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Active vibration control of a smart functionally graded
piezoelectric material plate using an adaptive fuzzy
controller strategy

Jonas Maruani, Isabelle Bruant , Frédéric Pablo and Laurent Gallimard

Abstract

In this article, the active vibration control of a smart structure made out of a single functionally graded piezoelectric
material layer, equipped with a network of discrete electrodes, is studied. The material properties vary continuously
across the direction of thickness, so that top and bottom surfaces consist of pure PZT4 and the mid surface is composed
of pure aluminium. The percolation phenomenon is taken into account. A functionally graded piezoelectric material plate
finite element based on the first-order shear deformation theory hypothesis and layer-wise approximation for electric
potential is implemented. An optimization procedure is considered to define the relevant electrodes for actuators and
sensors, based on controllable and observable criteria. An adaptative fuzzy controller system is used, activating with rele-
vance the actuators according to the most excited eigenmodes. Simulations show the effectiveness of this kind of
concept.
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1. Introduction

In the recent years, a great deal of research on active
vibration control in different domains of engineering
has been carried out for light-weight smart structures
using piezoelectric materials. Piezoelectric materials
have been extensively used because they have specific
characteristics, such as light weight and high strength.
Moreover, they are easily shaped and have a good fre-
quency response. These characteristics make them
attractive actuators and sensors. The classical smart
structures are multilayered composites with piezoelec-
tric devices adhesively bound to the host structure,
either at its surface or inside it (Preumont, 2011). These
conventional smart structures suffer high stress concen-
tration near interlayer surfaces because of abrupt
changes in electro-mechanical properties. Moreover,
the adhesive layer may crack at low temperatures and
creep or peel at high temperatures (Pritchard et al.,
2013), which can lead to severe deterioration of the
interlayer bounding strength and performance
response.

To overcome these shortcomings, the functionally
graded piezoelectric material (FGPM), a new class of

the well-known functionally graded material (FGM)
(Mahamood et al., 2012), has attracted much attention
these last few years. They are designed to achieve a
functional performance with mechanical and piezoelec-
tric properties that gradually evolve along one or sev-
eral directions. This continuity allows us to avoid the
aforementioned disadvantages of classical piezoelectric
smart structures. In this way, the substitution of a clas-
sical piezoelectric smart structure by a FGPM structure
seems to be an attractive choice for active vibration
control.

Most of available studies deal with the analysis of
FGPM beams, but some others related to static and
dynamic behaviour of FGPM plates can be found.
These FGPM are usually made of a mixture of two
piezoelectric materials. Among the published recent
papers, static analyses have been performed in
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Brischetto and Carrera (2009), Behjat et al. (2011) and
Nourmohammadi and Behjat (2016). Free vibration
and dynamic response have been studied in Susheel
et al. (2016), Behjat et al. (2011) and Barati and
Zenkour (2018) who consider the effect of porosities.

Regarding the active vibration control using FGMs,
many papers deal with active vibration control of
FGM equipped with classical piezoelectric patch (often
put all over the top and bottom faces of the structure).
Restricting the bibliography to plate and shell struc-
tures, most of them use the classical velocity feedback
gain control (He et al., 2001; Kiani et al., 2013; Sheng
and Wang, 2009; Yiqi and Yiming, 2010). The
displacement–velocity feedback control is performed by
Liew et al. (2003), Zheng et al. (2009) and Fakhari and
Ohadi (2011). Narayanan (2010) compares this kind of
control with the H2 control method. Narayanan (2010)
considers the linear quadratic regulator to control the
vibration of an FGM shell.

The active vibration control with FGPM is a rela-
tively new topic and very limited works can be found in
open literature. Non-linear active control of FG beams
in thermal environments subjected to blast loads with
integrated FGPM sensor and actuator layers (made by
mixed two piezoelectric materials PZT4/PZT5H) was
developed in Bodaghi et al. (2012). In Sharma et al.
(2016) and Susheel et al. (2016), active vibration con-
trol of plates using PZT/Pt-based FGPM has been per-
formed. In these three papers, sensors and actuators
are made of FGPM and are bound symmetrically to
the entire top and bottom faces of the host structure.

The present paper deals with active vibration control
of an original smart structure. The usual host structure
with several piezoelectric sensors and actuators is sub-
stituted by a single FGPM structure, which ensures
continuity on the material properties. This FGPM is
made of a mixture between PZT4 and aluminium, such
that its composition varies symmetrically from alumi-
nium at the mid surface to PZT4 at the top and bottom
surfaces. Mixing dielectric and conductive materials
leads to the percolation phenomenon: the FGPM
switches from insulating behaviour to a conductive one
according to the concentration of conductive particles
(Chýlek and Srivastava, 1983; Pecharromán and Moya,
2000). In order to activate piezoelectric properties for
active vibration control, the FGPM’s top and bottom
faces are covered by a set of electrodes such as a printed
wiring in electronics. These numerous configurations of
electrodes then define the possible locations and dimen-
sions of integrated sensors and actuators (collocated or
not).

