty set of objects A

included in the full domain M . Dually, “some” means “some A” for the same

set A. The rules of logic do not determine which objects the quantifiers range

over, except for the fact that objects with a name are in its range, and its range

is also closed under functions named in the language. This is exactly as far

as non-normality goes. Objects in the set A generating the filter are the real

objects, for which existential import is valid: ϕ(x) � ∃ϕ(x) is satisfied by any

[x := a] for a ∈ A, for all formulas ϕ(x). The objects outside A are dummy

objects which happen to be in the domain but do not have existential import in

the sense just stated. Indeed, the satisfaction clause we get for ∀ is nothing but

the clause used in some semantics for free logic: A is the so-called inner domain
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of real objects and its complement in M is the outer domain of non-existing

things ([2]). Since our interpretations are consistent with the rules of classical

logic, all objects which can be named are to be interpreted in the inner domain,

which is guaranteed by the fact that A is closed under the interpretations of

terms.

By (3), whenever there is at least one constant symbol in the language,

there is a smallest principal filter Q consistent with �L: it is the principal filter

generated by the set of objects interpreting constant symbols closed under the

interpretations of function symbols. Identifying terms and the objects they

denote, this amounts to a substitutional interpretation of the quantifiers. Thus,

(3) says that the substitutional interpretation has a specific position among all

possible interpretations of ∀: it is the weakest interpretation consistent with

the rules for ∀ (weakest in the sense that the smaller the set from which the

principal filter is generated, the easier it is to satisfy ∀xϕ).

In non-normal interpretations, quantifiers make a difference between two

kinds of objects, depending on whether they belong to the set generating the

filter. This difference disappears only in the limiting case of normal interpreta-

tions, where this set is the entire domain and no object is left aside. Accordingly,

the supplementary assumption that quantifiers treat all objects on a par, for-

mally rendered as invariance under permutation, forces the interpretation of

quantifiers to be normal:

(4) A principal filter Q on M is invariant under permutation if and only if

Q = {M}.

Note that this also forces the equality symbol to be interpreted by real iden-

tity. The interpretation of the universal quantifier and the connectives being

standard, axioms for identity guarantee that the equality symbol is interpreted

by a congruence relation. Since the language contains predicate variables, this

congruence needs to be the finest.

Permutation invariance for logical constants is thus our last semantic univer-

sal, labelled topic-neutrality. Together with non-triviality and compositionality,

it ensures that connectives and quantifiers receive their normal interpretations in

all interpretations which are coherent with the standard relation of logical conse-

quence. Remarkably, permutation invariance, which is the traditional hallmark

of quantifiers qua logical constants, was shown along the way not to follow from
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quantifier rules. As far as rules or logical consequence are concerned, quantifiers

could well not be invariant under permutations; invariance is a supplementary

semantic feature which cannot be guessed on the basis of inferential practice.

6 Non-normal interpretations in intensional propo-

sitional logic

Carnap’s question about the determination of the meaning of the logical sym-

bols can be asked for any logic. We end by showing that in an intensional

context, where sentences denote sets of possible worlds, the usual propositional

connectives are still determined.

Let an intensional language be one built from propositional letters and the

connectives ¬,∧,∨,→, plus possibly intensional propositional operators such as

2. Now ¬ and 2 plausibly have the same syntactic category, so they should

receive the same kind of semantic values. Clearly, truth values no longer suffice.

So let a set W of ‘possible worlds’ or ‘states’ be given. We take, as in standard

possible world semantics, the semantic values of sentences to be subsets of W .

Compositionality (principle (PC) in Section 4) then dictates that the operators

must be interpreted as operations on P(W ) (of the appropriate arity). Thus,

an interpretation I assigns such an operation I(#) to each operator #.7 For

simplicity, we now treat propositional letters not as symbols to be interpreted,

but as variables to be assigned values. So an assignment f is a function from

propositional letters to P(W ). This has the advantage that there is no trivially

true interpretation (i.e. one under which every sentence is true), so we actually

don’t need the non-triviality assumption any more.8 Let [[ϕ]]If be the value of

ϕ under interpretation I and assignment f . The truth definition, relative to I,

becomes:

• [[p]]If = f(p)

• [[¬ϕ]]If = I(¬)([[ϕ]]If )

• [[ϕ ∧ ψ]]If = I(∧)([[ϕ]]If , [[ψ]]If )

and similarly for all other operator symbols in the language.