This smart conception overcomes the previous
described drawbacks of active control with classical
piezoelectric patches. In particular, the problem of
patch release is avoided. A first study dealing with the
active control of FGPM beams has been presented in

Maruani et al. (2017). Results show the effectiveness of
this smart FGPM concept for 1D structure.

In this article, the active vibration control of thin
plates is considered. In this case, the implementation of
the control system is more complex: the actuator and
sensor networks are bigger, the possible excitations are
numerous. In order to insure a suitable active control
whatever the external perturbations are, a smart adap-
tive controller has been developed. At each step of the
active control process, according to the inputs of sen-
sors, the control system defines the most excited eigen-
modes and then uses the relevant actuators. The electric
potential applied to the actuators is defined by a fuzzy
logic controller.

The main originality of this study is the use of

� A smart structure made out of a single FGPM
layer, having a network of discrete electrodes
which allows to use some parts of the FGPM as
sensors and actuators.

� Taking into account the percolation phenom-
enon in the FGPM plate model.

� An adaptative fuzzy controller system activating
with relevance over time the actuators according
to the most excited eigenmodes.

The present paper first presents the FGPM’s beha-
viour laws using the volume fraction index k and the
percolation threshold VT . The finite element (FE)
method is proposed to study the FGPM vibrations.
The control system is detailed in the third section.
Numerical results and discussion are conducted in the
fourth and fifth section to show the efficiency of this
new concept. The main conclusions are summarized in
the last section.

2. FGPM plate model

We consider a plane and straight FGPM plate whose
dimensions are the length L, the thickness h and the
width b. The FGPM is made of a mixture of PZT4 and
aluminium (Figure 1). We consider that the material
properties vary continuously across the direction of
thickness, so that top and bottom surfaces consist of
pure PZT4 and the mid surface is composed of pure
aluminium. It is supposed to be polarized along the z-
axis.

2.1. Material behaviour laws

A mixture of dielectric and conductive components,
respectively here PZT4 and aluminium, has particular
electric properties when V (m) the concentration of the
metallic component reaches the percolation threshold.
At this concentration, noted VT , the composite under-
goes a conductive-insulator transition: below VT , the



composite has an insulating behaviour and above VT ,
the composite has a conductive behaviour
(Pecharromán and Moya, 2000).

The percolation occurs when there are enough
metallic particles to form a conductive path into the
mixture. The percolation threshold is usually obtained
through dedicated experimental measures and it
depends on the micro-structure of the mixture (shape
and size of materials’ particles (Pecharromán and
Moya, 2000)). Based on models of percolation theory
(Chýlek and Srivastava, 1983) and experimental studies
(Li et al., 2001; Takagi et al., 2002), we shall assume
that VT varies in the range of 10%–30%.

Since the FGPM is assumed to be symmetrically dis-
tributed with respect to the aluminium mid surface,
three regions can be identified: a conductive,
aluminium-rich central region around the mid surface
where the percolation has occurred and two outer insu-
lating regions in which the concentration of metallic
particles is below the percolation threshold (Figure 1).

2.1.1. Properties homogenization. The addition of metal
particles into a dielectric matrix increases the compo-
site’s permittivity significantly. Effective medium the-
ories such as the Maxwell-Garnett theory and the
Bruggeman theory can be used to estimate the permit-
tivity. In this study, particles are dispersed through a
continuous ceramic matrix. The effective permittivity ε
is thus given by the Maxwell-Garnett rule (Chýlek and
Srivastava, 1983)

ε V (m)
� �

= ε pð Þ 1+ 2V mð Þ ε mð Þ�ε pð Þ

ε mð Þ+ 2ε pð Þ

1� V mð Þ ε mð Þ�ε pð Þ

ε mð Þ+ 2ε pð Þ

!
ð1Þ

where V (m) is the metal volume fraction and p,m super-
scripts refer to piezoelectric ceramic and metal,
respectively.

We assume that metal particles can be represented
by a dielectric material with strong dielectric losses (i.e.
with a dominant imaginary part), and the ceramic
matrix can be represented by a perfect dielectric

material (without dielectric losses). In addition, at low
frequencies, dielectric losses of metal particles tend to
infinity. The effective permittivity constant becomes Li
et al. (2001) and Orlowska (2003)

ε V mð Þ
� �

’ ε pð Þ 1+ 2V mð Þ

1� V mð Þ , ε mð Þ..ε pð Þ ð2Þ

A simple linear law of homogenization is used for
other effective material properties P (elastic stiffness
coefficients Cij, density r) and can be expressed as
Doroushi et al. (2011)

P= P mð Þ � P pð Þ
� �

V (m) +P(p) ð3Þ

Poisson’s ratio, n, is considered constant in this
study.

2.1.2. Power law distribution. We assume that the volume
fraction varies according to a power law distribution
along the z direction, which can be given as Doroushi
et al. (2011)

V mð Þ(z)= 1� 2jzj
h

� �k

, z 2 �h

2
,

h

2

� 	
ð4Þ

where k is the non-negative fraction index which may
vary from 0 to ‘.