Continuing to use Carnap’s terminology, the normal interpretation, In, in-

terprets ¬ as complement, ∧ as intersection, etc.9 But if W is infinite, there
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are in principle uncountably many possible interpretations of the connectives,

and Carnap’s question in the current setting is whether the laws of classical

propositional logic single out In as the only one.

In the intensional setting, an interpretation I is consistent with a conse-

quence relation ` if Γ ` ϕ implies that for all assignments f ,⋂
ψ∈Γ[[ψ]]If ⊆ [[ϕ]]If

(with the understanding that
⋂
ψ∈∅[[ψ]]If = W ). Using fairly standard termi-

nology, let us say that an intensional logic is a consequence relation, in some

intensional language as above, which contains all tautological consequences.

Then we can prove the following:

(5) If I is an interpretation consistent with an intensional logic, then I is

normal on the connectives ¬,∧,∨,→.

Note that, modulo the assumption about the propositional variables, the earlier

result (2) about �PL is a special case of (5), namely, when W is a unit set.

The compositionality of I is the only assumption required for (5). We give

a proof in the Appendix. Interestingly, this result requires more of �PL than

the proof of (2): it is easy to see that in the truth-functional case, already

the intuitionistic part of �PL is enough to fix the classical (!) meaning of the

propositional connectives, whereas our proof of (5) requires double negation

elimination and other non-intuitionistically valid laws of propositional logic.

In classical possible worlds semantics, all assignments to propositional vari-

ables are allowed. This is essential for the proof of (5). To see this, consider

the so-called possibility semantics of [12]; [11] gives a comprehensive modern

treatment. In the language with ¬, ∧, and → as primitives, but ϕ ∨ ψ defined

as ¬(¬ϕ∧¬ψ), and with the standard truth definition clause for ϕ∧ψ, but the

clauses from Kripke semantics for intuitionistic logic for ¬ϕ and ϕ→ ψ, logical

consequence turns out to be exactly �PL.10 It is instructive to see why this

is not a counter-example to (5). The reason is that possibility semantics, just

as ordinary Kripke semantics for intuitionistic logic, places constraints on the

allowed assignments, i.e. on the allowed models. Every assignment f must be

persistent : if w ∈ f(p) and wRw′, then w′ ∈ f(p); possibility semantics adds a

further constraint, called refinability. Clearly, imposing such constraints can in
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principle make room for more interpretations of the connectives being consistent

with a given consequence relation. Classical possible worlds semantics, on the

other hand, has no such constraints.

7 Conclusion

Our take on Carnap’s Problem is that it is made artificially difficult by con-

sidering all possible interpretations, no matter how bizarre. As speakers, we

know that our language is going to be compositional, that it will have some

true and some false sentences, and that its logical constituents will be topic-

neutral. Therefore attention may be restricted to interpretations which satisfy

these principles. Following Church’s advice, this amounts to explicitly factor-

ing out the role of semantic principles and the role of inference rules in fixing

the interpretation of logical constants, rather than covertly using semantic no-

tions to make sense of extended inference rules. This strategy proves successful

both for propositional connectives and for quantifiers. In the case of classical

propositional logic, the mere change of perspective to that of compositional for-

mal semantics shows that the technical solution is in fact given already in [5].

Moreover, in a possible worlds setting, where the connectives are interpreted

as operations on sets of worlds, it turns out that compositionality still suffices

for the solution. Interestingly, it does not quite suffice to get the standard

interpretation of quantifiers from first-order logical consequence. With compo-

sitionality as the only semantic assumption, quantifier rules essentially pick up

the semantics for free logic. Still, it is rather surprising that nothing more than

compositionality is required for the laws of classical logical consequence to fix

the interpretation of the logical symbols in these ways. Classical logicians will

happily acknowledge topic-neutrality as the extra assumption needed to get to

the standard interpretation of the quantifiers.

In addition to the solution of Carnap’s original problem, however, we hope to

have at least indicated why Carnap’s question can be a reasonable and interest-

ing one to ask about any consequence relation in any logical language. In fact,

this opens up an area of logical investigation that seems quite promising to us.

The most immediate further issue, from the perspective of the present paper,

is for which intensional logics also other logical symbols like 2 are determined,

but we shall leave this for another occasion.
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Appendix

Our first aim in this appendix is to prove (3) and (4) above. Claim (3) states

that an interpretation Q for ∀ is consistent with �L iff Q is a principal filter,

closed under the interpretation of terms. As announced, we consider a language

with predicate variables. Given a set M , we shall say that a set Q of subsets

of M is a commutative filter if and only if it is a filter and is such that for all

relations R on M ,

{a ∈M |R(a) ∈ Q} ∈ Q iff {a ∈M |R−1(a) ∈ Q} ∈ Q

where R(a) is {b ∈M | aRb}. We shall prove that the following are equivalent:

(i) M, Q is consistent with �L,

(ii) Q is a commutative filter on M and, for any term t(x1, . . . , xn),

M, Q � ∀xPx→ ∀x1 . . . ∀xnPt(x1, . . . , xn)

(iii) Q is a principal filter on M which is closed under the interpretation of

terms in M.

(3) is the equivalence between (i) and (iii). In a different context, the proof

that commutative filters are principal can be found in [22], and the connection

with the interpretation of the universal quantifier is already made in [23]. We

provide here a somewhat shorter proof for that part. It is inspired by the filter

model given by [1], Theorem 6.10, to prove that some valid first-order formulas

are not valid in some models where the universal quantifier is interpreted by a

filter (of course, in those models, the filter is not principal).11 And we provide

proofs of the other parts.

Proof. (i) implies (ii). The fact that Q is a filter is easily read off from some

familiar first-order validities. Closure under finite intersection follows from the

fact that (∀xϕ ∧ ∀xψ) → ∀x(ϕ ∧ ψ) is valid. The validity of ∀x(ϕ ∧ ψ) → ∀xϕ
ensures closure under supersets. The empty set does not belong to Q because of

∀xϕ→ ¬∀x¬ϕ. Moreover, Q is commutative because ∀x∀yϕ→ ∀y∀xϕ is valid.

Finally, M, Q � ∀xPx→ ∀x1 . . . ∀xnPt(x1, . . . , xn) simply because the formula

is valid in first-order logic.

(ii) implies (iii). First, let Q be a non-principal filter; we show that Q is not

commutative. Take any X in Q and consider (using Zorn’s Lemma) a maximal
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set Q′ of subsets of X belonging to Q and totally ordered by inclusion. We

define a parallel indexed family {∆Y }Y ∈Q′ by setting ∆Y = X − Y for Y ∈ Q′.
We shall furthermore consider the sets Z =

⋃
Y ∈Q′ ∆Y and Z ′ = X − Z. The

intuition is the following. Q′ can be thought of as dropping more and more

elements out of X. The indexed family {∆Y }Y ∈Q′ collects the elements which

have been dropped at each stage. Z is then the set of elements which have been

dropped at some stage and Z ′ is the set of those that are never dropped. We

now define a relation R ⊆M ×M for which commutativity will fail, by

R = (
⋃
Y ∈Q′

(∆Y × Y )) ∪ (Z ′ ×X)

First, note that {a ∈M |R(a) ∈ Q} = Z ∪Z ′ = X. It is then sufficient to show

that {a ∈M |R−1(a) ∈ Q} = Z ′, because Z ′ does not belong to Q. If it did, Z ′

would be by construction the smallest element of Q′. Since Q is not principal,

Q′ cannot have a smallest element. To see this, let C be such a smallest element.

Since Q is not principal, there is D in Q such that C ∩D is a proper subset of

C, but then, since Q′ is assumed to be maximal, C ∩ D, which belongs to Q,

also belongs to Q′, contradicting the fact that C is the smallest element of Q′.

Thus, it remains only to be shown that {a ∈M |R−1(a) ∈ Q} = Z ′. We reason

by cases:

• If a is not in X, R−1(a) = ∅, which is not in Q.

• If a is in Z, R−1(a) = (
⋃
a∈Y ∆Y )∪Z ′. Since a is in Z, there is a B in Q′

such that a is not in B. Moreover, (
⋃
a∈Y ∆Y )∩B = ∅, since a ∈ Y implies

that B is strictly included in Y , Q′ being totally ordered by inclusion. As

a consequence, R−1(a) ∩ B = Z ′. Since B is in Q and Z ′ is not, closure

under intersection of Q implies that R−1(a) is itself not in Q.

• If a is in Z ′, R−1(a) = Z ∪ Z ′ = X, which is in Q.

This proves that Q is not commutative. Hence, by contraposition, if Q is com-

mutative, Q is principal. It remains to be shown that Q is closed under the inter-

pretation of terms inM. Let Q be generated by A, let t(x1, . . . , xn) be a term,

and let a1, . . . , an ∈ A. We need to show that ||t(x1, . . . , xn)||M(a1, . . . , an) ∈
A. First, interpret P by A. Then M, Q � ∀xPx, and therefore M, Q �

∀x1 . . . ∀xnPt(x1, . . . , xn) by hypothesis. By the satisfaction clause for ∀, it
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follows that

{〈a1, . . . , an〉 | ||t||M(a1, . . . , an) ∈ A} ⊇ An

as desired.