The thickness of the conductive part hT depends on
both the percolation threshold and the fraction index
and can be derived from equation (4) by setting
V (m)(z= hT=2)=VT

hT = h 1� V
1
k

T

� �
ð5Þ

As a consequence, the piezoelectric constants eij are
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Substituting equation (4) into equation (2), the effec-
tive permittivities are given by

εii zð Þ=

ε
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The distribution in the direction of thickness of elas-
tic stiffness coefficients Cij, piezoelectric constants eij

and effective permittivities εii along the z direction is
plotted in Figure 2.

Figure 1. Schematic of the considered PZT4/Al/PZT4 FGPM.



2.2. FE formulation

The FE method is considered to analyse the FGPM
plates. A triangular element is implemented from the
FEniCS Project libraries (Logg et al., 2012). The formu-
lation is based on first-order shear deformation theory
(FSDT) hypothesis and on a layerwise approximation
for electric potential. Numerical integration is per-
formed taking into account the variation of the proper-
ties along the z direction.

2.2.1. Constitutive equations. The linear constitutive rela-
tions describing the electrical and mechanical interac-
tion of piezoelectric material can be expressed as

s = Ce � eE ð8Þ

D = ee � eE ð9Þ

where s, e, D and E are the stress vector, the strain vec-
tor, the electrical displacement and the electric field,
respectively. C, e and e are the elastic stiffness, piezo-
electric and permittivity matrices, which are uniformly
varying through the thickness.

In the case of plane stress condition (s33 = 0), the
constitutive equations become, using the Voigt notation

s1

s2

s4

s5

s6

0
BBBBBB@

1
CCCCCCA

=

C11 C12 0 0 0

C12 C22 0 0 0

0 0 C44 0 0

0 0 0 C55 0

0 0 0 0 C66

2
6666664

3
7777775

e1
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0
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1
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�
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with

Cpq =Cpq � Cp3C3q

C33

eip = eiq � ei3Cq3

C33

εij = εij � Ci3Cj3

C33

8><
>:

where subscripts (i, j) vary from 1 to 3 and subscripts
(p, q) vary from 1 to 6.

2.2.2. Displacement approximation. The displacement field
of an arbitrary point in the plate, based on the FSDT,
can be expressed as

ua x, y, z, tð Þ= u0
a x, y, tð Þ+ zu1

a x, y, tð Þ ð12Þ

u3 x, y, z, tð Þ=w x, y, tð Þ ð13Þ

with a= 1, 2.
u1, u2 and u3 denote the displacements along the x-,

y- and z-axes, respectively. u0
1, u0

2 and w represent the
displacements of the neutral surface, and u1

1 and u1
2 are

the bending rotations. They are approximated using
the Lagrange quadratic interpolation functions (Logg
et al., 2012) and a six-node triangular element is consid-
ered, with 5 mechanical degrees of freedom per node.

2.2.3. Electric potential. As the FGPM is polarized in the
z direction, the structure is discretized in nl numerical
layers in the thickness direction and a layerwise approx-
imation is used (Polit and Bruant, 2006).

For a layer denoted (l), and a reduced normal coor-

dinate j 2 ½�1, 1�, the electric potential f(l) is approxi-
mated by Lagrange quadratic interpolation functions,

using three potential values (f(l)
bot,f

(l)
mid ,f

(l)
top) located at

the bottom, middle and top of this layer

f(l) x, y, z jð Þð Þ= h jð Þf lð Þ
bot + g jð Þ 1� j2

� �
f

lð Þ
mid + f jð Þf lð Þ

top

ð14Þ

with

Figure 2. Effective properties through the thickness for k= 2
and VT = 30%.



f jð Þ= 1

2
j j + 1ð Þ g(j)= 1� j2

� �
h jð Þ= 1

2
j j � 1ð Þ

ð15Þ

For a layer with z 2 ½z(l)bot, z
(l)
top�, the relation between

the thickness coordinate z and the reduce coordinate j

is given by

z jð Þ= 1

2
z

lð Þ
top 1+ jð Þ+ z

(l)
bot 1� jð Þ

� �
ð16Þ

For the in-plane variation, a Lagrange linear
approximation is considered. Therefore, a three-node
triangular element is implemented to model the electric
coupling, with 4nl + 1 electrical degrees of freedom per
node.

2.2.4. The electro-mechanical system. Variational princi-
ples give the following discretized equations (Polit and
Bruant, 2006)

Kuuq+Muu€q+Kuff=F ð17Þ

Kfff+Kfuq= 0 ð18Þ

where Muu is the global mass matrix, Kuu is the global
stiffness matrix, Kuf and Kfu are the global piezoelec-
tric coupling stiffness matrices (Kfu =Kt

uf), Kff is the
global electric stiffness matrix, F is the applied mechan-
ical force vector, q is the global nodal displacement vec-
tor and f is the global element potential vector.

The potential can be split into two parts, the poten-
tials of sensors and the ones of actuators, and using
equation (18) in equation (17), we have the system
(Benjeddou et al., 2006)

Ktotq+Muu€q=F+Kafa ð19Þ

fs = � K�1fsfs
Kfsu

q+Kfsfa
fa

� �
ð20Þ

where indexes s and a represent the sensors and
actuators potentials, respectively, and

Ktot=Kuu +Kufs
K �1fsfs

Kfsu
ð21Þ

Ka =Kufs
K �1fsfs

Kfsfa
� Kufa

ð22Þ

2.2.5. The eigenvalues problem. The application of the
active control methods in dynamic structural problems
requires the use of state-space model. Thus, the nor-
malized orthogonal structural modal basis C must be
considered. It is obtained from the following classical
eigenvalues problem

Ktot � v2Muu

� �
C= 0 ð23Þ

where v and C are the eigenfrequencies and the associ-
ated mode shapes, respectively.

3. Control system

In this section, the active control process is detailed. It
is based on a state-space form model, a network of dis-
crete electrodes used as actuators and sensors according
to the most excited modes, and a fuzzy logic controller.

3.1. The modal analysis and the state-space form

To apply active vibration control to dynamic structural
problems, the state-space form is useful (Burl, 1998).
This form is based on the displacement’s decomposition
in the normalized orthogonal structural modal basis.

Assuming that contribution of the highest modes is
negligible, only the N first modes are considered, and
the displacement is approximated by

q=
XN

n= 1

Cnan tð Þ=Ca ð24Þ

where Cn is the nth mode and an(t) is the nth modal
coordinate of the displacement q.

Introducing equation (24) into equations (19) and
(20) and using the orthogonality of eigenmodes yield to
the state-space equations

_x=Ax+Bfa + f

y=fs =Cx



ð25Þ

where x is the state-space vector defined as

x= v1a1 � � �vN aN _a1 � � � _aNf gt
2N , 1ð Þ ð26Þ

The state matrix A, the control output matrix B, the
observation matrix C and the load vector f are defined
as

A=
0 v

�v �2hv

� 	
ð27Þ

B=
0

CtKa

� 	
ð28Þ

C= K�1fsfs
KfsuCv�1 0

h i
ð29Þ

f=
0

CtF


 �
ð30Þ

where v and h are the diagonal matrix containing the
eigenfrequencies and the diagonal matrix of the natural
damping ratio, respectively.

3.2. The active control process

The active control efficiency depends on several para-
meters: the location of actuators and sensors, the
knowledge of the vibrations from the sensors output
and the control law. As the FGPM concept allows us to
put many electrodes on the top and bottom faces, which



can be used as actuators or sensors, an optimization
procedure is considered to define the relevant actuators
and sensors, based on controllability and observability
criterias. Moreover, the devised smart FGPM must be
well controlled for any excitation in a given frequency
range: consequently, the fuzzy logic controller is used,
as it is one of the most robust controllers.

3.2.1. Location of actuators and sensors. The location of
actuators and sensors has a major influence on the per-
formance of the control system. Wrong locations of
sensors and actuators lead to problems such as the lack
of observability or controllability. In this way, many
studies have been published on this subject and differ-
ent cost functions have been used to find the optimal
locations of these active elements. In this article, the
optimal location of sensors and actuators is considered
independently. The modified optimization criteria
developed in Bruant et al. (2010) are used. They ensure
good observability and good controllability of each
mode, enabling to consider all modes with homogeneity
and not golbally as it is usually done.

For the actuators location optimization, the usual
objective is to find actuator locations that maximize a
measure of the steady-state controllability Gramian
matrix Wc (Hać and Liu, 1993)

Wc =

ð‘
0

eAtBBTeA
T tdt ð31Þ

which tends to a diagonal form with

Wcð Þnn = Wcð Þn+N , n+N =
1

4hnvn

XNa

j= 1

B2
nj ð32Þ

(Wc)nn equals to the energy transmitted from the actua-
tors to the structure for the nth eigenmode (Bruant and
Proslier, 2005). If it is small, the nth eigenmode is diffi-
cult to control and there is no controllability for the
system.

The usual criteria take into account globally the
eigenmodes. To overcome this drawback, the consid-
ered optimization problem in Bruant and Proslier
(2005) is to find the actuators location (a1, . . . , aNa

)
which maximizes

JA = min
n= 1,N

Wc a1, . . . , aNa
ð Þð Þnn

max
a1, :::aNa

Wc a1, . . . , aNa
ð Þð Þnn

ð33Þ

The greatest advantage of this criterion is that all
modes are studied with the same range and, for each
mode, the values of the fraction inside equation (33)
are in the interval ½0, 1�. Furthermore, its expression
has a physical meaning: it is the mechanical energy

transmitted for the nth mode divided by the maximal
mechanical energy that could be received.