(iii) implies (i). Let Q be a principal filter generated by a subset A of M . Let

H be a Hilbert proof system for �L as for example the one given by [7], p. 194;

predicate symbols and predicate variables being treated on a par. It suffices to

establish that if ϕ is deducible from a set Γ of formulas without free individual

variables in H, thenM, Q � Γ impliesM, Q � ϕ σ for any assignment σ whose

individual variables have values in A. This is shown by induction on the length

of proofs in H. The two key steps are the soundness of universal instantiation,

which, in H, is the axiom ∀xϕ→ ϕ[t/x] with t free for x in ϕ, and the soundness

of universal generalization, which, in H, is inferring ∀xϕ from ϕ (no restriction

on x is needed since we consider only derivability from a set of sentences without

free individual variables).

For universal instantiation, we need to show that M, Q � ϕ[t/x] for any

assignment σ with values in A, for any term t free for x in ϕ. Assume M, Q �

∀xϕ σ. By the satisfaction clause for ∀ and the fact that Q is a filter generated

by A, the set of objects a ∈M such thatM, Q � ϕ σ[x := a] is a superset of A.

Hence, for our term t with free variables x1, . . . , xn, M, Q � ϕ[t/x] σ, because

σ(x1), . . . , σ(xn) are in A and A is closed under the interpretation of t.

For universal generalization, we assume that we have a proof of a formula

∀xϕ from a set of sentences Γ in H ending with an application of universal

generalization. By induction hypothesis, M, Q � Γ implies M, Q � ϕ σ for

any assignment σ with values in A. Assume M, Q � Γ. Let σ be an arbitrary

assignment with values in A. By induction hypothesis, the set of objects a ∈M
such thatM, Q � ϕ σ[x := a] is a superset of A. Therefore, sinceQ is interpreted

by a filter generated from A, we have M, Q � ∀xϕ σ, as required. 2

Next, we show

(4) A principal filter Q on M is invariant under permutation if and only if

Q = {M}.

Proof. The direction from right to left is immediate. We prove the direction

from left to right by contraposition. Assume that Q is a principal filter generated
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by a set A different from M . There are a, b ∈ M such that a ∈ A but b 6∈ A.

Consider the permutation π which swaps a and b and is the identity everywhere

else. a is not in π(A), so A is not included in π(A), so π(A) 6∈ Q, contradicting

the invariance of Q. 2

Finally, we give a proof of

(5) If I is an interpretation consistent with an intensional logic, then I is

normal on the connectives ¬,∧,∨,→.

Let W be a set of worlds, and I an interpretation (over W ) consistent with an

intensional logic `. We must show that I(#) is normal for # ∈ {¬,∧,∨,→}.
Recall that for all formulas ϕ,ψ, θ,

(6) ϕ,ψ ` θ implies that for each assignment f , [[ϕ]]If∩ [[ψ]]If ⊆ [[θ]]If .

To begin, it is clear that ∧ is normal:

(7) For X,Y ⊆W , we have I(∧)(X,Y ) = X ∩ Y .

This follows from the introduction and elimination rules for ∧, in the form

p ∧ q �PL p, p ∧ q �PL q, p, q �PL p ∧ q

Since ` is an intensional logic, these rules hold for ` too. Let f be such that

f(p) = X and f(q) = Y . Using (6), (7) follows.

Next, we observe that it suffices to show that negation must be interpreted

normally by I.

(8) If I(¬)(X) = W −X for all X ⊆W , then also ∨ and → are interpreted

normally by I.

Consider ∨. From the fact that p ` p∨ q and q ` p∨ q we obtain from (6) (with

a suitable f) that X ∪ Y ⊆ I(∨)(X,Y ). Also, since p ∨ q,¬p ` q we get, using

our assumption,

I(∨)(X,Y )−X ⊆ Y

In other words, I(∨)(X,Y ) ⊆ X ∪ Y , so I(∨)(X,Y ) = X ∪ Y , as was to be
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proved. In a similar way, one shows that I(→)(X,Y ) = (W − X) ∪ Y . (The

assumption about negation is used to show W − X ⊆ I(→)(X,Y ), which one

gets from ¬p ` p→ q.) This proves (8).

Concerning negation, it is easy to see that the following holds:

(9) For all X ⊆W , X ∩ I(¬)(X) = ∅.