The optimal location of sensors is determined in the
same way as the optimal location of actuators. It con-
sists in maximizing the Gramian observability matrix
defined by

Wo =

ð‘
0

eA
TtCTCeAtdt ð34Þ

which is diagonal dominant

Woð Þnn = Woð Þn+N , n+N =
1

4hnvn

XNs

j= 1

C2
jn

n= 1, . . . ,N

ð35Þ

To have a right information about the N first eigen-
modes, and to insure homogeneity between each term
(Wo)ii, the optimization problem considered here is to
find the sensors locations c1, . . . , cNs

which maximize

JS = min
n= 1,N

Wo c1, . . . , cNs
ð Þð Þnn

max
c1, :::cNs

Wo c1, . . . , cNs
ð Þð Þnn

ð36Þ

maxc1, ..., cNs
(Wo(c1, . . . , cNs

))nn represents the maximal
output energy which could be measured for the nth
mode by the sensors. The values of JS are again in the
interval ½0; 1�.

3.2.2. The Luenberger observer. To implement a control
law, the knowledge of the state vector x (or the modal
displacements and velocities) is necessary. This knowl-
edge is not complete since only the output voltages y

are observed (equation (25)). Assuming that the state
system verifies the observability criteria, at each time,
an estimation x̂ is computed using a Luenberger obser-
ver (Kailath, 1980) according to

_̂x=Ax̂+Bfa +L y� Cx̂ð Þ ð37Þ

where L is the observance gain matrix. This matrix is
chosen so that the real part of the eigenvalues of
A� LC is negative.

3.2.3. Design of the fuzzy logic controller. The dynamic per-
formance of smart structures depends on the control
algorithm. There are numerous control algorithms
which can be applied for active vibration with piezo-
electric patches, such as direct proportional feedback,
constant gain velocity feedback, constant amplitude
velocity feedback, linear quadratic regulator (LQR)
and H2 control,. These controls can be useful, but they
are sensitive to structure characteristics. An alternative
is the use of fuzzy logic control (FLC), where the con-
trol law is designed by human intelligence based on



expert’s experience. This method is robust and can be
applied for systems with uncertainties. It has been
widely used in the past by a number of researchers for
simulations of active vibration control of piezolami-
nated structures. Susheel et al. (2016) implemented this
controller in the case of FGM plate with FGPM.
Moreover, several experimental studies have been pub-
lished to show the effectiveness of this controller like
Gu and Song (2005), De Abreu and Ribeiro (2002), Li
et al. (2011) and Lin (2005).

A conventional fuzzy controller follows three steps:

1. Fuzzification;
2. Rule base generation;
3. Defuzzification.

The fuzzification step performs the interpretation
interface of input and output variables. Membership
functions are used to transform input and output vari-
ables into linguistic control variables. The fuzzy rela-
tion between input and output variables is shown by
fuzzy rules. They are derived from simple human rea-
soning and are based on the expert’s experience. Most
of authors use the Mamdani style inference which is in
If-Then form (Mamdani, 1974). In the defuzzification
step, the result of fuzzy inference is transformed into a
numerical output value depending upon the rules.
Usually, the centroid method is considered.

According to the authors, the use of fuzzy logic con-
troller can be different from several main points:

� The equations of the model. The fuzzy logic con-
troller can be computed from the FE equations
(Kumar, 2013, Marinaki et al., 2015, Sharma
et al., 2014, Susheel et al., 2016) or state/modal
equations (De Abreu and Ribeiro, 2002; Li et al.,
2011, Sharma et al., 2007; Zorić et al., 2013).

� The nature and the number of the membership
functions. Most authors use triangular and tra-
pezoidal functions for input and output vari-
ables: Sharma et al. (2007) and De Abreu and
Ribeiro (2002) use three functions, Zorić et al.
(2013) use five functions, Li et al. (2011), Lin
(2005), Susheel et al. (2016) and Sharma et al.
(2014) use seven functions, and Kumar (2013)
uses nine functions. Marinaki et al. (2015) con-
sider respectively three, five and nine triangular
equations for velocity, displacement and control
force. Gu and Song (2005) use Gaussian
functions.

� How to apply the fuzzy controller method. Li
et al. (2011) compute a decentralized adaptive
fuzzy vibration controller, where each eigenmode
is controlled by an actuator. In Sharma et al.
(2007), an actuator is dedicated, at any time step,
to control the mode that has the highest modal
energy at this time. Lin (2005) applies a

decomposed parallel fuzzy control structure with
one actuator. Each subsystem is associated with
one mode and the total control action is the sum
of each local control action.

In this work, the modal equations are considered
and the active control is limited to the four first modes.
A decentralized adaptive fuzzy controller is computed,
considering actuators dedicated to each mode, from the
optimization criteria (equation (33)). The electric poten-
tial applied is defined by a percentage of the mechanical
modal energy at each time, in order to limit the used
electrical energy, and to actuate the most relevant
actuators according to the vibrations. Thus, for the
controller dedicated to the ith mode, the inputs are the
estimated modal displacement âi and modal velocity
_̂ai, and the output is the electric potential fi

a applied to
the dedicated actuators. In order to have a simple con-
troller, five triangular membership functions are con-
sidered for input and output variables, namely ‘P+’
(positive large), ‘P’ (positive), ‘Z’ (zero), ‘N’ (negative)
and ‘N+’ (negative large). Zorić et al. (2013) has
defined which shapes of triangular functions are effi-
cient. They are plotted in Figure 3. As the inputs are set
to be in ½�1, 1�, at each time t, they are scaled, using a
division by their maximal value, obtained in ½0, t�

�̂ai tð Þ= âi tð Þ
max
t2½0, t�

jâi tð Þj ð38Þ

�̂_ai(t)=
_̂ai tð Þ

max
t2½0, t�

j _̂ai tð Þj
ð39Þ

The rules for active vibration control are given in
Table 1. They are generated from Mamdani style infer-
ence. The centroid method is used for defuzzification
and gives a value in � � 1, 1½ for actuators voltage dedi-
cated to the ith mode and named fi

c(t).
In order to damp best the most excited mode, with-

out exceeding the admissible electric energy Ji(t),
defined as

Figure 3. Triangular functions for fuzzy logic controller.



Ji tð Þ=v2
i âi

2 tð Þ+ _̂ai

2
tð Þ ð40Þ

and the weight of mechanical modal energy Wi(t) as

Wi tð Þ= Ji tð ÞPN
i= 1

Ji tð Þ
with 0 ł Wi tð Þł 1 ð41Þ

In this way, the applied voltage devoted to the ith
mode is given by

fi
a tð Þ= fi

c tð Þ
maxjfi

cj
� Vmax �Wi tð Þ ð42Þ

where Vmax represents the maximal admissible total vol-

tage of the system and maxjfi
cj is the maximal value of

fi
c compared to �̂ai and

�̂_ai. Equation (42) leads to

0 ł
XN

i¼1

fi
a tð Þł Vmax

It allows to have a controller system, which activates
with properly the suited actuators according to the
most excited eigenmode, without exceeding the admissi-
ble electric energy.

4. Validation test

Before carrying out studies on active vibration control,
the FE model has been validated with results of several
papers for FGM. One test for FGPM is presented here,
given by Zhong and Yu (2006).

We consider a single-layered FGPM square plate,
simply supported and electrically grounded. The mate-
rial properties vary in the direction of thickness as

P(z)=P0e
kz
h ð43Þ

where P=(Cij, eij, eij, r) and P0 are the properties of
PZT4, the reference material.

The first natural frequency is given in dimensionless

form, �f1 =v1h=2p
ffiffiffiffiffiffiffiffiffiffiffiffi
r=C11

p
, where v is the natural fre-

quency, C11 an elastic coefficient and r the mass
density.

The first natural frequencies for a thickness ratio
h=L= 0:1 and for different values of k are given in

Table 2. The results are compared to the exact solution
given by Zhong and Yu (2006). The FE gives excellent
results as the error is less than 3%.

5. Active control simulations

In this section, a 1.0 m 3 0.8 m 3 0.01 m rectangu-
lar simply supported FGPM plate, made from a mix-
ture of PZT4 and aluminium, with a percolation
threshold equal to VT = 30%, is considered. The
mechanical and electrical properties of these two mate-
rials are given in Table 3. As presented in Figure 4, 16
electrodes (0.1 m 3 0.06 m) are printed on the top
and bottom faces of the plate, allowing 16 possible
locations for sensors pairs and actuators pairs (upper
and lower parts of the active areas are simultaneously
used as sensors or actuators).

The aim of the present simulation is to control the
first four eigenmodes (bending ones). Nevertheless, the
first six eigenfrequencies, detailed in Table 4 in the case
of k = 2, are taken into account to build the controllers
in order to avoid spillover. The natural damping of the
plate will be taken into account through the damping
ratio given by the Rayleigh relation (Clough and
Penzien, 1975)

Table 1. Rule base for fuzzy logic controller.

�̂_ai
�̂ai

N+ N Z P P+
N+ P+ P+ P+ P P
N P P P Z Z
Z P P Z N N
P Z Z N N N
P+ N N N+ N+ N+

Table 2. Comparison of the first dimensionless frequency of a
FGPM square plate by Zhong and Yu (2006).

k 0 0.1 1 2 5

�f1310�3 (Zhong) 8.14 8.14 7.85 7.14 4.87
�f1310�3 (Present) 8.32 8.32 7.97 7.30 4.92

Table 3. Characteristics of PZT4 and aluminium.

Properties Aluminium PZT4

Young modulus Y (GPa) 69 –
Poisson ratio n 0.3 –
Piezoelectric constants (C=m2)

e31 = e32 – –5.2
e15 = e24 – 2.7
e33 – 15.1

Dielectric constants (nF=m)
e11 = e22 – 13.09
e33 26:55e�3 11.51

Elastic constant (GPa)
C11 =C22 – 139
C33 – 115
C12 – 77.8
C13 – 74.3
C44 =C55 – 25.6
C66 – 30.6

Density r (kg=m3) 3960 7600



hi =
gvi

2
+

b

2vi

where g and b are constants equal to

g =
0:004

v1 +v2ð Þ , b= gv1v2

As the structure has two normal symmetric planes
to the neutral surface, each eigenmode is controlled
by a set of two actuator pairs, each electrode receiv-
ing the same electric potential. The modified optimi-
zation criteria (equation (33)) is used to define which
electrodes are well suited to control each eigenmode.
Results are given in Table 5. Similarly, using criteria
(equation (36)), electrodes 3 and 9 are considered as
sensors.