This follows from the fact that p,¬p ` q, letting f(p) = X and f(q) = ∅. Thus,

all that remains to prove is:

(10) For all X ⊆W , X ∪ I(¬)(X) = W .

First, it follows from (9) that

(11) I(¬)(W ) = ∅

Also,

(12) I(¬)(∅) = W

This is because ` ¬(p ∧ ¬p) (so for all f , [[¬(p ∧ ¬p)]]If = W ), with f(p) = ∅;
recall that conjunction is interpreted as intersection.

Now suppose ∅ ( X ( W and, for contradiction, that X ∪ I(¬)(X) 6= W .

Take b ∈ W − (X ∪ I(¬)(X)), and let f(p) = X and f(q) = {b}.12 Then we

have

(13) [[¬(p ∧ q)]]If = W

(by (12), since X ∩ {b} = ∅), and

(14) [[¬p ∧ q]]If = ∅

(since I(¬)(X) ∩ {b} = ∅). Since ¬(p ∧ q) ` ¬p ∨ ¬q, it follows from (13) that

(15) [[¬p ∨ ¬q]]If = W

And since ¬(p ∨ ¬q) ` ¬p ∧ q, it follows from (14) that [[¬(p ∨ ¬q)]]If = ∅, and

hence by (12) that [[¬¬(p ∨ ¬q)]]If = W . Thus, since ¬¬(p ∨ ¬q) ` p ∨ ¬q, we

have
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(16) [[p ∨ ¬q]]If = W

But we also have

p ∨ ¬q,¬p ∨ ¬q ` ¬q

By (15) and (16), this entails that [[¬q]]If = I(¬)({b}) = W , contradicting the

fact (from (9)) that {b} ∩ I(¬)({b}) = ∅. This proves (10), and thereby (5), as

desired. 2
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Notes

1[14] also discusses Carnap’s problem in the light of Church’s criticism, but does not put

forward compositionality as a solution.
2There is debate about whether it is also a sufficient condition; see e.g. [4].
3Mustn’t we also assume that the learner knows which expressions are logical and which

are not? This can be a problematic distinction in more complex languages. But for the simple

logical languages under discussion in this paper, there is a test our hypothetical learner could

in principle perform, again relying only on the given consequence relation: Consider a valid

inference in which expression e occurs. Does it remain valid under all replacements of e by

another expression of the same category (or better, under all appropriate reinterpretations of

e)? If Yes (for all such inferences), e is not a logical expression; if No, it is. For (much) more

about this methodology, see [3].
4This is the current terminology, e.g. in [13]; in [5] they are called interpretations. We use

“interpretation” too in later sections, though in a slightly different sense, since our interpre-

tations are by definition compositional.
5Which is why we don’t give the proofs here.
6See [1] for an adequate framework to carry out this restriction.
7We could also treat W simply as a parameter, and let a (global) interpretation be a

functor I which to each W assigns a (local) interpretation IW as defined here. The same

results would hold for global interpretations.
8Assignments are usually called valuations in possible worlds semantics, but we already

used that term in Section 4 for mappings from sentences to truth values. There too, we could

have avoided the non-triviality assumption by treating propositional letters as variables, but

we wanted to stay as close as possible to Carnap’s original setting.
9Thus, a model in the usual sense, for the basic modal language with operators ¬,∧,∨,→

,2, has the form (W, f) if we, like Carnap, think of necessity as truth in all worlds, and the

form (W,R, f), where R ⊆W 2, in Kripke semantics. Then we have, for w ∈W ,

(W,R, f), w � ϕ iff w ∈ [[ϕ]]Inf

The normal interpretation of 2 is, in the Carnap setting,

In(2)(X) =

{
W if X = W

∅ if X 6= W

for X ⊆W , whereas in the Kripke setting it is

In(2)(X) = {w ∈W : R(w) ⊆ X}

where R(w) = {w′ : wRw′}. Here, however, we are only concerned with the interpretations of

¬,∧,∨,→, and then it doesn’t matter which setting is chosen.
10We thank an anonymous referee for drawing our attention to this fact, and for encouraging

us to include the proof of (5) in the paper.
11Antonelli’s result concerns non-standard models in which ∀ is interpreted by a (not nec-

essarily principal) filter. Since such non-standard models falsify some first-order validities, it
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is natural to ask which further restriction on the interpretation of ∀ would be such that it

guarantees that valid formulas are exactly those deemed valid by first-order logic, and that it

is forced in any model of the validities of first-order logic.
12If persistence had been a requirement on assignments, this particular f might not be

allowed; see the remarks at the end of Section 6.
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