In the following simulations, the plate is subjected to
a release test (xi(t= 0)= 10�4 m for i= 1, 2, 3, 4) and a
uniform load (103 Pa) is applied at t = 1 s during 0:11 s
such as to model a mechanical impact. Finally, at each
time, the maximal value of the total electric potential
applied to the electrodes is Vmax = 250V.

5.1. Results for a classical fuzzy controller

In this first simulation, a classical fuzzy controller
(CFC) is considered. It consists in a control of each
eigenmode, independently of each other. The input of
each pair of actuators is obtained by a fuzzy controller
and is limited to the value of 62:5V, in order not to
exceed the Vmax threshold.

The open-loop time response (uncontrolled plate) of
the four first modal coordinates is presented in Figure 5.
The magnitude decay here observed comes from the nat-
ural damping of the plate.

Figure 4. Electrodes locations on the FGPM plate.

Table 4. Eigenfrequencies for k= 2 (Hz).

f1 f2 f3 f4 f5 f6

38.78 84.38 110.33 155.98 160.67 229.49

Table 5. Actuators dedicated to each eigenmode.

Eigenmode 1 2 3 4

Actuators electrodes 6, 11 5, 8 2, 14 1, 16

Figure 5. The first four modal coordinates in the case of open loop.



Figures 6 and 7 respectively present the closed-loop
time response (controlled plate) and the potential
applied to the four pairs of actuators electrodes.

It can be noted that the vibrations of eigenmodes 2,
3 and 4 vanish in less than 0.5 s. On the other hand, the
greater mechanical energy needed to control the first
mode and the limited potential on electrodes led to an
extended control time (about 3 s).

5.2. Results for adaptative fuzzy controller

In this section, the adaptative fuzzy controller (AFC) is
used, taking into account the most excited eigenmodes.
The electric potentials applied to each actuator pair are
now given by equation (42). They depend on the
mechanical modal energy percentage of each mode in
order to ensure that the most electrical energy is applied
to control the most excited modes.

Figure 6. The first four modal coordinates in the case of closed loop, using a classical fuzzy controller.

Figure 7. The actuator inputs from a classical fuzzy controller.



The four modal coordinates and the actuators inputs
are plotted in Figures 8 and 9. The first mode being the
most excited one, the input of actuators for mode 1 is
higher than those for modes 2 to 4. As a consequence,
the controller efficiency increases for the first mode: the
release load nearly vanishes before the impact load and
both of them are controlled in less than 2 s. On the
other hand, the time needed to control modes 2 to 4
are increased weakly, but all modes are controlled in
less than 2 s.

In Figure 10, the deflection of the FGPM at the loca-
tion (0.5 m, 0.4 m) is plotted for the uncontrolled

system and the two fuzzy controllers. It can be noted
that the AFC allows vibrations to vanish more than
twice as fast as the CFC.

5.3. Comparison with the LQR

The LQR is one of the most usual control method used
in active vibration control of classical structures
(Bruant and Proslier, 2015; Preumont, 2011). In
Balamurugan and Narayanan (2001), several control
laws are compared for active control of plates, and the
LQR optimal control schemes are proved to be more

Figure 8. The first four modal coordinates in the case of closed loop, using the adaptative fuzzy controller.

Figure 9. The actuator inputs from the adaptative fuzzy controller.



effective than classical controls. However, this method
is useful in using one or two actuators but its imple-
mentation becomes complicated for more than two
devices. In this section, a comparison between AFC
(using four pairs of actuators) with LQR (using one
actuator located at location 6, the optimal location for
the fourth modes) is presented. Similarly to previous
simulations, the maximal value of the total electric
potential is still Vmax = 250V.

Assuming that the state equation is controllable, the
control law may be written as Kailath (1980)

fa = � Kx ð44Þ

which minimizes a cost function given by

Jf =
1

2

ð‘
0

xTQx+fa
TRfa

� �
dt ð45Þ

R is a positive matrix and Q is a positive semi-definite
matrix. The optimal solution is

K=R�1BTP ð46Þ

where P satisfies the Riccati equation

ATP+PA� PBR�1BTP+Q= 0 ð47Þ

In the following application, Q is chosen so that
xTQx represents the mechanical energy. The compo-
nents of R are chosen using the following statement:
the maximal values of fa are less than Vmax. As the
knowledge of x is usually not complete, the control law
uses x̂, the estimation of x

fa = � Kx̂ ð48Þ

where x̂ is an estimation of x.
Figures 11 to 13 respectively present the time

response, the potential applied to the actuator and the
tip deflection at the location (0.5 m, 0.4 m) for the
LQR controller.

The efficiency of the LQR controller is quite good
for the release test. Nevertheless, the matrix K of the
LQR controller being optimized for one defined distur-
bance (here the release test), this controller is less effi-
cient than the AFC controller for the applied uniform
load at time t = 1 s. On the other hand, the fuzzy
methods are known to be well suited for uncertainties,
especially for disturbance uncertainties.

6. Conclusion

Active vibration control of a smart FGPM plate has
been carried out using an adaptive fuzzy controller
strategy. The mechanical and electrical properties of
the FGPM are graded in the thickness according to a
power law distribution, with the exception of the

Figure 10. The deflection of the FGPM plate, at the location
(0.5 m, 0.4 m).

Figure 11. The first four modal coordinates in the case of closed loop, using the LQR controller.



permittivity, which follows the Maxwell-Garnett Law.
Insulating and conductive regions in the FGPM are
derived from the percolation phenomenon. In this
work, the FGPM is considered symmetrically distribu-
ted, without imperfection.

A FGPM plate FE based on the FSDT hypothesis
and layerwise approximation for electric potential has
been implemented to obtain the modal basis used for
active control. The FGPM being equipped with a net-
work of discrete electrodes, an optimization procedure
has been used to define the relevant electrodes for
actuators and sensors, based on controllable and obser-
vable criteria. An AFC system has been used, activat-
ing with relevance the actuators according to the most
excited eigenmodes. Simulations show the effectiveness
of this kind of concept and fuzzy controller.

This article is a first study showing the feasibility of
active vibration control using such materials. The study
of uncertainty in this distribution will be an upcoming
work.
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Hać A and Liu L (1993) Sensor and actuator location in
motion control of flexible structures. Journal of Sound and

Vibration 167(2): 239–261.
He X, Ng T, Sivashanker S, et al. (2001) Active control of

FGM plates with integrated piezoelectric sensors and
actuators. International Journal of Solids and Structures

38(9): 1641–1655.
Kailath T (1980) Linear Systems, vol. 156. Englewood Cliffs,

NJ: Prentice-Hall.
Kiani Y, Sadighi M and Eslami M (2013) Dynamic analysis

and active control of smart doubly curved FGM panels.
Composite Structures 102: 205–216.

Kumar V (2013) Vibration control of a plate with help of
fuzzy logic controller. International Journal of Enhanced

Research in Science Technology and Engineering 2:
100–106.

Li D, Liu W, Jiang J, et al. (2011) Placement optimization of
actuator and sensor and decentralized adaptive fuzzy
vibration control for large space intelligent truss structure.
Science China Technological Sciences 54(4): 853–861.

Li JF, Takagi K, Terakubo N, et al. (2001) Electrical and
mechanical properties of piezoelectric ceramic/metal com-
posites in the Pb(Zr, Ti)O3/Pt system. Applied Physics Let-

ters 79(15): 2441–2443.
Liew K, Sivashanker S, He X, et al. (2003) The modelling and

design of smart structures using functionally graded mate-
rials and piezoelectrical sensor/actuator patches. Smart

Materials and Structures 12(4): 647–655.
Lin J (2005) An active vibration absorber of smart panel by

using a decomposed parallel fuzzy control structure. Engi-
neering Applications of Artificial Intelligence 18(8):
985–998.

Logg A, Mardal KA and Wells G (2012) Automated Solution

of Differential Equations by the Finite Element Method:

The Fenics Book, vol. 84. Berlin: Springer Science+Busi-
ness Media.

Mahamood RM, Akinlabi ET, Shukla M, et al. (2012) Func-
tionally graded material: an overview. In: Proceedings of

the world congress on engineering (WCE), London, 4–6
July.

Mamdani EH (1974) Application of fuzzy algorithms for con-
trol of simple dynamic plant. In: Proceedings of the Institu-
tion of Electrical Engineers 121: 1585–1588.

Marinaki M, Marinakis Y and Stavroulakis GE (2015) Fuzzy
control optimized by a multi-objective differential evolu-
tion algorithm for vibration suppression of smart struc-
tures. Computers & Structures 147: 126–137.

Maruani J, Bruant I, Pablo F, et al. (2017) A numerical effi-

ciency study on the active vibration control for a FGPM
beam. Composite Structures 182: 478–486.

Narayanan SBV (2010) Functionally graded shells with dis-
tributed piezoelectric sensors and actuators for active
vibration control. In: Dattaguru B, Gopalakrishnan S and
Aatre V (eds) IUTAM Symposium on Multi-Functional

Material Structures and Systems, vol. 19. Dordrecht:
Springer, pp. 3–13.

Nourmohammadi H and Behjat B (2016) Design criteria for
functionally graded piezoelectric plates under thermo-elec-
tro-mechanical loadings. Journal of Intelligent Material

Systems and Structures 27(16): 2249–2260.
Orlowska S (2003) Conception et prédiction des caractéris-
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phases par la modélisation et la validation expérimentale.
PhD Thesis, Ecole Centrale de Lyon, Écully.
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